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Abstract

Large-scale driving datasets such as Waymo Open Dataset and nuScenes sub-
stantially accelerate autonomous driving research, especially for perception tasks
such as 3D detection and trajectory forecasting. Since the driving logs in these
datasets contain HD maps and detailed object annotations that accurately reflect
the real-world complexity of traffic behaviors, we can harvest a massive number of
complex traffic scenarios and recreate their digital twins in simulation. Compared
to the hand-crafted scenarios often used in existing simulators, data-driven sce-
narios collected from the real world can facilitate many research opportunities in
machine learning and autonomous driving. In this work, we present ScenarioNet,
an open-source platform for large-scale traffic scenario modeling and simulation.
ScenarioNet defines a unified scenario description format and collects a large-scale
repository of real-world traffic scenarios from the heterogeneous data in various
driving datasets including Waymo, nuScenes, Lyft L5, Argoverse, and nuPlan
datasets. These scenarios can be further replayed and interacted with in multiple
views from Bird-Eye-View layout to realistic 3D rendering in MetaDrive simulator.
This provides a benchmark for evaluating the safety of autonomous driving stacks
in simulation before their real-world deployment. We further demonstrate the
strengths of ScenarioNet on large-scale scenario generation, imitation learning, and
reinforcement learning in both single-agent and multi-agent settings.

1 Introduction

Autonomous Driving (AD) is revolutionizing mobility with benefits like reliable transportation,
travel comfort, and fuel efficiency. As a safety-critical application, it is important to evaluate the
AD stack thoroughly and ensure its reliability and safety before the real-world deployment [54].
Unlike the standardized evaluation of the perception module of AD stack on large-scale real-world
annotated data [41], the planning and control modules are often evaluated in simulators with synthetic
hand-crafted scenarios [21, 47, 27, 52]. These testing scenarios, often overly simplified, cannot
reflect the complexity of real-world conditions like map structures and diverse traffic participant
behaviors [7]. Moreover, it is time-consuming and requires domain knowledge to craft such testing
scenarios, especially those with many traffic participants [22]. Thus, it remains challenging to scale
up the evaluation and the training of the AD’s decision-making in a wide range of situations.

Collecting traffic scenarios from real-world driving data can address the data accessibility issue.
By replaying the real-world traffic scenarios in simulation, we can further benchmark the decision-
making of the AD system and improve the generalizability of the data-driven planning and control
components. However, several critical issues need to be addressed when building a large-scale
data-driven simulation platform: First, annotated driving data is precious and we would like to use as
much data as possible. However, it is difficult to achieve this since publicly available driving data are
released by different organizations and in various formats. This creates a bottleneck in aggregating
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Figure 1: Snapshots of three scenarios extracted from nuScenes and their corresponding interactive
environments with multiple views and sensors including RGB camera, depth camera, and semantic
camera. The RGB sensor can be used for end-to-end driving systems like Openpilot [10].

the data volume from multiple sources for training and evaluating AD systems. Second, existing
datasets are closely coupled with specific simulators or toolkits built for ad hoc applications, which
largely limits the possibility of data sharing. For example, nuPlan [6] with 1500+ hours driving
data aims at single-agent Imitation Learning (IL); Nocturne [50] with 500+ hours Waymo motion
data is mainly designed for multi-agent Reinforcement Learning (RL) under partial observation;
SimNet built on 1000 hours L5 motion dataset targets at scenario generation. Researchers who want
to use nuPlan data for multi-agent RL have to spend a significant effort on building a new simulator
or bridging Nocturne [50] and nuPlan dataset. This greatly restricts the potential of cross-dataset
training. Furthermore, driving datasets like nuPlan [6], nuScenes [5], and Argoverse [8, 55] provide
raw sensor data like images and point clouds, but existing 2D data-driven simulators can not make
use of them. The lack of z-axis and 3D graphics prevents training visuomotor policies and evaluating
end-to-end AD stacks, like Openpilot [10] in simulation.

To tackle the aforementioned challenges, we introduce ScenarioNet, an open-source platform to unify
the heterogeneous driving data from various sources for large-scale traffic scenario simulation and
modeling. It extracts a massive number of traffic scenarios in a unified format from various datasets,
including Waymo motion datset [18], nuScenes dataset [5], L5 motion prediction dataset [26], Argov-
erse dataset [8, 55], and nuPlan dataset [6]. These scenarios can be replayed and reacted through the
MetaDrive simulator [30] in multiple views from BEV layout to realistic 3D rendering. ScenarioNet
enables many machine learning applications like large-scale scenario generation, imitation learning,
and reinforcement learning in both single-agent and multi-agent settings. With the built-in ROS
bridge, the digital twins of the traffic scenarios can further serve as testbeds for AD stacks, where in
our case we evaluate the open-source one like Openpilot [10]. We conduct a range of experiments
based on ScenarioNet. First, we train a large scenario generation model on a joint dataset and analyze
the embedded space of traffic scenarios to identify the relationship across various datasets. After
that, we conduct cross-dataset single-agent training and testing experiments to show the advantage
of real-world data for training ML-based planners. In addition, multi-agent RL/IL experiments are
conducted on Waymo dataset [31, 18] to show the support for agent-based scenario generation. Lastly,
we test Openpilot [10], an end-to-end AD stack in reconstructed scenarios. We hope our open-sourced
ScenarioNet with its flexible APIs and toolkits empowers the community with many new research
opportunities and propels the development of safe and generalizable AI for autonomous driving.

2 Related Work

Synthetic scenario database. The majority of the existing scenario databases are based on synthetic
data which are either handcrafted [3, 58, 16, 21, 17, 29, 59], or generated based on rules [7, 30, 24, 49,
62, 4] and adversarial attacks [13, 14, 36, 64, 63] which, in particular, aims at building safety-critical
cases. Synthetic scenarios are predominantly described using OpenScenario [3, 17, 16], Scenic [21],
and Python language [58, 29], allowing the definition of map structures, initial actor displacements,
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Simulator Supported
Dataset RL IL Multi-agent

RL & IL
Scenario

Generation
AD Stack
Testing

3D
Rendering

nuPlan-devkit [45] nP ✓

DriverGym [28] L5 ✓ ✓

Nocturne [50] W ✓ ✓ ✓

TrafficSim [44] - ✓

SimNet [44] L5 ✓

VISTA [2, 53] W, nS ✓ ✓ ✓ ✓

ScenarioNet W, L5, nP, nS, Ag ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of representative data-driven simulators. ScenarioNet supports Waymo (W), L5
Lyft, nuPlan (nP), nuScenes (nS), and Argoverse (Ag) datasets and various applications and tasks.

and subsequent behaviors. These scenario descriptions can be parsed for building scenarios in
CARLA [15] seamlessly. Representative databases are OSC-ALKS [3], highway-env [29], DI-
drive [16], and SafeBench [58] which mainly provides safety-critical scenarios.

Real-world scenario database. To the best of our knowledge, CommonRoad [1] and nuPlan [6]
are the only real-world datasets curated specifically for the development and testing of the planning
module. CommonRoad lacks sensor data and has a limited number of scenarios, while nuPlan [6]
has more than 1500+ hours of annotated driving data. Though high-quality data is provided by
nuPlan, the accompanying nuPlan-devkit is limited to open-loop/close-loop IL. Extra effort is needed
for it to support wide applications like RL-based planner training.In this case, ScenarioNet can
complement single-agent and multi-agent RL training with nuPlan data. Besides, ScenarioNet has
a 3D rendering support which can additionally make use of the sensor data in nuPlan dataset for
investigating end-to-end AD stack and some interdisciplinary tasks like street scene reconstruction.
Furthermore, ScenarioNet can incorporate more motion prediction datasets like Waymo dataset [40],
nuScenes dataset [5], and L5 dataset [26] for cross-dataset training and testing.

Data-driven simulation. We refer to driving simulators capable of replaying real-world scenarios
or generating realistic traffics as data-driven simulators. In Table 1, we summarize the properties of
existing data-driven simulators in terms of widely supported real-world data sources and applications,
and tasks. Each simulator has a different set of supported datasets. The support for RL and IL entails
single-agent driving policy learning for the ego vehicle only, while MARL (IL) needs to control
additional vehicles present in the scenario. Thus scenario generation represents methods requiring not
only actuating objects in a similar way to trajectory forecasting [33, 51] but composing new traffic
scenarios by inserting vehicles into an empty map. TrafficGen [19] exemplifies how ScenarioNet
enables building the training dataset and loading generated scenarios for RL training. Among all the
simulators, only the simulation environment provided by ScenarioNet supports AD stack testing. The
last column shows that ScenarioNet and VISTA [2, 53] are the only two platforms that utilize camera
and lidar data for 3D rendering support. Though both VISTA and ScenarioNet can train driving
policies, there is a distinct difference. VISTA achieves closed-loop training and synthesizing new
sensor data by applying relative transformations to the recorded sensor data. In contrast, ScenarioNet
reconstructs scenarios with mid-level object representations, such as vehicle positions and velocities.
Despite the loss of raw sensor data fidelity, this design enables broader scope of capabilities including
not only closed-loop training but also scenario-based AD stack testing and scenario generation.

3 System Design of ScenarioNet

Fig. 3 illustrates the system design of the proposed ScenarioNet. It collects a massive number of
real-world traffic scenarios by converting heterogeneous driving data from different sources, like
Waymo dataset [43], nuScenes/nuPlan dataset [6, 5], and so on. Meanwhile, it can replay the imported
scenarios in the MetaDrive simulator [30] through the unified scenario description, supporting various
machine learning applications and tasks, such as AD stack testing, single-agent learning, multi-agent
learning, and scenario generation. We describe each component of ScenarioNet in more detail below.

3.1 Unified Scenario Description
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{"map_features": {
    "map_obj_id_1": {
        "centerline": [...],
        "type": "lane",
        "connectivity": {...},
        “polygon": [...]
    },
    "map_obj_id_2": {
        "polyline": [...],
        "type": "white_solid_line"
    },
},
"objects": {
    "object_id_1": {
        "position": [...],
        “heading": [...],
        “velocity": [...],
        “valid”: [...],
        “size": (l, w, h),
        "type": "VEHICLE“
    }
},
"traffic light": {
    "light_id_1": {
        "states": [...],
        "position": (x, y, z),
        "lane": "map_obj_id_1“
    }
},
"metadata": {
    "dataset": "nuscenes",
    "time_interval": 0.1,
    "summary": {
        “num_objects”: 53,
    }
}}

Figure 2: Example of
Scenario Description

A unified scenario description format is the key for extracting scenario
data from different sources. As shown in Fig. 2, we define the unified sce-
nario description format as a nested dictionary with 4 top-level keys. Each
scenario in the source dataset will be converted into scenario_id.pkl .

Map Features. Each scenario description file stores map features con-
sisting mainly of lanes and lane lines. Both lanes and lane lines have
a polyline field recording the lane centerline or lane line itself. Given
an object, we can know how far it moves along the lane and the lateral
distance to the lane centerline by converting its position from the global
Cartesian coordinate to the lane centerline’s Frenet coordinate. On the
other hand, contact checks can be executed between a vehicle and a lane
line to decide whether the vehicle is driving across the lane line. For
lanes, it has two extra fields: polygon, and connectivity. Polygon can be
used to query if a given object is on the lane, and the drivable area can
be determined by combining polygons of all lanes. Connectivity records
the neighbor lanes, next and previous lanes of the given lane.

Objects. In most raw driving data, the road objects are usually stored
in a frame-centric way where the user need to visit all time frames be-
fore collecting the state sequence of an object. In ScenarioNet, the
object representation is object-centric meaning that querying the object
dictionary with an object ID will return the state sequence across the
episode. This is convenient for downstream applications which are mostly
object-centric. Take trajectory prediction as an example. For getting the
ground truth of the motion of an object, user can query the description
with [object_id]["position"] and [object_id]["velocity"] .
The queries will return the whole trajectory and velocity. However, not
all objects are valid throughout the whole episode and hence we intro-
duce a [object_id]["valid"] key for indicating which frame the
object presents. For loading the objects into the simulator, we synchronize the position, head-
ing, velocity, and rotation rate between the logged data and the simulated object entity when
the [object_id]["valid"] indicator is True at the given frame. Otherwise, the object will
disappear and be destroyed. By doing so, the digital twin scenario can be faithfully reconstructed in
MetaDrive simulator.

Traffic Lights. Similar to objects, traffic lights are stored in a dictionary with the ID as the key and
properties as the value. The light states can be accessed by [light_id]["state"] throughout one
episode, where each element can be Red, Yellow, Green, or Unknown and represent the status of the
corresponding lane. As each object can localize which lane it is on, it can easily know if there is a
traffic light on the current lane or an oncoming lane.

MetaData. ["metadata"] exists at each level of the nested dictionary, storing miscellaneous data.
For example, for an object, the [object_id]["metadata"] can store the instance ID provided by
the original dataset. For the top-level dictionary of scenario description, a ["metadata"] stores the
information about the source dataset, like the original scenario ID, which original file this scenario
comes from, the time interval between two frames, the coordinates system of the data, etc. In addition,
some statistics of the scenario are included such as the number of objects, the number of traffic lights,
and the moving distance of each object. This information can be used to select or filter scenarios to
build new databases as in Sec. 3.2.

To ensure a scenario description can be loaded into the simulator, we provide a tool script to check if
necessary keys are present in the specific dictionary and if the data type of the key’s value is correct.
For example, ["position"] can not be absent from the object property dictionary, and its value
should be in shape (N, 3) where N is the episode length. As long as all necessary keys exist, users
can add new fields to the scenario description to log more details about the scenario.

3.2 Scenario Database
The database in ScenarioNet is a folder containing two summary files dataset_summary.pkl
and a dataset_mapping.pkl . dataset_summary.pkl stores a dictionary with keys indicating
which scenarios are included in this database and values storing the metadata of each scenario.
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Figure 3: From bottom to top, ScenarioNet platform consists of the data layer, system layer, and appli-
cation layer which are connected by two critical data flows, data conversion (→) and simulation (→).
Data conversing unifies various data formats and stores them in an internal scenario description. The
system layer then provides a set of tools to operate converted data efficiently, such as filtering (→),
merging, sanity-check, splitting (→) and so on. Once the database is ready, it can be loaded into
MetaDrive for large-scale simulation and various applications.

dataset_mapping.pkl records the relative path of the scenario file scenario_id.pkl from the
database folder, and hence no matter where the scenario files are we can access them through the
relative path recorded in dataset_mapping.pkl .

Database Operations. ScenarioNet provides several operations to create and maintain the
databases including raw data conversion, sanity-check, merging, splitting, sampling, and filter-
ing. A new database can be formulated with a series of operations. Conversion is the ba-
sic operation for creating a database by processing driving data in various formats to the uni-
fied scenario description. This operation produces a database: a folder with summary files
dataset_summary.pkl and dataset_mapping.pkl and a number of converted scenario files
with filenames like sd_nuscenes_scenes-0061.pkl . Currently, we provide data converters for
parsing data from Waymo [43], nuPlan [6], nuScenes [5], L5 [26], and procedurally generated
dataset [30]. It is also convenient to write new converters for users’ own dataset for exploiting the
power of ScenarionNet. After converting and building from raw data, the databases then can be
operated to create new databases on demand. For example, Merging operation combines several
databases together to get a larger one. Filtering operation creates a new database with scenarios
satisfying specific conditions. For example, we can build a database with scenarios where ego car
moving distance > 10 meters and the number of traffic participants > 200. Sanity-check is a special
filter for building a new database by discarding broken scenarios that can not be loaded into the
simulator. Splitting and sampling aim to divide training and non-overlapping test sets. Instead of
copying the raw data when creating new dataset, we only read the summary files from source dataset
and create new dataset_summary.pkl and dataset_mapping.pkl . The copy-free design and
the parallel operations ensure efficiency.

New Dataset Support. It is easy to add support for new datasets by following these steps:

1. Download the original data and set up the official codebase for parsing this data.
2. Make a convertor_function which takes one scenario recorded in the original format as input

and returns the scenario described in a new format. Actually, this process is like filling in the
blank of the target scenario description by parsing the original data format with official APIs.

3. Scale up the data conversion with the built-in function, write_to_directory . It takes the
convert_function and a list of scenario indices or original scenarios as input and writes the
converted scenarios into a target directory. In this process, the multi-process parallel converting,
sanity-check and other trivial steps will be finished automatically.
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Though step 2 seems time-consuming, most of the work in this step is, actually, calling APIs provided
by the new dataset, retrieving the desired data, and putting them in the corresponding field. A good
example is convert_waymo_scenario where most of the subfunction is called extract_xyz .
Since the structure and fields to fill in the scenario description are clear and automatic tools are
provided, we believe it would be easy for the community to add support for more datasets.

3.3 Scenario Simulation
We simulate the traffic scenarios as interactive environments through an upgraded version of our
MetaDrive simulator [30], which encompasses Bullet [12] physics engine, 2D Pygame rendering
backend, and 3D OpenGL rendering backend. The physics engine not only simulates realistic
vehicle dynamics but also efficient contact and collision detection among vehicles, objects, and
map features such as lane lines. As a result, the physics simulation can run up to 500 FPS for
real-world scenarios containing +100 interactive objects including pedestrians, vehicles, cyclists, and
traffic barriers/cones. We use synthetic models to represent pedestrians and vehicles, so no personal
information is identifiable.

Sensors. ScenarioNet supports collecting the mid-level representations of scenarios through 2D
pseudo-lidar and bird’s-eye view images. It also supports querying the internal simulator states for
precise ground truth information about surrounding objects, such as their positions and velocities.
Nevertheless, end-to-end commercial AD stacks like Openpilot [10] are emerging and a recent trend
suggests it is important to consider the perception and planning system as a whole [11]. ScenarioNet
thus provides RGB-camera, depth-camera, and point-cloud for sensor simulation. All camera outputs
are synthesized via the OpenGL rendering backend, which is wrapped by the Panda3D game engine
and allows users to add new visual effects or shaders via Python code easily. We optimize the camera
efficiency by bridging CUDA and OpenGL so that the images rendered by OpenGL in VRAM can
be converted to Pytorch [34] Tensor directly. The entire procedure occurs on the GPU, resulting
in an improvement from 11 FPS to 300 FPS when simulating a 1920x1080 image. In addition, to
better simulate RGB camera output, we upgrade the 3D-rendering effect of the native MetaDrive
3D renderer through deferred rendering which enables simulating photorealistic light, shadow, and
material. Some examples of the supported sensors are in Fig. 1.

Control Policies. All objects in the scene are controlled by policies. In a single-agent setting, vehicles
can be controlled by either the ReplayPolicy to replay logged trajectories or the IDMPolicy to not
only replay but react to other objects. The IDMPolicy enables closed-loop simulation by detecting
if there are objects present on its future trajectory and adjusting the target velocity to avoid collision
with the leading object. In this way, when the ego car deviated from the recorded trajectory, vehicles
behind it can react to this change and show yielding behavior. Also, the ego car can be controlled
by the ReplayPolicy to the replay trajectory or the EnvInputPolicy to accept external control
commands from env.step() . Moreover, by assigning the EnvInputPolicy to traffic vehicles,
the task can be turned into a multi-agent setting. This policy-based design in ScenarioNet allows for
mixed-policy simulation and provides high customizability. For instance, one can develop a policy
that wraps a ROS bridge to connect open-source AD stacks to the simulation.

4 Experiments and Applications
We conduct a range of experiments and demonstrate various applications of ScenarioNet. We
introduce how we built databases containing scenarios from different sources and then use these
databases to conduct experiments on single-agent and multi-agent learning and AD stack testing.

4.1 Database Construction
Waymo. Waymo database is built with the Waymo Motion dataset [43]. The raw data contains 500+
hours of driving logs divided into 70,000+ scenarios with 20 seconds duration for each scenario. We
convert all of them into internal scenario descriptions and then filter out the scenarios where the ego
vehicle moves less than 10 meters or where overpasses exist.

nuPlan. Though nuPlan [6] has more than 1500 hours of driving data, we only use those recorded in
Boston as we want to keep all databases in the experiments to have similar sizes. After filtering out
scenarios whose ego car moves < 10 meters, we finally collect 50,261 20-second scenarios.

PG. PG stands for procedural generation which is used to generate infinite maps and traffic according
to a set of pre-defined roadblocks and traffic initialization rules. It is the default scenario generation
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PG ScenarionuPlan ScenarioWaymo Scenario

Ego Car

Dataset Track Length No. of Vehicles No. of Pedestrians Intersection Ratio Construction Ratio

Waymo 136.55(± 95.98) 89.93(± 64.51) 11.7(± 22.97) 0.71 0.0
nuPlan 95.48(± 42.32) 53.96(± 25.35) 21.99(± 19.9) 0.57 1.0

PG 226.07(± 70.7) 9.81(± 3.31) 0.0 0.36 0.39

Table 2: The statistics of the Waymo, nuPlan, and PG database.

Figure 4: t-SNE visualization of the feature embeddings of scenarios from three databases. Scenarios
from nuPlan and Waymo datasets are much more similar, while synthetic PG data has a clear domain
gap with both real-world datasets. We also plot the representative scenarios in clusters. As shown in
the left-side figures (□), synthetic scenarios can be neatly categorized into distinct clusters, while real-
world scenarios shown on the right side are too complex to identify clear boundaries. Nevertheless,
the right-side figures show scenarios from nuPlan (□) have simpler map structures and mild traffic,
compared to the Waymo scenarios (□). In addition, there are two outliers that confuse the model,
causing it to cluster them with real-world scenarios. The visualization of the two synthetic scenarios
indicates that the intersection scenario can bridge the sim-to-real gap.

method of MetaDrive simulator [30]. We set the traffic density to 15 vehicles per 100 meters and 2
roadblocks in each scenario to keep scenario length consistent with real-world scenarios. We finally
collected 50,000 scenarios to form the PG database.

Table 2 provides statistics about the three datasets. Track length stands for the average moving
distance of the ego car across all scenarios, and PG scenarios have the longest moving distance.
Waymo scenarios are relatively more complex compared to others, as they have more vehicles and
more intersection scenarios, which is reflected in Fig. 4 as well. The Construction Ratio represents
the ratio of scenarios containing traffic cones and barriers out of all scenarios. nuPlan-boston database
has traffic cones and barriers in all scenarios, while no objects are contained in the Waymo database.
More database construction details are in Appendix.

4.2 Visualization of Scenario Embeddings with Scenario Generation Model
To reveal the differences and gaps across three databases, we use the internal embedding from a scene
generation model, TrafficGen [19], to visualize the scenario snapshots from all three databases. The
state initializer in TrafficGen utilizes an encoder-decoder structure that encodes the traffic scenario
into a latent space and then decodes the initial states distribution of traffic participants, enabling the
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Route
Completion

Success
Rate Reward Cost

Average
Distance

Final
Distance

TD3 0.669 (±0.018) 0.513 (±0.028) 74.87 (±5.90) 2.01 (±0.24) 12.64 (±0.72) 45.13 (±2.73)

PPO 0.740 (±0.037) 0.579 (±0.054) 85.28 (±8.96) 2.83 (±0.53) 12.79 (±0.73) 36.71 (±6.38)

CoPO 0.745 (±0.024) 0.570 (±0.043) 85.94 (±4.60) 2.88 (±0.32) 12.86 (±0.63) 34.75 (±3.78)

AIRL (Disc.) 0.367 (±0.027) 0.153 (±0.028) - 0.55 (±0.12) 17.73 (±1.87) 80.57 (±5.26)

AIRL (Cont.) 0.138 (±0.016) 0.015 (±0.009) - 0.42 (±0.16) 3.63 (±1.07) 111.23 (±7.48)

GAIL (Disc.) 0.487 (±0.021) 0.218 (±0.018) - 1.64 (±0.35) 28.48 (±2.23) 68.53 (±3.57)

GAIL (Cont.) 0.421 (±0.043) 0.189 (±0.051) - 1.56 (±0.52) 27.33 (±4.72) 75.98 (±9.02)

Table 3: The multi-agent reinforcement learning and imitation learning results on the Waymo dataset.

sampling and generation of a new scenario snapshot. We randomly select 1000 scenarios from each
database, feed them into TrafficGen to obtain the embeddings of these scenarios and then employ
t-SNE [48] to visualize them in Fig. 4. We can see there is a noticeable domain gap between synthetic
and real-world data. Only two synthetic intersection scenarios are close to real-world scenarios and
bridge the synthetic scenarios and real scenarios. Additionally, even among real-world scenarios, a
minor distribution gap remains, primarily due to different road network topologies in different regions
where the data is collected. These findings suggest that solely relying on driving data from one
region or one database is insufficient to cover all potential traffic situations. Therefore, it is
important to aggregate as many scenarios as possible. Additional showcases from different databases,
visualizations of generated scenarios, and training details can be found in Appendix.

4.3 Cross-dataset RL Generalization

The previous experiment reveals that the domain gap exists between synthetic scenarios and real-world
scenarios. We would like to further investigate whether the domain gap affects driving policy learning.
To this end, we build a data-driven RL environment where the agent should arrive at the destination of
the recorded trajectories in time. Traffic vehicles behind the ego car are controlled by IDMPolicy to
achieve closed-loop training and testing. We further split training and test sets for the nuPlan database
and the PG database, respectively, and get 4 splits: nuPlan-train, PG-train, nuPlan-test and PG-test.

Figure 5: Evaluation on nuPlan-test split.

Each training set contains 40,000 scenarios, while
each test set has 5,000 non-overlapping scenarios.
The scenarios of two training splits are sorted ac-
cording to the difficult score, a metric considering
length and curvature of trajectory, and constitutes 100
levels for conducting the curriculum training. Each
level contains 400 scenarios and a 75% Success Rate,
the ratio of scenarios where the agent can reach the
destination out of 400 scenarios, is required for the
learning environment to level up. We train PPO [39]
agents on PG-train and nuPlan-train splits with the
curriculum training and evaluate them on nuPlan-
test split to study whether the domain gap harms the
performance for the learning-based controller. All re-
sults are averaged across 5 random seeds and the error bar shows the standard deviation. As shown in
Fig. 5, when testing on held-out nuPlan-test set, the agents trained with nuPlan-train split outperform
those trained with PG-train split in terms of Success Rate. This is because the agents trained in
synthetic scenarios fail to learn high-speed driving skills and thus can not reach the destination in
time, inducing a high Timeout Rate. Thus it is necessary to train learning-based controllers with
real-world data to close the sim-to-real gap. We also ablate the curriculum training and the results
suggest that it is critical to adjust the scenario difficulty according to the agent performance in
the course of training. Finally, we build a new dataset containing 40,000 scenarios by combining
half of the PG-train split and half of the nuPlan-train split. Figure. 5 shows that agents trained on
these combined datasets achieve the highest Success Rate when evaluated on nuPlan-test split. This
is because almost every synthetic scenario contains bends and curvated trajectories, which only exist
in approximately 20% of real-world scenarios. As a result, agents acquire a better ability to follow a
curved trajectory, achieving the lowest Out of Road Rate. Thus aggregating synthetic scenarios to
the training dataset can benefit policy learning as they improve the diversity of training data.
More details of the experiments are in Appendix.
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4.4 Multi-agent Cooperative Learning

ScenarioNet can load scenario data into an interactive multi-agent policy learning environment and
generate local sensory observations for each agent. Therefore, ScenarioNet enables the critical
research on multi-agent reinforcement learning as the agents are self-interested and the number is
varying, wherein cooperative MARL methods can not be applied [35], as well as the research on
multi-agent imitation learning with the challenges of learning from observation or say the action-free
imitation learning, meaning that the ground-truth trajectory does not contain action but only the
sequence of states (observations). ScenarioNet bridges the research of multi-agent decision-making
with vast volume of real-world data. We load the ground-truth (GT) trajectory in the dataset and use
it to form the termination condition, the reward function, and the evaluation metrics. For multi-agent
RL, we use the GT trajectory to define the displacement reward: rit = the displacement of agent
i at step t projected into its underlying ground-truth trajectory. We train independent PPO [39]
and TD3 [23] agents as well as the Coordinated Policy Optimization (CoPO) agents [35]. For
multi-agent IL, to address the action-free issue, we use GAIL [25] in multi-agent setting [42] but
the discriminator distinguishes state-next state pair, instead of state-action pair [46]. We also train
multi-agent Adversarial Inverse RL [61] (AIRL) with an additional inverse dynamics model for
estimating the expert actions. The inverse dynamics model is trained concurrently with the AIRL
policies and learns the action given state-next state pairs from the environment interactions. The
ground-truth trajectory can be used to measure the learned behaviors, such as the route completion
rate, the ratio between the length of projected agent trajectory and the length of GT trajectory as
well as the average and final distance between agent trajectory with GT trajectory. The cost is the
number of crashes of an agent in one episode. As shown in Table 3, we find that the displacement
reward is strong supervision to learn multi-agent behavior as the RL can explore and exploit the
reward function by interacting with the environment, without learning a discriminator as in GAIL or
a reward function and an inverse dynamics model in AIRL. More details can be found in Appendix.

4.5 AD Stack Testing

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Lane Keeping

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Stopping at Traffic Light

Figure 6: Openpilot can operate in real-world scenarios
reconstructed with ScenarioNet. It can cruise on urban
roads and smoothly stop at crowded intersections.

We released ROS bridge [32], allow-
ing connecting ScenarioNet with open-
sourced AD stacks like autoware [20]
and planning algorithms developed by
the ROS community. As a result, re-
searchers can study self-driving systems
in real-world scenarios. In our exper-
iment, we test Openpilot [10], an end-
to-end AD system taking only visual
information as input. As the naviga-
tion module of Openpilot is still a beta
version, the test happens in scenarios
without diverged roads. As shown in
Fig. 6, the Openpilot system is robust
enough to operate in common scenarios
like lane-keeping and stopping at traffic
lights. More scenario-based test videos
and details are available in Appendix.

5 Conclusion

This work presents an open-source platform called ScenarioNet for simulating and modeling driving
scenarios. A massive number of real-world traffic scenarios extracted from various datasets can be
used for testing AD stacks, generating scenarios, and learning both single-agent and multi-agent
policies. We hope it can open up many new opportunities for AI and autonomous driving communities.
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Appendix

In this appendix, we provide more details about the four experiments and some scenario examples
from the three databases used in the experiments. Section A is on the scenario generation model;
Section B is on the single-agent cross-dataset generalization experiment; Section C is on the multi-
agent reinforcement learning and imitation learning; Section E shows the interface of ROS bridge and
the qualitative results of running Openpilot test. Section F shows more rendered scenario examples
from each database.

A Scenario Generation Model

We use all the databases (nuPlan, Waymo, PG) in scenarioNet for cross-dataset traffic scenario
generation experiments. The goal is to show that scenarioNet contains diverse traffic scenario data
for training deep neural networks. We conduct our experiments based on TrafficGen [19], a neural
generative model previously developed for reactive traffic scenario generation.

A.1 Task Definition

A traffic scenario is denoted as τ = (m, s1:T ), which lasts T time steps and contains the High-
Definition (HD) road map m and the state series of traffic vehicles s1:T = [s1, ..., sT ]. Each element
st = {s1t , ...sNt } is a set of states of N traffic vehicles at time step t. Given an existing scenario
τ = (m, s1:T ), the goal of TrafficGen is to learn to generate new traffic scenarios τ ′ = (m, s′1:T ′)
that have similar distribution with τ and different states s′ and longer time steps T ′. After training,
TrafficGen takes m as input and generates τ ′ as a totally different scenario.

A.2 Model Architecture

Traffic Scenario Encoder. TrafficGen uses vectorization to encode map and vehicle information,
representing lanes as sets of vectors, each vector representing a small region. A vector-based
coordinate system is established for each small region, with each vector comprising a start point psi ,
endpoint pei , and information about vehicles in this region. Thus, a traffic snapshot τ at time step t is
represented as τt = v = vi

I
i=1. Cross attention mechanism is applied to the unordered set v to fuse

information from different regions into a single context vector.

Decoder for Scenario Generation. TrafficGen places vehicles by generating a set of weights for all
regions, which is then turned into a categorical distribution. The local position of a tentative vehicle
is modeled by a mixture of K bivariate normal distributions, as are heading, speed, and size of the
vehicle. Autoregressive sampling is used to create a traffic snapshot. A motion forecasting model is
used as the trajectory generator.

A.3 Experiment Setting

We train a scenario generation model TrafficGen with mixed data. Specifically, we randomly sample
30% data from nuPlan, Waymo, and PG. We filter out the scenarios with less than 8 cars and crop a
rectangular area with a side length of 120m centered on the ego vehicle. Each of the 20s scenarios is
split into 10 traffic snapshots with 2s intervals. The training is executed on servers with 8 x Nvidia
2080TI and 256 G memory in Distributed Data-Parallel (ddp) mode. We set the feature size to be
1024, and use 3-layer MLPs with hidden dimensions of [1024, 512, 256] for attribute modeling. The
training takes 16 hours for 100 training epochs and the learning rate decays by 20% at every 30
epochs. The detailed hyperparameters are shown in Table 4.

We plot some generated traffic scenarios in Fig. 7 and the dynamics in Fig. 8. It shows that the models
trained on the processed scenario data from ScenarioNet can generate realistic and diverse traffic
behaviors and interactions.
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Figure 7: Traffic scenarios generated from the model trained on different databases: Waymo (□),
nuPlan (□), and PG (□).

t=120 Original Case Generated Case t=40 t=80 Simulation 

Figure 8: Dynamics of the generated traffic scenarios. The first column is the original case. The
middle columns show the generated scenarios at different timesteps. The last column shows the
corresponding scenarios imported in the simulation. The green and red dashed lines indicate the
traffic light status of this lane at the intersection.
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Figure 9: t-SNE visualizations of 3000 scenarios. PG scenarios (□) are located mostly on the left
side, while the scenarios from nuPlan (□) and the Waymo scenarios (□) are scattered on the right
side.

A.4 t-SNE Visualizations

The trained model’s encoder is used to extract feature embeddings of a given scenario sample. The
embeddings are then visualized with t-SNE method to show the similarities and differences. The
detailed hyperparameters of t-SNE are shown in Table 5.

The t-SNE result is plotted in Fig. 9. The clustering results show that there is a large domain
gap between real-world scenarios (Waymo and nuPlan) and synthetic scenarios (PG). Besides,
domain gap exists even in real-world datasets. One prominent feature of the Waymo dataset is the
complex crossroad (shown in the lower right corner), which the nuPlan dataset is lacking. The t-SNE
visualization reveals the differences between different traffic datasets.
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Table 4: TrafficGen
Hyper-parameter Value

Batch Size 256
Feature Size 1024
Training epochs 100
Learning Rate 3e−4
Activation Function “relu”
MCG Layers 5

Table 5: t-SNE
Hyper-parameter Value

Components Number 2
Init pca
Learning Rate auto
Perplexity 30
Early Exaggeration 12

B Single-agent Cross-dataset Generalization Experiment

We use the PG database and nuPlan database for cross-dataset generalization experiments. The goal
is to investigate how the sim-to-real gap affects the generalizability of the learning-based vehicle
controller. To this end, we train agents on synthetic PG scenarios [30] and nuPlan [6] scenarios
respectively, and test them on the same held-out real-world test set.

B.1 Task Setup

To be specific, the task is to follow the trajectory of the data collection car and drive as fast as possible
while avoiding collisions.

Observation. The observation of the RL agents is as follows:

1. A 120-dimensional vector denoting the Lidar-like point clouds with 50m maximum detecting
distance centering at the target vehicle. Each entry is in [0, 1] with Gaussian noise and represents
the relative distance of the nearest obstacle in the specified direction.

2. A vector containing the data that summarizes the target vehicle’s state such as the steering, heading,
velocity, and relative distance to the trajectory to follow.

3. The navigation information that guides the target vehicle toward the destination. Concretely, it
consists of 10 points sampled on the future trajectory and the distance between two consecutive
points is 2m. The points will be projected to the vehicle coordinates.

4. A 12-dimensional vector denoting the Lidar-like point clouds with 50m maximum detecting the
boundary of the drivable area, like the solid lines or sidewalks. (Optional)

As the vehicle for collecting nuPlan data in Boston sometimes drives out of the drivable area for
bypassing the cones or barriers, crossing the drivable area boundary usually happens. Therefore, we
didn’t use the boundary detector in our experiments, and crossing the boundaries like solid lines
won’t terminate the episode nor penalize the agent.

Action. The driving policy is a fully end-to-end model and directly controls the low-level throttle
and steering angle. The action a is a continuous two-dimensional vector with entries in [−1, 1]. By
multiplying coefficients and clipping the extreme value, the action will be converted into the engine
force and steering angle for changing the vehicle states.

Reward and Cost Scheme. The reward function is composed of four parts as follows:

R = c1Rdisp + c2Psmooth + c2Pcollision +Rterm. (1)

The displacement reward Rdisp = dt − dt−1, wherein the dt and dt−1 denotes the longitudinal
movement of the target vehicle in Frenet coordinates of the target trajectory between two consecutive
time steps, providing a dense reward to encourage the agent to move forward. The smooth penalty
Psmooth = min(0, 1/vt − |a[0]|) incentives the agent to drive smoothly and avoid a large steering
value change between two timesteps, especially, when the velocity is high. vt and a[0] denote the
current velocity and the steering value respectively. In addition, if a collision with a vehicle, human,
or object happens at timestep t, the agent will receive a collision penalty. The penalty is set to
Pcollision = 2 when colliding with a human or vehicle and Pcollision = 0.5 for colliding with an
object like cones and barriers. We also define a sparse terminal reward Rterm, which is non-zero
only at the last time step. At that step, we set Rdisp = Rspeed = 0 and assign Rterm according to the
terminal state. Rterm is set to +10 if the vehicle reaches the destination, −5 for being 2.5m away
from the reference trajectory. We set c1 = 2, c2 = 1 and c3 = 1 .
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Termination Conditions and Evaluation Metrics. The episode will be terminated only when: 1)
the agent drives 2.5m away from the reference trajectory 2) the agent arrives at the destination and
3) the agent can not finish the episode in recorded_episode_length + 50 steps. For each trained
agent, we evaluate it in the held-out test environments and define the ratio of episodes where the agent
arrives at the destination as the success rate. The definition is the same for out of road and Timeout.
For evaluating the driving behavior, the speed in each scenario is collected and then averaged across
all scenarios. Also, a metric similar to the success rate is measured and called route completion,
which is the ratio of moving distance to the length of the whole reference trajectory. Since each agent
are trained across 5 random seeds, this evaluation process will be executed for 5 agent which has
the same training setting but different random seeds. We report the average and std on the metrics
mentioned above.

B.2 Curriculum Training System

In the single-agent experiments, 40,000 scenarios are used for training agents in both PG scenarios
and nuPlan scenarios. Loading each scenario from scratch costs a significant amount of time, and thus
we would like to buffer the scenarios in RAM for repeated use. However, the memory consumption
is nonnegligible, especially when we train 5 policies concurrently and launch 20 workers to collect
rollout for each policy. Assuming each scenario consumes about 10MB of memory, buffering 40,000
training scenarios in each worker process consumes 40,000×100×10MB=40,000GB=40TB of
memory, which requests a powerful and expensive cluster to train agents in large-scale scenarios. We
adopt curriculum training scheme for overcoming this issue, which reduces the memory by 99.9%.

Curriculum Training. We first sort the training scenarios according to the difficulty score calculated
by: track_length × cumulative_curvature. track_length is the moving distance of the data
collection car. A greater moving distance corresponds to a higher velocity, which in turn indicates
a higher difficulty score. This value then will be multiplied by a weight cumulative_curvature
which quantifies the level of bending in the trajectory. After this, scenarios can be divided into 100
levels with 400 scenarios in each level. Only when the Success Rate reaches 75%, the worker will
move to the next level and release the memory used to store scenarios of the previous level. To further
reduce memory usage, we split the scenarios in each level into 20 subsets, and each worker only loads
scenarios from the corresponding subset. Finally, only 0.05% scenarios (20 scenarios) are actually
loaded in each worker, which saves memory by a large margin.

This curriculum training scheme not only makes it possible to finish training on a single server but
boosts training efficiency and performance. We conduct an ablation study without the curriculum
training, which costs a long time to train. This training scheme releases every scenario after using and
reloading it when needed. The inferior performance highlights the necessity of having curriculum
training.

B.3 Results

As shown in Fig. 10, we present experiment results for four training settings: nuPlan with curriculum
training, nuPlan without curriculum training, PG with curriculum training, and Combine PG and
nuPlan w/ curriculum training. The four used databases are PG-train, nuPlan-train, PG-nuPlan-train,
and nuPlan-test, comprising 40,000, 40,000, 40,000, and 5,000 scenarios respectively. Considering
nuPlan with curriculum training as the baseline, our analysis focuses on two factors: the data source
and the inclusion of curriculum training. The evaluation of real-world scenarios underscores the
significance of in-distribution real-world training data and the curriculum training system.

Actually, the poor performance of nuPlan without curriculum training is also exposed at the training
stage. In spite of increasing the data coverage, the agents under this setting always have a poor
training success rate and training route completion throughout the whole training process. However,
agents trained in nuPlan with curriculum training setting are more stable and have an increasing
training success rate as they can exploit the scenarios that properly match their current driving ability.

For investigating the influence of data sources, the conclusion can be drawn only from the test results
which show that agents trained under PG with curriculum training can not generalize to real-world
settings well. And the failure mode is that agents trained in synthetic scenarios can not learn to
drive at high speed. And they don’t move until other vehicles move far from them. This behavior is
reflected on the test speed as well. However, it doesn’t mean that the synthetic data is useless. When
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Figure 10: The upper left figure shows the evaluation results for agents trained in 4 different settings. For the
remaining training details, we plot the results of three settings together and the other dataset individually. This
is because training agents on Combine w/ curriculum takes more steps and rollouts to converge and reach the
maximum level, compared to training agents on another 3 datasets (2e7 steps vs 8e7 steps). The curriculum level
is calculated as the average worker level across 5 seeds, with 20 workers per seed. Data coverage refers to the
proportion of scenarios in the training set that the agent encounters throughout the entire training process. A
value of 1.0 indicates that the agent has visited all scenarios. Scenario difficulty is determined by calculating the
average difficulty score across all scenarios collected during a PPO optimization epoch.

agents are trained on the combined datasets, despite consuming more data, they can actually manifest
the best performance. This is because the PG scenarios contain a number of curved roads and thus
agents trained in these scenarios can have a better ability to follow a curvature trajectory.

Another interesting phenomenon is the drop of training success rate when the scenario difficulty and
curriculum level increase, which is also reported in [9] as well. And this value finally coverage to the
test success rate. Therefore, we infer that given enough training scenarios, the test performance of
learning-based agents can be roughly reflected by the training-time performance.

The hyper-parameters of the RL training are listed in Table 11.

C Multi-agent Policy Learning

C.1 Experiment Setting

We can load the real-world dataset into MetaDrive simulator and create multi-agent interactive policy
environment. We first instantiate agents in the environment where their initial states are loaded from
the real-world dataset. The initial states include position, heading, velocity and the size. Then, we
assign EnvInputPolicy to all agents and allow them to be controlled by external RL policies.

The ground-truth (GT) trajectories are not accessible to the learning agents but serve as the supervision
via reward function (in RL) or observations (in IL).

Concretely, we create the reward function similar to Eq. 1 with slightly different weights:

R = Rdisp + Pcollision +Rterm. (2)

The displacement reward Rdisp = dt − dt−1, wherein the dt and dt−1 denotes the longitudinal
movement of the target vehicle in Frenet coordinates of the target trajectory between two consecutive
time steps, provides a dense reward to encourage the agent to move forward. In addition, if a collision
with a vehicle, human, or object happens at timestep t, the agent will receive a collision penalty.
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The penalty is set to Pcollision = 1 when colliding with a human or vehicle. We also define a
sparse terminal reward Rterm, which is non-zero only at the last time step. At that step, we set
Rdisp = Rspeed = 0 and assign Rterm according to the terminal state. Rterm is set to +10 if the
vehicle reaches the destination, −1 for being 10m away from the reference trajectory. We transform
the GT trajectory into the simulator to create the target trajectory and use the displacement reward as
the primary supervision from the dataset.

On the other hand, in multi-agent imitation learning we use the GT trajectory to form a dataset of
observations and follow the setting of learning from observations or say action-free imitation learning.
Specifically, for each frame in the scenario, we load the states of all actors at this frame into the
simulator and utilize the sensor simulation functionality of MetaDrive to simulate the observations of
each actor. The observation follows Sec. B.1. We form the dataset of observation sequences of all
actors in the dataset.

The ground-truth trajectory can be used to measure the learned behaviors. The the route completion
rate is the ratio between the length of projected agent trajectory and the length of GT trajectory. The
average distance between agent trajectory and the GT trajectory is computed as follows:

1

T

T∑
t=1

||posagent,t − posGT,t||. (3)

where T is the minimum length of agent trajectory and the length of GT trajectory. Therefore, for
the agents that terminate quickly after spawning, the average distance will be quite small. The final
distance is computed as distance between the last position of GT trajectory and the last position of
agent trajectory. The cost is the number of crashes of an agent in one episode. There are two terminal
conditions. If the route completion rate exceeds 95%, the agent is marked successful. If the agent
moves out of 10m aways from the reference trajectory, the agent is marked out of road and failed.
We don’t terminate agent’s episode if it crash with other objects.

C.2 Baseline Details

MA-GAIL. We use GAIL [25] in multi-agent setting [42] but the discriminator distinguishes state-
next state pair, instead of state-action pair [46]. We use PPO as the underlying RL algorithm in GAIL.
The hyper-parameters are listed in Table 6.

MA-AIRL. We also train multi-agent Adversarial Inverse RL [61] (AIRL) with an additional
inverse dynamics model for estimating the expert actions. The inverse dynamics model is trained
concurrently with the AIRL policies and learns the action given state-next state pairs from the
environment interactions. AIRL will learn a reward function and use the reward function to build a
discriminator as GAIL. We also use PPO as the underlying RL algorithm. The hyper-parameters are
listed in Table 7.

MARL baselines. We train independent PPO [39, 37] and TD3 [23] agents as well as the Coordinated
Policy Optimization (CoPO) agents [35] as MARL baselines. The hyper parameters are given in the
next section.
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D Hyper-parameters

Table 6: Action-free Multi-agent GAIL
Hyper-parameter Value

Discriminator LR 5e-5
Discriminator L2 Norm 1e-5
Discriminator SGD Num Iters 1
Discriminator SGD Minibatch Size 1024
PPO SGD Minibatch Size 512
PPO Batch Size 2000
PPO LR 1e-4
PPO SGD Num Iters 10
PPO Clip Parameter 0.2
PPO Lambda 0.95
PPO Gamma 0.99

Table 7: Action-free Multi-agent AIRL
Hyper-parameter Value

Discriminator Loss LR 3e-4
Discriminator L2 Norm 1e-5
Discriminator SGD Num Iters 5
Discriminator SGD Minibatch Size 1024
Inverse Dynamics SGD Num Iters 100
Inverse Dynamics SGD Minibatch Size 512
Inverse Dynamics LR 1e-4
PPO SGD Minibatch Size 512
PPO Batch Size 2000
PPO LR 1e-4
PPO SGD Num Iters 10
PPO Clip Parameter 0.2
PPO Lambda 0.95
PPO Gamma 0.99

Table 8: Multi-agent PPO
Hyper-parameter Value

PPO SGD Minibatch Size 512
PPO Batch Size 2000
PPO LR 1e-4
PPO SGD Num Iters 10
PPO Clip Parameter 0.2
PPO Lambda 0.95
PPO Gamma 0.99

Table 9: CoPO
Hyper-parameter Value

LCF LR 1e-4
LCF Num Iters 5
Neighborhood Distance 40 m
PPO SGD Minibatch Size 512
PPO Batch Size 2000
PPO LR 1e-4
PPO SGD Num Iters 10
PPO Clip Parameter 0.2
PPO Lambda 0.95
PPO Gamma 0.99

Table 10: TD3
Hyper-parameter Value

Critic LR 1e-4
Actor LR 1e-4
Tau for Target Update 5e-3
Train Batch Size 100

Table 11: Single-Agent PPO
Hyper-parameter Value

KL Coefficient 0.2
λ for GAE [38] 0.95
Discounted Factor γ 0.99
Number of SGD epochs 20
Train Batch Size 50,000
SGD mini batch size 200
Learning Rate 1e−4
Clip Parameter ϵ 0.2
Activation Function “tanh”
MLP Hidden Units [512, 256, 128]
MLP Layers 3
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E AD stack testing

E.1 ROS bridge

As shown in Fig. 11, We provide a ROS bridge along with the ScenarioNet, allowing users from the
ROS community to develop and test their systems with massive real-world data. As shown in Fig. 12,
information like camera, lidar, and mid-level representations can be retrieved from the simulation.

Figure 11: The interface of ROS bridge allowing connecting ScenarioNet and ROS community.

Real-world Street Image Deluxe RGB Camera Depth Camera 

Light RGB CameraTop-down Rendering 3D Lidar

Figure 12: Multimodal sensory data provided by ScenarioNet.

ScenarioNet provides not only mid-level scenario representations but multiple sensor outputs like
top-down view, RGB camera, depth camera, and cloud points. The deluxe RGB camera is supported
by the deferred rendering pipeline. This figure shows the scene-0061 from nuPlan-mini-split and
its digital twin counterparts. It is worth investigating how to reconstruct meshes from the recorded
lidar cloud points and images so that we can simulate the sensor output from new views different
from the recorded ones. Besides, it is a promising topic to study the closed-loop sensor fusing and
learning-based control together, which can be supported by ScenarioNet.
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E.2 Qualitative Results of Openpilot test

Openpilot [10] is an end-to-end solution for driver assistance. Therefore, a platform providing
3D rendering is necessary, if one would like to study or test the system. ScenarioNet is the only
one that provides both real-world scenarios and 3D graphics support. As its navigation module is
still a beta version, we only test Openpilot in scenarios without diverged roads. We build a small
database containing mainly lane-keeping scenarios for conceptually demonstrating that ScenarioNet
can connect with commercial AD stack. As shown in Fig. 13, the Openpilot system is robust to
common scenarios like turning right, lane-keeping, stopping at traffic lights, and passing traffic lights.
The demo video is available at https://youtu.be/KjlPB0nCTvg

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Lane Keeping

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Turning Right

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Stopping at Traffic Light

t=0s t=2s t=4s t=6s t=8s

t=10s t=12s t=14s t=16s t=18s

Passing Traffic Light

Figure 13: Openpilot manages to overcome four representative scenarios.
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F Scenario Databases

In the database statistics Table, the Intersection Ratio is the ratio of scenarios having traffic lights for
real-world data, and the ratio of scenarios containing intersections and roundabouts for synthetic data.

F.1 Waymo Database

Figure 14: Rendered traffic scenarios and their top-down views from the Waymo database.

We construct the Waymo database from the 20 seconds version [43] motion data with Google Cloud
path at waymo_open_dataset_motion_v_1_2_0/uncompressed/scenario/training_20s .
As Waymo data is collected with the altitude calibrated, we can filter the overpass scenarios by
excluding the scenarios with significant changes in height. In addition, we exclude the scenarios
where the ego car waits at the red light for a long time by selecting scenarios where the ego car
moving distances are greater than 10 meters. We provide the rendered scenario examples from this
dataset in Fig. 14. Top-down views show that Waymo scenarios contain diverse road structures and a
large number of vehicles.

24



F.2 nuPlan Database

Figure 15: Rendered traffic scenarios and their top-down views from the nuPlan database.

According to https://www.nuscenes.org/nuplan, nuPlan has more than 1500 hours of driving
data collected in 4 different cities: Las Vegas, Singapore, Pittsburgh, and Boston, here we only use
the data collected in Boston as we want to keep all databases in experiments to have similar sizes.
Data collected in other cities can also be converted to our scenario format.

We use the V.1.0 version data, which contains approximately 50,000 scenarios after excluding
scenarios where the ego car moving distances are less than 10 meters. It is noticeable that nuPlan
updated the data to version v1.1 recently (one week before the NeurIPS 2023 dataset track deadline),
which may induce some differences if building a database from this new version. As shown in Fig. 15,
the scenario examples reveal that nuPlan Boston split has cluttered scenes and contains many traffic
cones and barriers besides vehicles. We additionally find that in some nuPlan scenarios, the ego car
trajectory is out of the drivable area for sidestepping the barriers or cones.
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F.3 PG Database

Figure 16: Rendered traffic scenarios and their top-down views from the PG database.

Unlike the previous two datasets collected in the real world, PG scenarios are synthesized according
to a set of rules. For map generation, two blocks are sampled from a set of candidate roadblocks
and connected to form a map. Those blocks include intersections, roundabouts, straight roads,
curved roads, Ramp, and so on. Once the map is defined, a traffic generation rule will be
applied to scatter vehicles and road objects like traffic cones on the map. The detailed scenario
generation config such as the block distribution for sampling can be found at https://github.
com/metadriverse/metadrive/blob/0a929f8130b34e4428067390f20f872d1d6d224a/
metadrive/component/algorithm/blocks_prob_dist.py#L4. All vehicles choose a destina-
tion automatically and be actuated by IDM policy which can keep a proper distance from the front
vehicle and perform a lane change when the front object is static. The scenario data is collected by an
IDM policy as well. Some scenario examples are shown in Fig. 16.
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G Discussion: how to improve visual fidelity?

The visual fidelity of the closed-loop simulation can be further improved with the collected raw
sensor data. We already have some plans to improve it and will include this discussion in the paper
for sharing our thoughts regarding realistic sensor simulation.

Currently, the sensor simulation including the camera and lidar is achieved in a Computer Graphics
(CG) way, where people try restoring the mesh and texture for objects from real-world data and
shading these models based on lights and materials to make them visually realistic. To improve the
rendering results of ScenarioNet, we do plan to reconstruct the geometry data for traffic participants
and objects from the driving videos. Besides, we also consider connecting ScenarioNet with Unreal
Engine or Nvidia Omniverse in the future as they could provide better shading results.

On the other hand, NeRF is an alternative to improve the quality of sensor simulation. Through
volume rendering, it can directly synthesize new camera views and point clouds from the driving
videos when traffic participants and the ego car move with different trajectories and poses in the
closed-loop training. This way is purely data-driven and can exempt the need for restoring 3D assets
like objects and buildings. Recent results [57, 60, 56] already demonstrate its potential in terms of
camera and lidar simulation. However, how to make the NeRF scene editable is still an open problem;
hence, we plan to investigate this in the future.
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