VN-Transformer: Rotation-Equivariant Attention for
Vector Neurons

Serge Assaad™® Carlton Downey Rami Al-Rfou
Duke University Waymo LLC Waymo LLC
serge.assaad@duke.edu cmdowneyQ@waymo . com rmyeid@waymo.com
Nigamaa Nayakanti Ben Sapp
Waymo LLC Waymo LLC
nigamaa@waymo.com bensapp@waymo. com
Abstract

Rotation equivariance is a desirable property in many practical applications such
as motion forecasting and 3D perception, where it can offer benefits like sample
efficiency, better generalization, and robustness to input perturbations. Vector
Neurons (VN) is a recently developed framework offering a simple yet effective
approach for deriving rotation-equivariant analogs of standard machine learning op-
erations by extending one-dimensional scalar neurons to three-dimensional “vector
neurons.” We introduce a novel “VN-Transformer” architecture to address several
shortcomings of the current VN models. Our contributions are: (i) we derive a
rotation-equivariant attention mechanism which eliminates the need for the heavy
feature preprocessing required by the original Vector Neurons models; (i7) we
extend the VN framework to support non-spatial attributes, expanding the applica-
bility of these models to real-world datasets; (iii) we derive a rotation-equivariant
mechanism for multi-scale reduction of point-cloud resolution, greatly speeding
up inference and training; (iv) we show that small tradeoffs in equivariance (e-
approximate equivariance) can yield large improvements in numerical stability
and training robustness on accelerated hardware, and we bound the propagation of
equivariance violations in our models. Finally, we apply our VN-Transformer to
3D shape classification and motion forecasting with compelling results.

1 Introduction

A chair — seen from the front, the back, the top, or the side — is still a chair. Vi
When driving a car, our driving behavior is independent of our direction

of travel. These simple examples demonstrate how humans excel at using SOE) SOG)
rotation invariance and equivariance to understand the world in context (see

figure on the right). Unfortunately, typical machine learning models struggle L

to preserve equivariance or apply invariance when appropriate, limiting their x

ability to learn from a small number of examples.

Modeling spatial data is a core component in many domains such as CAD, AR/VR, and medical
imaging applications. In assistive robotics and autonomous vehicle applications, 3D object detection,
tracking, and motion forecasting form the basis for how a robot interacts with humans in the real
world. Preserving rotation invariance/equivariance can improve training time, reduce model size, and
provide crucial guarantees about model performance in the presence of noise. Spatial data is often
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class pred. trajectory

represented as a point-cloud data structure. These point-
clouds require both permutation invariance and rota-
tion equivariance to be modeled sufficiently well. Ap- Pool & MLP VN-MLP
proaches addressing permutation invariance include [Za+

heer et al (2018); [Lee et al] (2019); [Qi et al (2017). NnnEinmnhm

Recently, approaches jointly addressing rotation invari- VN-Invariant Weighted Pool
ance and equivariance are gaining momentum. These VN-Transformer VN-Transformer
can roughly be categorized into modeling invariance Encoder Encoder

or equivariance by: (i) data augmentation, (ii) canoni-
cal pose estimation, and (iii) model construction. Ap- HJID mIU mIU HJIU HJID HJIU
proaches (¢) and (i7) do not guarantee exact equivari-

= 1

! VN-MLP VN-MLP
ance since they rely on model parameters to learn the
right inductive biases (Q1 et al., 2017; |Esteves et al., Input point-cloud Input trajectory
2018}, Jaderberg et al., 2015} |Chang et al.,[2015). Fur-
ther, data augmentation makes training more costly and (a) Rotation-invariant (b) Rotation-
errors in pose estimation propagate to downstream tasks, classification model.  equivariant trajectory
degrading model performance. Moreover, pose esti- forecasting model.

mation requires labeling objects with their observed . -
poses. In contrast, proposals in (iii) do provide equiv- Figure 1: VN-Transformer (“early fusion”)
ariance guarantees, including the Tensor Field Networks models. Legend: (m) SO(3)-equivariant fea-
of [Thomas et al| (2018)) and the SE(3)-Transformer of tures; (m) SO(3)-invariant features; () Non-
Fuchs et al.| (2020) (see Section[2). However, their for- spatial features.

mulations require complex mathematical machinery or are limited to specific network architectures.
Most recently, Deng et al.| (2021) proposed a simple and generalizable framework, dubbed Vector
Neurons (VNs), that can be used to replace traditional building blocks of neural networks with
rotation-equivariant analogs. The basis of the framework is lifting scalar neurons to 3-dimensional
vectors, which admit simple mappings of SO(3) actions to latent spaces.

While Deng et al.| (2021)) developed a framework and basic layers, many issues required for practical
deployment on real-world applications remain unaddressed. A summary of our contributions and
their motivations are as follows:

VN-Transformer. The use of Transformers in deep learning has exploded in popularity in recent years
as the de facto standard mechanism for learned soft attention over input and latent representations.
They have enjoyed many successes in image and natural language understanding (Khan et al.| [2022;
Vaswani et al., [2017)), and they have become an essential modeling component in most domains. Our
primary contribution of this paper is to develop a VN formulation of soft attention by generalizing
scalar inner-product based attention to matrix inner-products (i.e., the Frobenius inner product).
Thanks to Transformers’ ability to model functions on sets (since they are permutation-equivariant),
they are a natural fit to model functions on point-clouds. Our VN-Transformer possesses all the
appealing properties that have made the original Transformer so successful, as well as rotation
equivariance as an added benefit.

Direct point-set input. The original VN paper relied on edge convolution as a pre-processing step to
capture local point-cloud structure. Such feature engineering is not data-driven and requires human
involvement in designing and tuning. Moreover, the sparsity of these computations makes them
slow to run on accelerated hardware. Our proposed rotation-equivariant attention mechanism learns
higher-level features directly from single points for arbitrary point-clouds (see Section 4.

Handling points augmented with non-spatial attributes. Real-world point-cloud datasets have
complicated features sets — the [x, y, z| spatial dimensions are typically augmented with crucial
non-spatial attributes [[x, y, z]; [a]] where a can be high-dimensional. For example, Lidar point-
clouds have intensity & elongation values associated with each point, multi-sensor point-clouds have
modality types, and point-clouds with semantic type have semantic attributes. The VN framework
restricted the scope of their work to spatial point-cloud data, limiting the applicability of their models
for real-world point-clouds with attributes. We propose two mechanisms to integrate attributes into
equivariant models while preserving rotation equivariance (see Section [5).

Equivariant multi-scale feature reduction. Practical data structures such as Lidar point-clouds
are extremely large, consisting of hundreds of objects each with potentially millions of points. To
handle such computationally challenging situations, we design a rotation-equivariant mechanism for



multi-scale reduction of point-cloud resolution. This mechanism learns how to pool the point set in
a context-sensitive manner leading to a significant reduction in training and inference latency (see
Section [6)).

e-approximate equivariance. When attempting to scale up VN models for distributed accelerated
hardware we observed significant numerical stability issues. We determined that these stemmed from
a fundamental limitation of the original VN framework, where bias values could not be included in
linear layers while preserving equivariance. We introduce the notion of e-approximate equivariance,
and use it to show that small tradeoffs in equivariance can be controlled to obtain large improvements
in numerical stability via the addition of small biases, improving robustness of training on accelerated
hardware. Additionally, we theoretically bound the propagation of rotation equivariance violations in
VN networks (see Section 7).

Empirical analysis. Finally, we evaluate our VN-Transformer on (7) the ModelNet40 shape classifi-
cation task, (¢¢) a modified ModelNet40 which includes per-point non-spatial attributes, and (ii3) a
modified version of the Waymo Open Motion Dataset trajectory forecasting task (see Section [§).

2 Related work

The machine learning community has long been interested in building models that achieve equivari-
ance to certain transformations, e.g., permutations, translations, and rotations. For a thorough review,
see [Bronstein et al.| (2021).

Learned approximate transformation invariance. A very common approach is to learn robustness
to input transforms via data augmentation (Zhou and Tuzell 2018; Qi et al., 2018 [Krizhevsky et al.,
2012; Lang et al.,|2019; [Yang et al.l 2018)) or by explicitly predicting transforms to canonicalize
pose (Jaderberg et al.l 2015; Hinton et al., [2018}; |[Esteves et al.,|2018};|Chang et al.,|2015).

Rotation-equivariant CNNs. Recently, there has been specific interest in designing rotation-
equivariant image models for 2D perception tasks (Cohen and Welling| 2016; |Worrall et al., 2017}
Marcos et al., 2017 |Chidester et al., 2018)). /Worrall and Brostow| (2018)) extended this work to 3D
perception, and [Veeling et al.[(2018) demonstrated the promise of rotation-equivariant models for
medical images.

Equivariant point-cloud models. Thomas et al.| (2018)) proposed Tensor Field Networks (TFNs),
which use tensor representations of point-cloud data, Clebsch-Gordan coefficients, and spherical har-
monic filters to build rotation-equivariant models. [Fuchs et al.|(2020) propose an “SE(3)-Transformer”
by adding an attention mechanism for TFNs. One of the key ideas behind this body of work is
to create highly restricted weight matrices that commute with rotation operations by construction
(i.e., WR = RW). In contrast, we propose a much simpler alternative: a “VN-Transformer” which
guarantees equivariance for arbitrary weight matrices, removing the need for the complex mathemat-
ical machinery of the SE(3)-Transformer. For a detailed comparison with [Fuchs et al.|(2020), see

Appendix [A]

Controllable approximate equivariance. |Finzi et al.|(2021) proposed equivariant priors on model
weight matrices to achieve approximate equivariance, and Wang et al.|(2022) proposed a relaxed
steerable 2D convolution along with soft equivariance regularization. In this work, we introduce the
related notion of “e-approximate equivariance,” achieved by adding biases with small and controllable
norms. We theoretically bound the equivariance violation introduced by this bias, and we also bound
how such violations propagate through deep VN networks.

Non-spatial attributes. TFNs and the SE(3)-Transformer account for non-spatial attributes associ-
ated with each point (e.g., color, intensity), which they refer to as “type-0” features. In this work,
we investigate two mechanisms (early & late fusion) to incorporate non-spatial data into the VN
framework.

Attention-based architectures. Since the introduction of Transformers by [Vaswani et al.| (2017),
self-attention and cross-attention mechanisms have provided powerful and versatile components
which are propelling the field of natural language processing forward (Devlin et al.|[2019; Liu et al.}
2019; [Lan et al., 2020; Yang et al., 2020). Lately, so-called “Vision Transformers” (Dosovitskiy:
et al., [2021}; [Khan et al.,[2022)) have had a similar impact on the field of computer vision, providing a
compelling alternative to convolutional networks.



3 Background

3.1 Notation & preliminaries

Dataset. Suppose we have a dataset D = {X,,,Y,})" |, where p € {1,..., P} is an index into
a point-cloud/label pair {X,,Y,} — we omit the subscript p whenever it is unambiguous to do
so. X € X c RM*3 is a single 3D point-cloud with N points. In a classification problem,
Y € Y C{l,...,k}, where « is the number of classes. In a regression problem, we might have
Y € Y ¢ RNowXSau where N,y is the number of output points, and Sy is the dimension of each
output point (with Noy = Sou = 1 corresponding to univariate regression).

Index notation. We use “numpy-like” indexing of tensors. Assuming we have a tensor Z €

RAXBEXC " we present some examples of this indexing scheme: Z(® e RBExC — z(we) ¢
]:KAXB7 Z(a](,:ahi) c R(ahifah,+1)><B><C'

Rotations & weights. Suppose we have a tensor V € RYV*Y*3 and a rotation matrix R € SO(3),
where SO(3) is the three-dimensional rotation group. We denote the “rotation” of the tensor by

VR € RNXCX3 defined as: (VR)™ £ V™R V¥n € {1,...,N} —in other words, the rotated
tensor V R is simply the concatenation of the N individually rotated matrices V(" R € RE*3,
Additionally, if we have a matrix of weights W € RY %€ we define the product WV e RN *C'x3
by (WV)™) 2 Wy,

Invariance and equivariance.

Definition 1 (Rotation Invariance). f : X — ) is rotation-invariant if YR € SO(3), X €
X, f(XR) = f(X).

Definition 2 (Rotation Equivariance). f : X — Y is rotation-equivariant if YR € SO(3), X €
X, f(XR) = f(X)R.

For simplicity, we defined invariance/equivariance as above instead of the more general f(X px(g)) =
f(X)py (g), which requires background on group theory and representation theory.

Proofs. We defer all proofs to Appendix

3.2 The Vector Neuron (VN) framework

In the Vector Neuron framework (Deng et al., |2021), the

authors represent a single point (e.g., in a hidden layer of a

neural network) as a matrix V(™) € RE*3 (see inset figure), ~Classicalneurons Vector Neurons
where V' € RV X3 can be thought of as a tensor representation of the entire point-cloud. This rep-
resentation allows for the design of SO(3)-equivariant analogs of standard neural network operations.

VN-Linear layer. As an illustrative example, the VN-Linear layer is a function VN-Linear(- ; W) :
RE*3 — RY'*3_ defined by VN-Linear(V(™; W) £ WV ™) where W € R *C is a matrix of
learnable weights. This operation is rotation-equivariant: VN-Linear(V™ R; W) = WV R =
(WV )R = VN-Linear(V ™); W)R.

Deng et al.| (2021)) also develop VN analogs of common deep network layers ReLU, MLP, BatchNorm,

and Pool. For further definitions and proofs of equivariance, see Appendix [C} For further details, we
point the reader to|Deng et al.[(2021}).

4 The VN-Transformer

bl

In this section, we extend the ideas presented in Deng et al.|(2021) to design a “VN-Transformer’
that enjoys the rotation equivariance property.

4.1 Rotation-invariant inner product

The notion of an inner product between tokens is central to the attention operation from the orig-
inal Transformer (Vaswani et al.,|2017). Consider the Frobenius inner product between two VN
representations, defined below.



Definition 3 (Frobenius inner product). The Frobenius inner product between two matrices
vV V() e ROX3 s defined by (V™ V(' )yp £ 5°¢  §33 ynes)y(n’es)

This choice of inner product is convenient because of its rotation invariance property, stated below.

Proposition 1. The Frobenius inner product between Vector Neuron representations V™), V) e
RC*3 is rotation-invariant, i.e. (VW R, VIR p = (V) V)Y o VR € SO(3).

This rotation-invariant inner product between VN representations allows us to construct a rotation-

equivariant attention operation, detailed in the next section. v
vill v
4.2 Rotation-equivariant attention /——\
Consider two tensors Q € RM*Cx3 gpnd K € RNXCx3, VN-LayerNorm
which can be thought of as sets of M (resp. N) tokens, each
a C' x 3 matrix. Using the Frobenius inner product, we can VN-MLP
define an attention matrix A(Q, K) € RM>*¥ between the two
sets as follows:
1 N
A(Q,K)(m) 2 softmax( - [(Q(m),K(n)>F:| )’ 1) VN-LayerNorm
n=1
VN-MultiheadAttn

Following [Vaswani et al.| (2017), we divide the inner prod-
ucts by v/3C since Q™) K(") € RE*3, From Proposition

A(QR,KR) = A(Q,K) YR € SO(3). me] e me]
Finally, we define the operation VN-Attn : RM*Cx3
RNXOX3 o RNXC'x3 _y RMXC'x3 4. Figure 2:  VN-Transformer

N encoder block architecture.

VN-Attn(Q, K, Z)™ 2 A(Q, K)(™m™ zm) 5y VN-MultiheadAttn and VN-

n(@ ) ;1 @.5) @ LayerNorm are defined in (3)

and (@), respectively. VN-MLP

: : is a composition of VN-Linear,

neous rotation of all inputs: VN-BatchNorm. and VN-ReLLU
Proposition 2. VN-Atn(QR, KR, ZR) = VN-Attn(Q, K, Z)R. layers from|Deng et al.| (2021).

This attention operation is rotation-equivariant w.r.t. simulta-

This is extendable to multi-head attention with H heads, VN-MultiHeadAttn : RMXCX3 x
RNXCXS % RNXC’XB N RMXC’X3:

H
VN-MultiHeadAtin(Q, K, Z) £ WO [VN-Atn(WE2Q, Wi K, WZ2)| 3)
h=1
where Wi? , W}f( e RPxC, WhZ € RP*C are feature, key, and value projection matrices of

the h-th head (respectively), and W© € RO *HP s an output projection matrix (Vaswani et al.,
2017ﬂ VN-MultiHeadAttn is also rotation-equivariant, and is the key building block of our rotation-
equivariant VN-Transformer.

4.3 Rotation-equivariant layer normalization

Deng et al.[(2021) allude to a rotation-equivariant version Row-wise Layer c RO<3
of the well-known layer normalization operation (Ba et al., norm Norm

2016)), but do not explicitly provide it — we do so here for
completeness (see Figure [3):

e RO eR¢ eR¢

Figure 3: VN-LayerNorm: rotation-

(n)y & L ..
VN-LayerNorm(V™"7) = @4 equivariant layer normalization.
yiwe 1¢ ey 1€ “Layer Norm” is the standard layer
[m} © LayerNorm ([HV ’ H2} c—1> Lixs, normalization operation of [Ba et al.
c=1 -

(2016). © and © are row-wise
where © is an elementwise product, LayerNorm: R — R multiplication and division.

is the layer normalization operation of |[Ba et al.|(2016)), and 11«3 is a row-vector of ones.

’In practice, we set H and P such that HP = C".



4.4 Encoder architecture

Figure [2] details the architecture of our proposed rotation-equivariant VN-Transformer encoder. The
encoder is structurally identical to the original Transformer encoder of [Vaswani et al.| (2017), with
each operation replaced by its rotation-equivariant VN analog.

5 Non-spatial attributes = @D mm mn En

MLP VN-MLP
“Real-world” point-clouds are typically aug- Pool Weighted Pool
mented with crucial meta-data such as inten- mLp VN-Transformer
sity & elongation for Lidar point-clouds and concat
& sensor type for multi-sensor point-clouds. H H H M0 0 O concat
Handling such point-clouds while still satisfy-
ing equivariance/invariance w.r.t. spatial inputs Fiatten
would be useful for many applications. More VN-Invariant
precisely stated, assuming the input point-cloud M ecoder " oo
consists of spatial inputs X € X c RV*3 VN-MLP VN-MLP
and associated non-spatial attributes A € A C M me mE oE mE Em mom
RN*da (d, is the number of non-spatial at- gt I
tributes associated with each point), we would Input point-cloud Input trajectory
like our model f : X x A — ) to satisfy the

followi . (a) Rotation-invariant (b) Rotation-equivariant tra-
ollowing property: classification model. jectory forecasting model.
Definition 4 (Partial rotation invariance). A

model f : X x A — ) satisfies partial ro- Figure 4: VN-Transformer (“late fusion”) models.
tation invariance if YV X € X, A € A, R € Legend: (m) SO(3)-equivariant features; () SO(3)-

SO(3), f(XR,A)=f(X,A). invariant features; (*") Non-spatial features.

Definition 5 (Partial rotation equivariance). A model f : X x A — Y (where ) C RNowx(3+da))
satisfies partial rotation equivariance if ¥ X € X, A € A, R € SO(3), f(XR,A)3) =
F(X, AR,

We propose two strategies (“late fusion” and “early fusion”) to handle non-spatial attributes while
maintaining rotation equivariance/invariance w.r.t. spatial dimensions.

Late fusion. In this approach, we propose to incorporate non-spatial attributes into the model at a
later stage, where we have already processed the spatial inputs in a rotation-equivariant fashion — our
“late fusion” models for classification and trajectory prediction are shown in Figure ]

Early fusion. Early fusion is a simple yet powerful way to process non-spatial attributes (Jaegle
et al.,|2021). In this approach, we do not treat non-spatial attributes differently (see Figure|l)) — we
simply concatenate spatial & non-spatial inputs before feeding them into the VN-Transformer. The
VN representations obtained are C' x (3 + d4) matrices (instead of C' x 3). We show here that the
models in Figure [I] satisfy partial rotation invariance and equivariance (respectively).

Proposition 3. The VN-Transformer model f : X x A — Y (where Y C R*) shown in Figure[ld|
satisfies partial rotation invariance.

Proposition 4. The VN-Transformer model f : X x A — Y (where Y C RNewxB+da)) shown in
Figure[ID|satisfies partial rotation equivariance.

6 Rotation-equivariant multi-scale feature aggregation

Jaegle et al| (2021)) recently proposed an attention-based ar- |:|:|:| |:|:|:| |:|:|:| |:|:|:| K.Y, UN-
chitecture, PerceiverlO, which reduces the computational g\ MultiHeadAttn

complexity of the vanilla Transformer by reducing the num- VN-MeanProject

ber of tokens (and their dimension) in the intermediate rep- |:|:|:| |:|:|:|
resentations of the network. They achieve this reduction by |:|:|:| |:|:|:|

learning a set Z € RM*C" of “latent features,” which they ~ Figure 5: Rotation-equivariant la-
use to perform QKYV attention with the original input tokens tent features for Vector Neurons.

X € RVXC (with M << N and C’ << O). Finally, they perform self-attention operations on



the resulting M x C” array, leading to a O(M?C") runtime instead of O(N?C) for each encoder
self-attention operation, greatly improving time complexity during training and inference — a boon
for time-critical applications such as real-time motion forecasting. However, such learnable latent
features would violate equivariance in our case, since these learnable features would have no
information about the original input’s orientation. To remedy this, we instead propose to a learn a
transformation from the inputs to the latent features (where the number of latent features is much
smaller than the number of original inputs). Specifically, we propose to use a mean projection

function VN-MeanProject(V) (™) & W (™) [% >N, V(")}, where W € RM*C'%C j5 a learnable
tensor. VN-MeanProject is both rotation-equivariant and permutation-invariant. We then perform
VN-MultiHeadAttention between the resulting latent features and the original inputs V' to get a

smaller set of VN representations. The architecture diagram for our proposed rotation-equivariant
“latent feature” mechanism is shown in Figure [5]

7 e-approximate equivariance

We noticed that distributed training on accelerated hardware is numerically unstable for points with
small norms. This is unique to VN models — the VN-Linear layer does not include a bias vector, which
leads to frequent underflow issues on distributed accelerated hardware. We found that introducing
small and controllable additive biases fixes these issues — we modify the VN-Linear layer by adding
a bias with controllable norm:

VN-LinearWithBias(V™; W, U, ) 2 WV™ +eU, U £ B /||BY)|,, ©)
where ¢ > 0 is a hyperparameter controlling the bias norm, and B € R %3 ig a learnable matrix.

This leads to significant improvements in training stability and model quality. In principle, VN-
LinearWithBias is not equivariant, but its violation of equivariance can be bounded.

Work on equivariance by construction typically treats rotation equivariance as a binary idea — a
model is either equivariant, or it is not. This can be relaxed by asking: how large is the violation of

equivariance? We quantify this with the equivariance violation metric, defined by A(f, X, R) =
|f(XR) — f(X)R||r.- If A(f, X, R) < ¢, wesay f is e-approximately equivariant. We bound the

equivariance violation of VN-LinearWithBias(-; W, U, €) : RE*3 — RY" %3 below:
Proposition 5. VN-LinearWithBias is (2ev/C")-approximately equivariant (tight when R = —1).

A natural next question is: how do such equivariance violations propagate through a deep model?

Proposition 6. Suppose we have K functions fi, = Xj — Xy (with X, € RE3 X, C
RO+1X3 k€ {1,...,K})s.t. fy is ex-approximately equivariant for all k € {1,... K}, and fy
is Ly-Lipschitz (w.rt. || - ||p) forallk € {2,..., K

Then, the composition fx o ---o f1 is €. g-approximately equivariant, where

e1..x 2 Lg(--(La(Laer +€2) +€3) +--+) +ex. (6)

Intuitively, each layer fj, “stretches” the equivariance violation error of the previous layers by its
Lipschitz constant Ly, and adds its own violation €, to the total error.

8 Experiments

8.1 Rotation-invariant classification Model Acc. #Params

. TFN (Thomas et al.|[2018) 88.5% -
Figure [E shows our proposed VN- RI-Conv (Zhang et al.[[2019) 86.5% -
Transformer architecture for classification. GC-Conv (Zhang et al.[[2020) 89.0% -
I't consists of rotation-equivariant opera- VN-PointNet (Deng et al.| 2021) 77.2% 220M
tions (VN-MLP and VN-Transformer En-  yN.DGCNN (Deng etal.| 2021) 90.0%  2.00M
coder blocks), followed by an invariant op-  VN-Transformer (ours) 90.8% 0.04M

eration (VN-Invariant), and finally standard
Flatten/Pool/MLP operations to get class
predictions. The resulting logits/class pre-
dictions are rotation-invariant.

We evaluate our VN-Transformer classifier on the commonly used ModelNet40 dataset (Wu et al.,
2013)), a 40-class point-cloud classification problem. In Table|I} we compare our model with recently

Table 1: ModelNet40 test accuracy. Top block shows
SO(3)-invariant baselines taken from |[Deng et al.
(2021)), included here for convenience.
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Figure 6: Example point-clouds from the Mod-
elNet40 Polka-dot dataset. Cyan points corre-
spond to a; = 0, and pink points correspond
to a; = 1. Note that the “airplane” class has a
narrower polka-dot radius than the “table” class,
since we make the polka-dot radius dependent on
the object class.
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Figure 7: VN-Transformer ModelNet40 accuracy
and relative training speed vs. number of nearest
neighbors used in edge-convolution preprocess-
ing. Speed is computed relative to zero neighbors
(i.e., no edge-convolution). Edge-convolution
slows training speed by ~5x and has little effect
on model performance.
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Figure 8: Test set accuracy on ModelNet40 vs. Table 2: Test set accuracy on ModelNet40
number of latent features (described in Figure ‘“Polka-Dot” dataset. Top block shows Model-
B). Latent features provide a ~2x speedup with Net40 results (i.e., only spatial inputs). Bottom
minimal acc. degradation (vs. row 3 of Table E[) block shows ModelNet40 Polka-dot results. € is

the bias norm in VNLinearWithBias of eq. (5).

proposed rotation-invariant models. The VN-Transformer outperforms the baseline VN models with
orders of magnitude fewer parameters. Furthermore, we dispense with the computationally expensive
edge-convolution used as a preprocessing step in the models of Deng et al.|(2021)) and find that the
VN-Transformer’s performance is relatively unaffected (see Figure[7).

8.2 (Classification with non-spatial attributes

To evaluate our model’s ability to handle non-spatial attributes, we design a modified version of the
ModelNet40 dataset, called ModelNet40 “Polka-dot,” which we construct (from ModelNet40) as
follows: to each point [z;, y;, z;], we append a; € {0,1}. Within a radius r of a randomly chosen
center, we randomly select 30 points and set a; = 1. We make the “polka-dot” radius  depend on
the label y € {1,...,40} viar(y) £ rio + 55 (y — 1)(rhi — 110), where 1o = 0.3, 73, = 1. Figurelgl
shows example point-clouds from the ModelNet40 Polka-dot dataset. By generating ModelNet4
Polka-dot in this way, we directly embed class information into the non-spatial attributes. In order to
perform well on this task, models need to effectively fuse spatial and non-spatial information (there
is no useful information in the non-spatial attributes alone since all point-clouds have Zfil a; = 30).
The results on ModelNet40 Polka-dot are shown in Table 2l Both VN-PointNet and VN-Transformer
benefit significantly from the binary polka-dots, suggesting they are able to effectively combine
spatial and non-spatial information.



8.3 Latent features

Figure 8] shows our results on ModelNet40 when we reduce the number of tokens from 1024 (the
number of points in the original point-cloud) to 32 using the latent feature mechanism presented
in Figure[5] Using latent features provides a ~2x latency improvement (in training steps/sec) with
minimal (~1.7%) accuracy degradation (compared with row 3 of Table [2). This suggests a real
benefit of the latent feature mechanism in time-sensitive applications such as autonomous driving.

8.4 Rotation-equivariant motion forecasting

Model € Features ADE (])

. . A Transf - : .01
Figure|lb[shows our proposed rotation-equivariant ranstormer l2,,2] >0

. . . . Transformer + @ - [x,y, 2] 4.51

architecture for motion forecasting. In motion fore- v\ Tyansformer 0 [y ] 491

casting the goal is to predict the [z, y, z] locations  vN-Transformer ~ 106 [z, y, 2] 3.95
of an agent for a sequence of future timesteps,  VN_-Transformer 0 [my.za 501

given as input the past locations of the agent. We  VN-Transformer ~ 10~® [2,y,2,0]  3.67

evaluate the model on a simplified version of the

Waymo Open Motion Dataset (WOMD: [Eftinger Table 3: Average Distance Error on WOMD.

J Lower is better. ( z) = random z-axis ro-

et al.| 2021): . . L
e We select 4904 trajectories (3915 for training, tations gsed as .datg augmentation at training
979 for testing). time. e is the bias in the VNLinearWithBias

layers (equation (3))). The bottom block uses
the speed a as an added input feature (via
early fusion).

e Each trajectory consists of 91 [z, y, z] points for
a single vehicle sampled at 5 Hz.

e We use the first 11 points (the past) as input and
we predict the remaining 80 points (the future).

We evaluate the quality of our trajectory fore- (1)5

casting models using the Average Distance Error : ? T i
(ADE): ADE(Y;,¥;) 2 A 1 |y !? v, - :

where 7' is the number of time-steps in the output
trajectory and Y;, Y; € RT3 are the ground-truth
trajectory and the predicted trajectory, respectively. @\ %\ . N
Results are shown in Table[3] Adding training-time : p

random rotations about the z-axis yields improves T @ T e T e
the performance of the vanilla Transformer, and Figure 9: Example predictions on WOMD.

@:

the VN-Transformer outperforms the vanilla Trans-
former (without the need for train-time rotation
augmentations, thanks to equivariance). Figure[9]
shows example predictions on WOMD. Equivari-

Legend: Rectangle = current car position,
Red points = input trajectory, Colored streaks
= predicted trajectories. Columns are differ-
ent trajectory models, with (a) Transformer,

ance violations of the vanilla Transformer models
(columns (a) and (b)) are clearly demonstrated here,
in contrast with the equivariant VN-Transformer
(column (¢)).

(b) Transformer + ( z) augmentations, and (c)
VN-Transformer. Row (1) is one example in
the dataset. Row (2) is a 45° rotation of the
input points in Row (1).

9 Conclusion

In this paper, we introduced the VN-Transformer, a rotation-equivariant Transformer model based
on the Vector Neurons framework. VN-Transformer is a significant step towards building powerful,
modular, and easy-to-use models that have appealing equivariance properties for point-cloud data.

Limitations of our work include: (¢) similar to previous work (Deng et al., 2021} Qi et al., 2017)
we assume input data has been mean-centered. This is sensitive to outliers, and prevents us from
making single-pass predictions for multi-object problems (we have to independently mean-center
each agent first); (i¢) Proposition E] shows an error bound on the total equivariance violation of
the network with Lj-Lipschitz layers. We know the Lipschitz constants of VN-Linear and VN-
LinearWithBias (see Appendix [C)), but we have not yet determined them for other layers (e.g.,
VN-ReLU, VN-MultiHeadAttn). We will address these gaps in future work, and we will also leverage
VN-Transformers to obtain state-of-the-art performance on a number of key benchmarks such as the
full Waymo Open Motion Dataset and ScanObjectNN.
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VN-Transformer (ours) SE(3)-Transformer (with ¢ = 1)
(Fuchs et al., 2020)

Weight shape W® e RO *C (C, C'=# of channels) W' € R¥® (e REEHDX D)
the general case)

Action on input  Left-multiply: W2V () (VW € RCX3) Right-multiply: £} Wa' (f! € R"*?)
Requirement None, W® € RE %€ is arbitrary W' =

c . J

for equivariance > 7m0 omer g 3 Ul ) Yam (@i /||2:]) QFons
(= radial neural net., Y;,,= spherical
harmonics, QY,= Clebsch-Gordan
coefficients)

Table 4: Attention query computation in VN-Transformer vs. SE(3)-Transformer. W ¢ RE*C s
the VN-Transformer weight matrix used to compute the query (C and C” are the number of input and
query channels, respectively).

A Detailed comparison with SE(3)-Transformer (Fuchs et al., 2020)

A.1 Attention computation

There is a rich literature on equivariant models using steerable kernels, and the SE(3)-Transformer is
the closest development in this field to our work. Here, we make a detailed comparison between our
work and the SE(3)-Transformer (and related steerable kernel-based models). For simplicity, we will
compare the VN-Transformer with only spatial features vs. the SE(3)-Transformer with only type-1
features (i.e., spatial features).

The key difference is in the way the weight matrices are defined and how they interact with the
input.

Specifically, [Fuchs et al| use 3 x 3 weight matrices WA', Wi, Wil € R3*3 that act on the
spatial/representation dimension of the input points (e.g., via f} W4' where f! € R'*3)P| As a
result, in order to guarantee equivariance they need to design these matrices WA', W', Wy, such
that they each commute with a rotation operation (in general (f! R)W! # (fW{') R — this depends

on the choice of WA, hence the need for the machinery of Clebsch-Gordan coefficients, spherical
harmonics, and radial neural nets to construct the weights.

In contrast, in our proposed attention mechanism, the matrices WQ, %788 , WZ € RE*C act on
the channel dimension of the input (e.g., via WeV (™ where V(") e RCXS) and not the spatial
dimension. As a result, the operations WV () WKV () 12V (%) are equivariant no matter the
choice of W@, WX WZ, since W(V™R) = (WV)R. This results in a significantly simpler
construction of rotation-equivariant attention that is (¢) accessible to a wider audience (i.e., it does not
require an understanding of group theory, representation theory, spherical harmonics, Clebsch-Gordan
coefficients, etc.) and (i7) much easier to implement.

For a side-by-side comparison of both attention query computations, see Table 4 above.

A.2 VN-Linear vs. SE(3)-Transformer “self-interaction”

There is a relationship between the VN-Linear operation of Deng et al.| (2021), and the “linear
self-interaction” layers of [Fuchs et al.| (2020). Comparing equation (12) of [Fuchs et al.| (2020),
repeated here for convenience:

74 _2 : o0 el
foul,i,c’ - wc’cfin,i,c’ (7)
c

with the VN-Linear operation of Deng et al.| (2021)):
Vvo(u’rgl) :WV("), %% GRCIXC7V(H) GRCX?), (8)

we see that these operations are identical.

3WM, Wffl, W\[‘/ € RGHDX D) jp the general case, where £, ¢’ € {0, 1,2} are feature types
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However, our proposed VN-MultiHeadAttention is different and significantly simpler than the
attention mechanism of the SE(3)-Transformer (see Section , as it relies only on (7) the rotation-
invariant Frobenius inner product and (4¢) straightforward multiplication by an arbitary weight matrix
to compute the keys, queries, and values (equivalent to VN-Linear/linear self-interaction). In that
sense, it is much closer in spirit to the original Transformer of [Vaswani et al.| (replacing vector inner
product with Frobenius inner product). Further, as explained previously, it does not require the special
construction of weight matrices using Clebsch-Gordan coefficients, spherical harmonics, and radial
neural networks as in the SE(3)-Transformer.

B Experimental details

B.1 Datasets
ModelNetd0) The ModelNet40 dataset (Wu et al, [2015) is publicly available at
https://modelnet.cs.princeton.edu, with the following comment under “Copyright’:

“All CAD models are downloaded from the Internet and the original authors hold the copyright of the
CAD models. The label of the data was obtained by us via Amazon Mechanical Turk service and it is
provided freely. This dataset is provided for the convenience of academic research only.”

Waymo Open Motion Dataset The Waymo Open Motion Dataset (Ettinger et al.,[2021) is pub-
licly available at https://waymo.com/open/data/motion/ under a non-commerical use license
agreement. Full license details can be found here: https://waymo.com/open/terms/\

Data used here was collected from paid subjects driving for the company with their explicit agreement.
B.2 Hyperparameter tuning

Table 5] shows the hyperparameters we swept over for all our experiments on ModelNet40, Model-
Net40 Polka-dot, and the Waymo Open Motion Dataset.

Hyperparameter Value/Range

Feature dimension of VN-Transformer {32, 64, 128, 256, 512, 1024}

Number of attention heads {4,8, 16, 32, 64, 128}

Hidden layer dimension in encoder’s VN-MLP {32, 64, 128, 256, 512}

Learning rate 1073

Learning rate schedule Linear decay

Optimizer AdamW (Loshchilov and Hutter, |2019)
Epochs 4000

e of VN-LinearWithBias {0, 105}

Table 5: Model hyperparameter ranges for ModelNet40, ModelNet40 Polka-dot, and Waymo Open
Motion Dataset.

B.3 Compute infrastructure

We trained our models on TPU-v3 devices. which are accessible through Google Cloud. Our longest
training jobs ran for less than 3 hours on 32 TPU cores.

C Proofs

C.1 Invariance & equivariance

In this section, for convenience we will treat all 3D vectors as row-vectors: e.g., x € R*3, We also
note that, while all our proofs of invariance/equivariance use matrices V(™) € R€*3, they can all be
trivially generalized to V(") € RE*S,
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Proposition 1 (Restated). The Frobenius inner product between Vector Neuron representations
’ . . . . .
v vy () e REX3 s roration-invariant, i.e.:

WVOR VIR, = (v vy o YR € SO(3). ©)
Proof. The Frobenius inner product (V) V("l)) F can be written as:

c
<V("), V(n/)>F _ Z V(n,c)v(n/7C)T7 (10)
c=1

where V(:¢) V('.¢) ¢ R1¥3 We now write the inner product between rotated representations
V)R and V") R:

c
(VR VIR p =Y (VI R)(V I R)T (11)
c=1
c
- Z V(o) pRTY (n)T (12)
c=1
c
&) Z \ACOMACROLN ; (13)
c=1
= (VW vy (14)
where () holds since R € SO(3). O

Proposition 2. VN-Attn is rotation equivariant, i.e. VN-Attn(QR, KR, ZR) =
VN-Atn(Q, K, Z)R, VR € SO(3).

Proof. VN-Attn is defined as:

N
VN-Atn(Q, K, 2)™ £ 3~ A(Q, K)™™ z. (15)

n=1

Computing VN-Attn(QR, KR, ZR)(™, we have:

N
VN-Atn(QR, KR, ZR)™ =Y~ A(QR, KR)"™™ Z™ R (16)
n=1
N
WS 4@ K) ™Mz R 17)
n=1
= D AQ K)™MzM | R (18)
n=1
= VN-Attn(Q, K, Z)™ R, 19)
where () holds from rotation-invariance of A(Q, K) (since (-, -)  is rotation-invariant). O

C.2 Partial invariance & equivariance

Consider two rotation matrices Rq, x4, € SO(dy) and Ry, x4, € SO(d2).

. s [Rayxd,  0dyxd
Lemma 1. The matrix Rq, d,)x (dy+ds) = |:Od21><d11 Rdlgxdz

d).

} is a valid rotation matrix in SO(d; +
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Proof. We begin by showing that RT = R} We first compute

T (d1+d2)x (d1+d2) (d1+d2)x(d1+d2)"
R(d1+d2)><(d1+d2):
R 0 T [R! o] Ry 0
RT _ { dy xdy dlxdz} _ [ d1 xd (%_2><d1:| *) { dy xdy d_llxdz}v (20)
(d1+d2) x (d1+d2) 04, xd, Rdz)(dz 51><d2 Rdgxdg 04, xd; Rd2><d2

where () holds since Rg, xq, € SO(d1) and Ry, x4, € SO(d2) by assumption.
Now, we compute R(

di+dz2) x (d1+d2):
r —1
—1 _ Rd] X dy 0d1 X dgo
R4y o) x (dr ) = 0d,xd, Rdzxdz] @h
r _ —1
_ [Rdl xXdy — Odl X do Rd21>< do 0d2 Xdl} Od1 Xdo
- _ —1
L Od2><d1 [Rdedz - 0d2><d1 Rdllxdl Od1 Xdz]
(22)
rp—1
= §d1 xds gdlfdz] : (23)
L da Xdy do Xdo

-1 o
Hence, we have that R(d1+d2)><(d1+d2) = R(Td1+d2)x(d1+d2)'

det(R(d, +ds)x (dy +d2)) = 1t

Finally, we show that

R 0 &)
det(R(d1+d2)X(d1+d2)) = det ([Oj;:il RZ;if;]) = det(Ra, xd,) det(Rayxd,) = 1-1=1,
(24)
where (*) holds since Rg, x4, € SO(d1) and Ry, x4, € SO(d2) by assumption. O

Proposition 3 (Restated). The VN-Transformer model f : X x A — Y (where Y C R”) shown in
Figure|[ld|satisfies partial rotation invariance.

Proof.

e For convenience, we reparametrize the model f as feoncar : RY x(3+da) 5 R (with & the
number of object classes) where feoncat([X, A]) = f(X, A). It then suffices to show that
fconcat([XRa A]) = fconcat([Xy A])R

o First, note that feoncar is SO(3+d 4 )-invariant, since it is composed of SO(3+d 4 )-equivariant
operations followed by a SO(3 + d 4 )-invariant operation.

R 03><dA

OdA %3 IdA Xda

arbitrary 3-dimensional rotation. From Lemma R(3tda)x(3+ds) € SOB+da).

e Consider the matrix R34q,)x(3+d4) & , where R € SO(3) is an

fconcat([Xv A}R(3+dA)><(3+dA)) (;) fconcat([Xa A]) (25)
:>fconcat([XR + AOdA X3 X03><dA + AIdA XdA]) = fconcat([Xa A]) (26)
:>fc0ncat([XRa AD = fconcat([X7 ADv 27

where (x) holds from SO(3 4 d4)-invariance of feoncat-
O

Proposition 4 (Restated). The VN-Transformer model f : X x A — Y (where Y C RNoux(3+da))
shown in Figure [ID]satisfies partial rotation equivariance.

Proof.

e For convenience, we reparametrize the model f as feoncar : RYXBHd4) 5 RNouwx (3+da)
where feoncat([X, A]) = f(X, A). It then suffices to show that feonear([X R, A])3) =
fCOnCat([X’ A])(:7:3)R.
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e First, note that feoncar 18 SO(3 + d 4)-equivariant, since it is composed of SO(3 + dy4)-
equivariant operations.
R O3><d,4
OdA %3 IdA Xda

], where R € SO(3) is an
arbitrary 3-dimensional rotation. From Lemma Rstda)x(3+ds) € SOB+da).

e Consider the matrix R34a,)x(3+da) = [

()
fconcat([X7 A]R(3+dA)><(3+dA)) = fconcat([X7 ADR(3+dA)><(3+dA) (28)
:>fconcat([XR + AO04, x3, X03xq, + Alq, ><dAD

- [fconcat([X7 A])(Z7:3)R + fconcal([X7 A])(:’4:)OdA><37 fconcat([Xz AD(:’:g)OBXdA + fconcal([X7 A])(ZA:)IdA ><dAi|

(29)

= feon (X B A]) = | feoma (X, AD O R, froma( (X, 4]) 4] (30)

:>fconcat([XR7 A])(:,:S) = fconcal([X> A])(:’:S)R, (31)
where (*) holds from SO(3 4 d 4)-equivariance of fioncar-

O

C.3 c-approximate equivariance

Proposition 5 (Restated). VN-LinearWithBias(-; W, U, ¢) is (2ev/C")-approximately equivariant.
This bound is tight when R = —I5y3.

Proof. Set f £ VN-LinearWithBias(-; W, U, ¢):

f(XR) — f(X)R= (WXR+eU) — (WX +eU)R (32)
=eU - eUR (33)
= A(f, X, R)* = || f(XR) — f(X)R||% (34)
C/
=> |l -~ U“R)||3 (35)
c=1

Cl
=&Y |l —U“R|3 (36)

c=1

C/
=&Y U9 +||UR|5 - 20 RTU T 37)

c=1

CI
< e U3+ [|[UOR|3 +209UOT (38)

c=1

Cl
=) 4|u3 (39)

c=1
= 42" (40)
= A(f,X,R) < 2eVC". (41)
O

Lemma 2. Suppose

1. f: X — Xy (with X; C ROV3 X, € RY2%3) s € -approximately equivariant.
2. g: Xy — X3 (with X3 C RE3%3) s €q-approximately equivariant and L 4-Lipschitz (w.r.t.
the Frobenius norm).

Then the composition g o f : X1 — X3 is (Lgey + €4)-approximately equivariant.
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Figure 10: Violations of equivariance in a neural network with Lj-Lipschitz and eg-approximately
equivariant layers.

Proof.
Ago f,X.R) = lg(f(XR)) — g(f(X)R||F “2)
— lg(F(XR)) — g(f(X)R) + g(f(X)R) — g(f(X )R] r 3)
< 9(F(XR) — g(FCOR)r + lgFOR) — g(F(XDRIr @)
g XR) — g(FOR)r + 6, 45)
O LIFXR) — ORI + ¢, 46)
— LA X, R) 46, 1)
(*;*) Lyes +e,, (48)

where () holds from eg-approximate equivariance of g, (**) holds because g is L4-Lipschitz, and
(* * ) holds from e s-approximate equivariance of f. O

Proposition 6 (Restated). Suppose we have K functions fi, : Xy — Xgi1 (with X, C
RO**3 Xy ) C RO+133) for k € {1,..., K}, satisfying the following:

1. fy is ex-approximately equivariant for all k € {1,..., K}.
2. fir is Li-Lipschitz (wrt. || - ||p) forallk € {2,..., K}.

Then, the composition fx o ---o fi is €1, g-approximately equivariant, where:

1.k = L (- (Ls(Loer + €2) +€3) + ) + e (49)
Proof
A(fgo -0 f1,X,R)=A(fxk o (fxk—10---0f1),X,R) (50)
(? LxA(fk-10---0f1,X,R)+ ek 5D
(K-1)

< Li(Lx_1(A(fg—no- 0 fi,X,R) +ex_1) +ex  (52)

(53)
(1)
< Lr( (L3(L2A(f1, X, R) +€2) +e3) + -+ ) + ek (54)
SLK(~-‘(L3(L2€1+62)+63)+"')+€K (55)

where (K) — (1) hold from applying inequality from LemmaK times (setting g = f, and
f 2 fu_10...f1 ateach step). O

Figure[I0]illustrates the propagation of equivariance violations through a composition of 3 functions.

Proposition 7. The VN-Linear(; W) : RE*S — RY*S layer is o(W)-Lipschitz w.r.t.
the Frobenius norm, where o(W) is the spectral norm of W.  The same holds for
VN-LinearWithBias(-; W, U, €).
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Proof. Consider X, X, € R€*5. We can write:

S
WXy = WXs||% =3 (WX - wx (|3 (56)
s=1
S
=YW - x513 (57)
s=1
S
< ExF - x5 (58)
s=1
S
=o(W)2 Y IIxPY — x {13 (59)
s=1
=oc(W)?|X1 — Xo||% (60)
:>||WX1—WXQHFSO'(W)HXl—XQHF (61)

To see this for VN-LinearWithBias, note that ||[(W X1 +€eU) — (W Xy +€U)||% = |[|[W X1 — W Xs||%
— we can then show the same result using the above proof. O

C.4 Equivariance of VN-LayerNorm

We define the VN analog of the layer normalization operation as follows:
c

V(n,c) C
} ® LayerNorm ([|V("’C)||2} 1) Lixs (62)
c=1 =

[V,

Proposition 8. VN-LayerNorm : R€*3 — RE*3 s rotation-equivariant.

VN-LayerNorm(V (™) £ [

Proof.
(m.c) c \©
VN-LayerNorm(V (™M R)(®) = mLayerNorm <[||V("’C)R||2} C/_1> (63)
© mLayerNorm ([|V(”’c)||2} CC:_l)( ) (64)
V() c \©
= 7||V(n,c)||2LayerN0rm <[|V("’C)||2Ll1> R (65)
= VN-LayerNorm(V ™)(©) R (66)
= [VN-LayerNorm(V (") R](®) (67)
= VN-LayerNorm(V (™ R) = VN-LayerNorm(V ™) R, (68)
where () holds from invariance of vector norms to rotations. O

C.5 Definitions of VN layers from Deng et al. (2021)

VN-ReLU layer The VN-ReLU layer is constructed as follows: from a given representation
V(™) € REX3, we compute a feature set ¢ € RE*3:

g2wWvm, W e REXC, (69)
Then, we compute a set of C' “learnable directions” k € REx3:
k2Uv™, UeRE*C, (70)

Note that W, U are learnable square matrices. Finally, we compute the output of the VN-ReL.U
operation VN-ReLU(- ; W, U) : R&*3 — RY*3 as follows:
g if (g9, k) > 0

(c) ()
q(c) - <q(c)7 W) . 0.W.

(71)

VN-ReLU(V(™)(©) & {
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Otherwise stated: if the inner product between the feature ¢(°) and the learnable direction k() is

positive, return ¢(©), else return the projection of ¢(©) onto the plane defined by the direction k(). It
can be readily shown that VN-ReLU is rotation-equivariant (for a proof, see Appendix [C.6).

VN-Invariant layer VN-Invariant(- ; W) : RE*3 — R¢*3 is defined as:
VN-Invariant(V"™; W) £ VO VN-MLP(V ™, W), (72)

where VN-MLP(- ; W) : R€*3 — R3*3 is a composition of VN-Linear and VN-ReLU layers, and
W is the set of all learnable parameters in VN-MLP. It can be easily shown that VN-Invariant is
rotation-invariant (see Appendix [C.6]for a proof).

VN-Batch Norm, VN-Pool For rotation-equivariant analogs of the standard batch norm and pool-
ing operations, we point the reader to|Deng et al.[(2021}).

C.6 Invariance & equivariance of VN layers of Deng et al.| (2021)
Proposition 9. (Deng et al., [2021) VN-Linear(- ; W) : RE*3 — RE"*3 js rotation-equivariant.

Proof.
VN-Linear(V™WR; W) £ WV™R = (WV™)R = VN-Linear(V™; W)R (73)

O
Proposition 10. (Deng et al.,|2021) VN-ReLU : RE*3 — R¢*3 is rotation-equivariant.
Proof.
OR ifldOR. EOR) >0
) Ja if (¢ R, ) >
VN-ReLU(V(MR)(©) =2 { . . KOR \ kOR (74)
q( )R_<q( )R7 Hk}(C)R||2>||k(C)RH2 0.W.
- {Q(C)R R (75)
- c c k' k'R
(R~ ("), o) i oW
© if (q© RO} >
q'? if (¢, k') = 0
= () (c) k() k() R (76)
¢ =@ mon e oW
= VN-ReLU(V()(© R (77)
= [VN-ReLU(V ™) R]©® (78)
= VN-ReLU (V™ R) = VN-ReLU(V ™)R, (79)

where () holds because g and k are rotation-equivariant w.r.t. V(™) and (+x) holds because vector
inner products are rotation-invariant. O

Proposition 11. (Deng et al., 2021) VN-Invariant : R€*3 — R¢*3 js rotation-invariant.

Proof.
VN-Invariant(V ™ R; W) = (V™ R)VN-MLP(V ("™ R; W)T (80)
© y o R [VN-MLP(V ™), W)R| ! @1)
= V™ RRTVN-MLP(V(™); W)T (82)
= VW VN-MLP(V™; w)T (83)
= VN-Invariant(V™; W), (84)
where (*) holds by equivariance of VN-MLP. O
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