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Abstract

Deep neural networks based object detectors have shown great success in a variety
of domains like autonomous vehicles, biomedical imaging, etc., however their
success depends on the availability of a large amount of data from the domain
of interest. While deep models perform well in terms of overall accuracy, they
often struggle in performance on rare yet critical data slices. For e.g., detecting
objects in rare data slices like “motorcycles at night" or “bicycles at night" for
self-driving applications. Active learning (AL) is a paradigm to incrementally
and adaptively build training datasets with a human in the loop. However, current
AL based acquisition functions are not well-equipped to mine rare slices of data
from large real-world datasets, since they are based on uncertainty scores or
global descriptors of the image. We propose TALISMAN, a novel framework for
Targeted Active Learning for object detectIon with rare slices using Submodular
MutuAl iNformation. Our method uses the submodular mutual information
functions instantiated using features of the region of interest (RoI) to efficiently
target and acquire images with rare slices. We evaluate our framework on the
standard PASCAL VOC07+12 [7] and BDD100K [29], a real-world large-scale
driving dataset. We observe that TALISMAN consistently outperforms a wide
range of AL methods by ≈ 5%− 14% in terms of average precision on rare slices,
and ≈ 2% − 4% in terms of mAP. The code for TALISMAN is available here:
https://github.com/surajkothawade/talisman.

1 Introduction

Deep learning approaches for object detection have made a lot of progress, with accuracies improving
consistently over the years. As a result, object detection technology is extensively being used and
deployed in applications like self-driving cars and medical imaging, and is approaching human
performance. One critical aspect, though in high-stake applications like self-driving cars and medical
imaging, is that the cost of failure is very high. Even a single mistake in the detection and specifically
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a false-negative (e.g., missing a pedestrian on a highway or a motorcycle at night) can result in a
major and potentially fatal accident1.

Rare Classes

Rare Slices

Figure 1: Problem Statement: Rare classes and
Rare slices in BDD100K [29]. Motorcycle and
bicycle classes have the least number of objects,
thereby making them rare classes, on which the
model performs the worst in terms of average pre-
cision (AP). Further, motorcycle/bicycle objects at
night are rarer, thereby making them rare slices
on which the model performs the worst.

An important aspect in such problems is that
there are a number of rare yet critical slices of
objects and scenarios. Because many of these
rare slices are severely under-represented in the
data, deep learning based object detectors of-
ten perform poorly in such scenarios. Some
examples of such data slices are “motorcycles
at night”, “pedestrians on a highway”, and “bi-
cycles at night”. Fig. 1 shows the distribution
of slices in the BDD100K [29] dataset. As is
evident, these slices are very rare – for instance,
the number of motorcycles at night, is 0.094%
of the number of cars in the dataset.

This causes a more pronounced issue in the
limited data setting. To understand the effect
of this imbalance, we trained a Faster-RCNN
Model [21] on a small subset of BDD100K (5%
of the dataset) and we noticed a significant dif-
ference in mAP between “cars" class (around
55% mAP) and “motorcycle" (around 9% mAP).
This gap is even more pronounced for rare slices.
AL based data sampling is an increasingly pop-
ular paradigm for training deep learning classifiers and object detectors [5, 23, 27, 9] because such
approaches significantly reduce the amount of labeled data required to achieve a certain desired
accuracy. On the other hand, current AL based paradigms are heavily dependent on aspects like uncer-
tainty and diversity, and often miss rare slices of data. This is because such slices, though critical for
the end task, are a small fraction of the full dataset, and play a negligible role in the overall accuracy.

1.1 Our Contributions

In this paper, we propose TALISMAN, a novel active learning framework for object detection, which
(a) provides a mechanism to encode the similarity between an unlabeled image and a small query set
of targeted examples (e.g., images with “motorcycles at night" RoIs), and (b) mines these examples
in a scalable manner from a large unlabeled set using the recently proposed submodular mutual
information functions. We also provide an approach where we can mine examples based on multiple
such rare slices. Similar to standard active learning, TALISMAN is an interactive human-in-the-loop
approach where images are chosen iteratively and provided to a human for labeling. However, the key
difference is that TALISMAN does the selection by targeting rare slices using only a few exemplars.
The overview of targeted selection using TALISMAN is shown in Fig. 3.
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Figure 2: Efficiency of TALISMAN over
the best-performing baseline on a variety
of rare slices in BDD100K

Empirically, we demonstrate the utility of TALISMAN on
a diverse set of rare slices that occur in the real-world.
Specifically, we see that TALISMAN outperforms the best
baseline by significant margins on different rare slices (c.f.
Fig. 2).

2 Related Work

A number of recent works have studied deep active
learning for image classification [25, 1, 28, 24, 14, 17, 4].
The most common approach for active learning is to select
the most uncertain examples. These include approaches

1An unfortunate example of this is the self-driving car crash with Uber: https://www.theverge.com/
2019/11/6/20951385/uber-self-driving-crash-death-reason-ntsb-dcouments where the self-
driving car did not detect a pedestrian on a highway at night, resulting in a fatal accident.
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like ENTROPY [25], LEAST CONFIDENCE [27], and
MARGIN [22]. One challenge of this approach is that all
the samples within a batch can be potentially similar, even though they are uncertain. Hence, a
number of recent works have ensured that we select examples that are both uncertain and diverse.
Examples include BADGE [1], FASS [28], BATCH-BALD [16], CORESET [24], and so on.

Labeled Dataset : L

Unlabeled Dataset: U

Targeted
Selection using

SMI
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with Motorcycle

at Night RoI
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Augmented
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Performance
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Figure 3: Targeted Selection using TALISMAN for
one round of targeted active learning. Motorcycles
at night is a rare slice in the labeled data. We mine
images from the unlabeled set that semantically
similar to the RoIs in the query set by using the
submodular mutual information (SMI) functions.
These images are then labeled and added to the
labeled data to improve performance on the rare
slice.

Recently, researchers have started applying ac-
tive learning to the problem of object detection.
[5] proposed an uncertainty sampling based ap-
proach for active object detection, while [23]
proposed a ‘query-by-committee’ paradigm to
select the most uncertain items for object de-
tection. Recently [9], studied several scoring
functions for active learning, including entropy
based functions, coreset based functions, and so
on. [13] proposed an active learning approach
based on the localization of the detections, and
studied the role of two metrics called “localiza-
tion tightness" and “localization stability" as un-
certainty measures. [6] studied active learning
in the setting of users providing weak supervi-
sion (i.e., just suggesting the label and a rough
location as opposed to drawing bounding boxes
around the objects). All these approaches have
shown significant labeling cost reductions and
gains in accuracy compared to random sampling.
However, the major limitation with these ap-
proaches (which are mostly variations of uncer-
tainty) is that they focus on the overall accuracy,
and do not necessarily try to select instances
specific to certain rare yet critical data slices. To
overcome these limitations, we provide a gener-
alized paradigm for active learning in object detection, where we can target specific rare data slices.

A related thread of research is the use of the recently proposed submodular information measures [11]
for data selection and active learning. [15] extended the work of [11] and proposed a general
family of parameterized submodular information measures for guided summarization and data
subset selection. [17] use the submodular information measures for active learning in the image
classification setting to address realistic scenarios like imbalance, redundancy, and out-of-distribution
data. Finally, [18] use the submodular information measures for personalized speech recognition.
To our knowledge, this is the first work which proposes an active learning framework for object
detection capable of handling rare slices of data.

3 Background

In this section, we discuss different submodular functions and their mutual information instantiations.

3.1 Submodular Functions

Submodular functions are an appealing class of functions for data subset selection in real-world
applications due to their diminishing returns property and their ability to model properties of a
good subset, such as diversity, representation and coverage [26, 2, 3, 12]. Consider an unlabeled set
U = {1, 2, 3, · · · , n} and a set function f : 2U −→ R. Formally, f is defined to be submodular [8] if
for x ∈ U , f(A∪x)−f(A) ≥ f(B∪x)−f(B), ∀A ⊆ B ⊆ U and x /∈ B. For data subset selection
and active learning, a number of recent approaches [28, 14] use f as an acquisition function to obtain a
real-valued score for f(A), whereA ⊆ U . Given a budget B (the number of elements to select at every
round of subset selection of batch active learning), the optimization problem is: maxA:|A|≤B f(A).
Two examples of submodular functions that we use in this work are Facility Location (FL) and Graph
Cut (GC) functions (see Tab. 1(a)). They are instantiated by using a similarity matrix S, that stores
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the similarity scores Sij between any two data points i, j. The submodular functions admit a constant
factor approximation 1− 1

e [20] for cardinality constraint maximization. Importantly, submodular
maximization can be done in near-linear time using variants of greedy algorithms [19].

3.2 Submodular Mutual Information (SMI)

While submodular functions are a good choice of functions for standard active learning, in this work,
we want to not only select the most informative and diverse set of points, but also select points which
are similar to a specific target slice (typically only a few examples from a rare slice). The Submodular
mutual information (SMI) functions capture this second property and are defined as If (A;Q) =
f(A)+f(Q)−f(A∪Q), whereQ is a query or target set (e.g., a few sample images of “motorcycles
at night"). Intuitively, maximizing the SMI functions ensure that we obtain diverse subsets that are rel-
evant to a query setQ. We discuss the details of the SMI functions used in our work in the next section.

3.3 Specific SMI Functions Used In TALISMAN

Table 1: Instantiations of different submodular
functions.

(a) Instantiations of
Submodular func-
tions.

SF f(A)
FL

∑
i∈U

max
j∈A

Sij

GC
∑

i∈A,j∈U
Sij−∑

i,j∈A
Sij

(b) Instantiations of
SMI functions.

SMI If (A;Q)
FLMI

∑
i∈Q

max
j∈A

Sij+
∑
i∈A

max
j∈Q

Sij

GCMI 2
∑
i∈A

∑
j∈Q

Sij

We adapt the mutual information variants of Fa-
cility Location (FL) and Graph Cut (GC) func-
tions [15] for targeted active learning.

Facility Location: The FL function models
representation (i.e., it picks the most represen-
tative points or “centroids"). The FL based
SMI function called FLMI can be written as
If (A,Q) =

∑
i∈Q

max
j∈A

Sij +
∑
i∈A

max
j∈Q

Sij [15].

This function models representation as well as
query relevance.

Graph Cut: The GC function models diversity
and representation, and has modeling properties
similar to FL. The SMI variant of GC is
defined as GCMI, which maximizes the pairwise
similarity between the query set and the unlabeled set. The GCMI function can be written as
If (A;Q) = 2

∑
i∈A

∑
j∈Q

Sij .

Tab. 1(a) and (b) demonstrate the SMI functions we will use in this work and the corresponding
submodular functions instantiating them. Note that in [11, 15], a number of other SMI functions
and instantiations have been proposed. However, keeping scalability to large datasets in mind (see
Sec. 4.4), we only focus on these two.

4 TALISMAN: Our Targeted Active Learning Framework for Object
Detection

4.1 TALISMAN Framework

In this section, we present TALISMAN, our targeted active learning framework for object detection.
We show that TALISMAN can efficiently target any imbalanced scenario with rare classes or rare
slices. We summarize our method in Algorithm 1, and illustrate it in Fig. 4. The core idea of our
framework lies within instantiating the SMI functions such that they can mine for images from the
unlabeled set which contain proposals semantically similar to the region of interests (RoIs) in the
query set. The query set contains exemplars of the rare slice that we want to target.

We start with training an object detection modelM on an initial labeled set L. UsingM, we compute
embeddings of the query set Q and the unlabeled set U . Next, we compute pairwise cosine similarity
scores Squ,∀q ∈ Q,∀u ∈ U to obtain a similarity matrix S ∈ R|Q|×|U|. We discuss the details of
computing Squ for a single query image q and a single unlabeled image u in Sec. 4.2. Using the
similarity matrix S, we instantiate the SMI function If (A;Q) as discussed in Sec. 3 (note that both
the SMI functions we consider in this work are similarity based functions). Finally, we acquire a
subset A that contains regions that are semantically similar to the RoI in Q by maximizing the SMI

4



Algorithm 1 TALISMAN: Targeted AL Framework for Object Detection (Illustration in Fig. 4)
Require: Initial labeled set of data points: L, large unlabeled dataset: U , small query set Q, object

detection modelM, batch size: B, number of selection rounds: N .
1: for selection round i = 1 : N do
2: Train modelM on the current labeled set L and obtain parameters θi
3: Compute S ∈ R|Q|×|U| such that: Squ ← TARGETEDSIM(Mθi , Iq, Iu), ∀q ∈ Q,∀u ∈ U

{Algorithm 2}
4: Instantiate a submodular function f based on S.
5: Ai ← argmaxA⊆U,|A|≤BIf (A;Q) {Greedy maximization of SMI function to select a subset

A}
6: Get labels L(Ai) for batch Ai and L ← L ∪ L(Ai), U ← U −Ai

7: end for
8: Return trained modelM and parameters θ.

function If (A;Q):

max
A⊆U,|A|≤B

If (A;Q). (1)

Since this function is submodular (i.e. If (A;Q) is submodular in A for a fixed query set Q), we
use a greedy algorithm [20] (to solve Equ. (1) and Line 5 in Algorithm 1) which ensures a 1 − 1

e
approximation guarantee of the optimal solution.

4.2 Targeted Similarity Computation

Targeted
Similarity

Unlabeled Dataset: U

Query Set Q with RoIs


Targeted
Similarity Matrix 

Instantiate SMI
Function

Selected Subset A

Figure 4: Architecture of TALISMAN during one
round of targeted active learning. We illustrate the
targeted similarity computation in Fig. 5.

We summarize our method for targeted similar-
ity computation in Algorithm 2 and illustrate it
in Fig. 5. For simplicity, consider a single query
image Iq ∈ Q with T RoIs (targets) indicating a
rare slice, and an unlabeled image Iu ∈ U with
P region proposals obtained using a region pro-
posal network (RPN). UsingM that is trained
on L, we compute the embedding of the RoIs in
Iq to obtain Eq ∈ RT×D, and for the proposals
of Iu to obtain Eu ∈ RP×D. Here, D denotes
the dimensionality of each feature vector repre-
senting a RoI or region proposal. We use the
embeddings Eq and Eu to represent Iq and Iu
respectively. We use these embeddings to compute the targeted similarity (see Algorithm 2).

Unlabeled Image

Query Image

with T ROIs

CNN

Backbone Features

ROI
Pooling

FC

D

Backbone Features

ROI
PoolingCNN

RPN

FC

D

Tensordot

Intermediate
Score Map

Element-wise


Final Score

Proposal Features

ROI Features

T ROIs

P Proposals

Figure 5: TARGETEDSIM: Targeted Similarity computation in TALISMAN.
In order to compute cosine similarity between Eq and Eu efficiently, we L2-normalize along the
feature dimension of length D. This enables us to highly parallelize the similarity computation via
off-the-shelf GPU enabled dot product 2 implementations. Next, we compute the dot product along

2See torch.tensordot
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the feature dimension to obtain pairwise similarities between T RoIs in Iq and the P proposals in Iu
which gives us RoI-proposal score map Xqu ∈ RT×P . Finally, we assign the similarity score Squ

between Iq and Iu by computing the element-wise maximum of Xqu, which entails the best matching
proposal of the P region proposals to some query RoI in the T RoIs.

Algorithm 2 TARGETEDSIM: Targeted Similarity Matching (Illustration in Fig. 5)
Require: Local feature extraction model Fθ, Iq ∈ Q with T RoIs and Iu ∈ U with P region

proposals.
1: Eq ← Fθ(Iq) {Eq ∈ RT×D}
2: Eu ← Fθ(Iu) {Eu ∈ RP×D}
3: Xqu ← COSINE_SIMILARITY(Eq, Eu) {Xqu ∈ RT×P . Compute Cosine similarity along the

feature dimension}
4: Squ ← max(Xqu) {Element-wise Max, Squ represents the score between the best matching

proposal j ∈ P to some query RoI i ∈ T}
5: Return Similarity score Squ

4.3 Using TALISMAN to Mine Rare Slices

A critical input to TALISMAN (Algorithm 1) is the query set Q. The query set consists of a specific
target slice, which could be a rare class (e.g. “motorcycles") or a rare slice (“motorcycles at night").
In our experiments, we study the role of TALISMAN for both scenarios. For our setting to be realistic,
we need to ensure that Q is tiny – since these are rare slices, we cannot assume that we have access
to numerous of these rare examples. For this reason, we set Q to be between 2 and 5 examples in
our experiments. It is worth noting that since the SMI functions naturally model relevance to the
query set and diversity within the selected subset, they pick a diverse set of data points which are
relevant to the query set Q.

4.4 Scalability of TALISMAN

A key factor in the efficiency of TALISMAN is the choice of SMI functions FLMI and GCMI. The
memory and time complexity of computing the similarity kernel for both these functions is only
|Q| × |U| – since Q is a tiny held-out set of the examples from the rare slice (of size 2 to 5), the
time complexity of creating and storing the FLMI and GCMI functions is only O(U). For the
greedy algorithm [20], we use memoization [10]. This ensures that the complexity of computing
the gains for both FLMI and GCMI functions is in fact O(|Q|, which is a constant, so the amortized
complexity using the lazy greedy algorithm is |U| log |U|. We can also use the lazier than lazy greedy
algorithm [19], which ensures that the worst case complexity of the greedy algorithm is only |U|.
As a result, both FLMI and GCMI can be optimized in linear time (with respect to the size of the
unlabeled set), thereby ensuring that TALISMAN can scale to very large datasets.

5 Experimental Results

In this section, we empirically evaluate the effectiveness of TALISMAN for a wide range of real-world
scenarios where the dataset has one or more rare classes or rare slices. We do so by comparing
the performance of TALISMAN instantiated SMI functions (Tab. 1(b)) with existing active learning
approaches using a wide variety of metrics, namely the mean average precision (mAP), average
precision (AP) of the rare slice, and the number of data points selected that belong to the rare slice.

5.1 Experimental Setup

We apply TALISMAN for object detection tasks on two diverse public datasets: 1) the standard PAS-
CAL VOC07+12 (VOC07+12) [7] and 2) BDD100K [29], a large scale driving dataset. VOC07+12
has 16,551 images in the training set and 4,952 images in the test set which come from the test set
of VOC07. BDD100K consists of 70K images in the training set, 10K images in the validation set
and 20K images in the test set. Since the labels for the test set are not publicly available, we use the
validation set for evaluation. For active learning (AL), we split the training set into the labeled set L
and unlabeled set U .
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Figure 6: Active Learning with rare classes on VOC07+12. Plot (a) shows the average AP of the rare
classes, plots (b-c) show the number of boat and bottle objects selected respectively, plot (d) shows
the mAP on the VOC07+12 test set. We observe that the SMI functions (FLMI, GCMI) outperform
other baselines by ≈ 8%− 10% average AP of the rare classes.

Baselines in All Scenarios: We compare TALISMAN instantiated SMI functions with multiple AL
baselines: namely ENTROPY [25, 9], Targeted Entropy (T-ENTROPY), Least Confidence (LEAST-
CONF) [27], MARGIN [22], FASS [28], CORESET [24], BADGE [1] and RANDOM sampling.

5.2 Rare Classes

Dataset setting: We conduct the experiments for the rare classes scenario on the VOC07+12 dataset.
In particular, we create the initial labeled set, L which simulates the rare classes by creating a
class imbalance at an object level. Let CLi be the number of objects from a rare (infrequent) class
i and BLj be the number of objects from a frequent class j. The initial labeled set L is created such
that the imbalance ratio between CLi and BLj is at least ρ, i.e., ρ ≤ (BLj /CLi ). All the remaining
data points are used in the unlabeled set U . In our experiments, we choose two classes to be rare
from VOC07+12: ‘boat’ and ‘bottle’. We do so due to two reasons: 1) they are by default the most
uncommon objects in VOC, thereby making them the natural choice, and 2) they are comparatively
smaller objects than other classes like ‘sofa’, ‘chair’, ‘train’, etc. We use a small query set Q
containing 5 randomly chosen data points representing the rare classes (RoIs). We construct the
initial labeled set by setting ρ = 10, |CL| = 20 and |BL| = 2858. This gives us an initial labeled
seed set of size |L| = 1143 images. Note that the imbalance ratio is not exact because objects of
some classes are predominantly present in most images, thereby increasing the size of |BL|.
Results: In Fig. 6, we compare the performance of TALISMAN on the rare classes scenario in
VOC07+12 [7]. We observe that TALISMAN significantly outperforms all state-of-the art uncertainty
based methods (ENTROPY, LEAST-CONF, and MARGIN) by ≈ 8% − 10% (Fig. 6(a)) in terms of
average precision (AP) on the rare classes and by ≈ 2% − 3% in terms of mAP (Fig. 6(d)). This
improvement is performance is because the TALISMAN instantiated functions (GCMI and FLQMI)
are able to select more data points that contain regions with objects belonging to the rare classes (see
Fig. 6(c)). Interestingly, the TALISMAN functions were also able to give a fair treatment to multiple
rare classes at the same time by selecting significant number of objects belonging to both the rare
classes (‘boat’ and ‘bottle’, see Fig. 6(b,c)). This suggests that TALISMAN is able to select diverse
data points by appropriately targeting regions containing rare class objects in the query image.

5.3 Rare Slices

Dataset setting: We chose BDD100K [29] since it is a realistic, large, and challenging dataset that
allows us to evaluate the performance of TALISMAN on datasets with naturally occurring rare slices.
Since we want to evaluate rare slices, the procedure to simulate the initial labeled set and the evaluation
is slightly different from the rare classes experiment in the above section. In the following sections,
we discuss experiments where the initial labeled set L has a rare slice made of a class and an attribute.
For instance, motorcyles (class) at night (attribute), pedestrians (class) in rainy weather (attribute), etc.
Let |OA

c | be the number of objects in L that belong to class c and attribute A. Concretely, we create a
balanced initial labeled setL, such that each class c contributes an equal number of objects, i.e.|Oc1| =
|Oc2|,∀c1, c2. Let i be the class involved in the rare slice. We simulate the rare slice by creating an
imbalance in Oi based on an attribute A such that the ratio between the number of objects of class
i with attribute A and the ones without attribute A (denoted by Ã) is at least ρ, i.e.ρ ≤ (|OÃ

i |/|OA
i |).

In all the rare slice experiments, we start with an initial labeled set by setting ρ = 10, |OÃ
i | = 100,

and |OA
i | = 10. For all other classes j, we randomly pick objects such that |Oj | = 110. Note that
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Figure 7: Active Learning with Motorcycle (MC) at Night (top row) and Bicycle (BC) at Night
(bottom row) rare slices on BDD100K. Left side plots (a,d,g) show the AP of the rare class on the
rare slice of data, center plots (b,e) show the number of objects selected that belong to the rare slice,
and right side plots (c,f) show the mAP on the full test set of BDD100K. We observe that the SMI
functions (FLMI, GCMI) outperform other baselines by ≈ 5%− 14% AP of the rare class on the rare
slice. In (h,i), we show that TALISMAN selects more objects from multiple rare slices in comparison
to the existing methods.

we use a small query set in all experiments (≈ 3 − 5 images). The exact number of images in L
and Q for each experiment is given in Appendix. B. For evaluation, we compare the performance of
TALISMAN using three metrics: 1) Rare Class Rare Slice AP: the average precision (AP) of the ‘rare
class’ (e.g.motorcycle) on the ‘rare slice’ (e.g.night), 2) # Rare Slice Objects: the number of objects
selected that belong to the rare slice, and 3) Overall Test mAP: the mAP on the complete test set.

Motorcycle or Bicycle at Night rare slice results: We show the results for the ‘motorcycle at night’
and ‘bicycle at night’ rare slices in Fig. 7(top and middle row). We observe that the TALISMAN
outperforms other baselines by ≈ 5%− 14% AP of the rare class on the rare slice (see Fig. 7 (a,d)),
and by ≈ 2%− 4% (see Fig. 7 (c,f)) in terms of mAP on the full test set. The gain in AP of the rare
class and mAP increases in the later rounds of active learning, since the embedding representation of
the model improves. Specifically, GCMI outperforms all methods since it models query-relevance
well by selecting many rare class objects that belong to the rare slice (see Fig. 7(b,e)).

Motorcycle and Bicycle at Night rare slice results: We show the results for a scenario with multiple
rare slices: ‘motorcycle and bicycle at night’ (Fig. 7(bottom row)). Importantly, we observe that
TALISMAN selects more number of objects from both the rare slices in comparison to existing
methods (see Fig. 7(h,i)). This is critical in real-world scenarios, since there are often cases with
multiple co-occuring rare slices.

Pedestrian at Night or Rainy or Highway rare slice results: To study the robustness of TALISMAN
in diverse real-world scenarios, we evaluate its performance for the ‘pedestrian’ rare class on multiple
attributes - 1) ‘night’, 2) ‘rainy’, and 3) ‘highway’ (see Fig. 8). We observe consistent performance
of both the TALISMAN instantiated functions (GCMI and FLMI) across all scenarios. Concretely,
we show that our framework can robustly find more pedestrians than any other baseline across all
rare slices (see Fig. 8(b,e,h)), which leads to a performance gain of ≈ 5%− 10% AP over existing
baselines for the pedestrian class on the rare slice. This reinforces the need for a framework like
TALISMAN for improving the performance of object detectors on such rare slices.
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(c) Ped-Night: Full-Test mAP
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(f) Ped-Rainy: Full-Test mAP
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(i) Ped-Highway: Full-Test mAP

Figure 8: AL with Pedestrian (Ped) at Nighttime (top row), Pedestrian in Rainy Weather (middle
row), and Pedestrian on a Highway (bottom row) rare slices on BDD100K. Left side plots (a,d,g)
show the AP of the rare class on the rare slice of data, center plots (b,e,h) show the number of objects
selected that belong to the rare slice, and right side plots (c,f,i) show the mAP on the full test set
of BDD100K. We observe that the SMI functions (FLMI, GCMI) outperform other baselines by
≈ 5%− 10% AP of the pedestrian class on the rare slice.

6 Conclusion

In this paper, we present a targeted active learning framework TALISMAN that enables improving
the performance of object detection models on rare classes and slices. We showed the utility of our
framework across a variety of real-world scenarios with one or more rare classes and slices on the
PASCAL VOC07+12 and BDD100K driving dataset, and observe a ≈ 5%− 14% gain compared to
the existing baselines. Moreover, TALISMAN can select objects belonging to multiple co-occuring
rare slices and simultaneously improve their performance, which is critical for modern object
detectors. The main limitation of our work is the requirement of a reasonable feature embedding for
computing similarity.

Appendix
A Summary of Notations

We summarize the notations used in this paper in Tab. 2.

B Additional Experiments and Details

We provide the exact number of images in the initial labeled set L and the query set Q for each rare
slice experiment in Tab. 3. Further, in Fig. 9 and Fig. 10 we qualitatively show how TALISMAN is
able to fix a false negative motorcycle failure case. Lastly, in Fig. 11 we show the effectiveness of
TALISMAN in another rare classes scenario on the BDD100K dataset. We observe that SMI functions
used in TALISMAN outperform the baselines by≈ 8%−14% AP of the rare class and by≈ 3%−4%
in terms of the mAP.
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Topic Notation Explanation

U Unlabeled set of |U| instances
TALISMAN (Sec. 4) A A subset of U

Sij Similarity between any two data points i and j
f A submodular functions
L Labeled set of data points
Q Query set
M Object detection model
B Active learning selection budget
Iq A single query image in the query set Q
Iu A single unlabeled image in the unlabeled set U
T Number of region of interests (RoIs) in a single

query image Iq
P Number of proposals in a single unlabeled image

Iu
Eq Embedding of T RoIs in Iq , Eq ∈ RT×D

Eu Embedding of P proposals in Iu, Eu ∈ RP×D

D Dimensionality of each feature vector representing
a RoI/proposal

Fθ Feature extraction module with parameters θ
Xqu Intermediate score map obtained by computing

cosine similarity between Eq and Eu,Xqu ∈ RT×P

CLi Number of objects in L that belong to the rare (in-
frequent) class i. The total number of rare objects
in L is |CL|

TALISMAN for Rare
Classes (Sec. 5.2)

BLj Number of objects in L that belong to the frequent
class j. The total number of rare objects in L is
|BL|

ρ Imbalance ratio between CLi and BLj
|OA

c | Total number of objects in L that belong to class c
and have the attribute A

TALISMAN for Rare
Slices (Sec. 5.3)

|OÃ
c | Total number of objects in L that belong to class c

and do not have the attribute A

ρ Imbalance ratio between |OA
c | and |OÃ

c |

Table 2: Summary of notations used throughout this paper

Table 3: Number of data points in the initial labeled set L and query set Q for different rare slice
experiments in Sec. 5.3

Rare Slice Initial L Size
(# Images)

Query Set Q Size
(# Images)

Motorcycle at Nighttime 363 5
Bicycle at Nighttime 348 5
Pedestrian at Nighttime 355 3
Pedestrian in Rainy Weather 361 5
Pedestrian on a Highway 362 5
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