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Abstract

Planning an optimal route in a complex environment requires efficient reasoning
about the surrounding scene. While human drivers prioritize important objects
and ignore details not relevant to the decision, learning-based planners typically
extract features from dense, high-dimensional grid representations containing all
vehicle and road context information. In this paper, we propose PlanT, a novel
approach for planning in the context of self-driving that uses a standard transformer
architecture. PlanT is based on imitation learning with a compact object-level
input representation. On the Longest6 benchmark for CARLA, PlanT outperforms
all prior methods (matching the driving score of the expert) while being 5.3×
faster than equivalent pixel-based planning baselines during inference. Combining
PlanT with an off-the-shelf perception module provides a sensor-based driving
system that is more than 10 points better in terms of driving score than the existing
state of the art. Furthermore, we propose an evaluation protocol to quantify the
ability of planners to identify relevant objects, providing insights regarding their
decision-making. Our results indicate that PlanT can focus on the most relevant
object in the scene, even when this object is geometrically distant.

1 Introduction

The ability to plan is an important aspect of human intelligence, allowing us to solve complex
navigation tasks. For example, to change lanes on a busy highway, a driver must wait for sufficient
space in the new lane and adjust the speed based on the expected behavior of the other vehicles.
Humans quickly learn this and can generalize to new scenarios, a trait we would also like autonomous
agents to have. Due to the difficulty of the planning task, the field of autonomous driving is
shifting away from traditional rule-based algorithms (1; 2; 3; 4; 5; 6; 7; 8) towards learning-based
solutions (9; 10; 11; 12; 13; 14). Learned planners directly map the environmental state representation
(e.g., HD maps and object bounding boxes) to waypoints or vehicle controls. They emerged as a
scalable alternative to rule-based planners which require significant manual effort to design.

Interestingly, while humans reason about the world in terms of objects (15; 16; 17), most existing
learned planners (9; 12; 18) choose a high-dimensional pixel-level input representation by rendering
bird’s eye view (BEV) images of detailed HD maps (Fig. 1 left). It is widely believed that this kind
of accurate scene understanding is key for robust self-driving vehicles, leading to significant interest
in recovering pixel-level BEV information from sensor inputs (19; 20; 21; 22; 23; 24). In this paper,
we investigate whether such detailed representations are actually necessary to achieve convincing
planning performance. We propose PlanT, a learning-based planner that leverages an object-level
representation (Fig. 1 right) as an input to a transformer encoder (25). We represent a scene as a
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Figure 1: Scene Representations for Planning. As an alternative to the dominant paradigm of
pixel-level planners (left), we show the effectiveness of compact object-level representations (right).

set of features corresponding to (1) nearby vehicles and (2) the route the planner must follow. We
show that despite the low feature dimensionality, our model achieves state-of-the-art results. We then
propose a novel evaluation scheme and metric to analyze explainability which is generally applicable
to any learning-based planner. Specifically, we test the ability of a planner to identify the objects that
are the most relevant to account for to plan a collision-free route.

We perform a detailed empirical analysis of learning-based planning on the Longest6 benchmark (26)
of the CARLA simulator (27). We first identify the key missing elements in the design of existing
learned planners such as their incomplete field of view and sub-optimal dataset and model sizes.
We then show the advantages of our proposed transformer architecture, including improvements in
performance and significantly faster inference times. Finally, we show that the attention weights
of the transformer, which are readily accessible, can be used to represent object relevance. Our
qualitative and quantitative results on explainability confirm that PlanT attends to the objects that
match our intuition for the relevance of objects for safe driving.

Contributions. (1) Using a simple object-level representation, we significantly improve upon the
previous state of the art for planning on CARLA via PlanT, our novel transformer-based approach.
(2) Through a comprehensive experimental study, we identify that the ego vehicle’s route, a full
360◦ field of view, and information about vehicle speeds are critical elements of a planner’s input
representation. (3) We propose a protocol and metric for evaluating a planner’s prioritization of
obstacles in a scene and show that PlanT is more explainable than CNN-based methods, i.e., the
attention weights of the transformer identify the most relevant objects more reliably.

2 Related Work

Intermediate Representations for Driving. Early work on decoupling end-to-end driving into two
stages predicts a set of low-dimensional affordances from sensor inputs with CNNs which are then
input to a rule-based planner (28). These affordances are scene-descriptive attributes (e.g. emergency
brake, red light, center-line distance, angle) that are compact, yet comprehensive enough to enable
simple driving tasks, such as urban driving on the initial version of CARLA (27). Unfortunately,
methods based on affordances perform poorly on subsequent benchmarks in CARLA which involve
higher task complexity (29). Most state-of-the-art driving models instead rely heavily on annotated
2D data either as intermediate representations or auxiliary training objectives (26; 30). Several
subsequent studies show that using semantic segmentation as an intermediate representation helps
for navigational tasks (31; 32; 33; 34). More recently, there has been a rapid growth in interest
on using BEV semantic segmentation maps as the input representation to planners (9; 12; 30; 18).
To reduce the immense labeling cost of such segmentation methods, Behl et al. Behl2020IROS
propose visual abstractions, which are label-efficient alternatives to dense 2D semantic segmentation
maps. They show that reduced class counts and the use of bounding boxes instead of pixel-accurate
masks for certain classes is sufficient. Wang et al. Wang2019IROS explore the use of object-centric
representations for planning by explicitly extracting objects and rendering them into a BEV input
for a planner. However, so far, the literature lacks a systematic analysis of whether object-centric
representations are better or worse than BEV context techniques for planning in dense traffic, which
we address in this work. We keep our representation simple and compact by directly considering the
set of objects as inputs to our models. In addition to baselines using CNNs to process the object-
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centric representation, we show that using a transformer leads to improved performance, efficiency,
and explainability.

Transformers for Forecasting. Transformers obtain impressive results in several research areas (25;
35; 36; 37), including simple interactive environments such as Atari games (38; 39; 40; 41; 42).
While the end objective differs, one application domain that involves similar challenges to planning
is motion forecasting. Most existing motion forecasting methods use a rasterized input in combi-
nation with a CNN-based network architecture (43; 44; 45; 46; 47; 48). Gao et al. Gao2020CVPR
show the advantages of object-level representations for motion forecasting via Graph Neural Net-
works (GNN). Several follow-ups to this work use object-level representations in combination with
Transformer-based architectures (49; 50; 51). Our key distinctions when compared to these methods
are the architectural simplicity of PlanT (our use of simple self-attention transformer blocks and the
proposed route representation) as well as our closed-loop evaluation protocol (we evaluate the driving
performance in simulation and report online driving metrics).

Explainability. Explaining the decisions of neural networks is a rapidly evolving research field (52;
53; 54; 55; 56; 57; 58). In the context of self-driving cars, existing work uses text (59) or heatmaps (60)
to explain decisions. In our work, we can directly obtain post hoc explanations for decisions of our
learning-based PlanT architecture by considering its learned attention. While the concurrent work
CAPO (61) uses a similar strategy, it only considers pedestrian-ego interactions on an empty route,
while we consider the full planning task in an urban environment with dense traffic. Furthermore, we
introduce a simple metric to measure the quality of explanations for a planner.

3 Planning Transformers

In this section, we provide details about our task setup, novel scene representation, simple but
effective architecture, and training strategy resulting in state-of-the-art performance. A PyTorch-style
pseudo-code snippet outlining PlanT and its training is provided in the supplementary material.

Task. We consider the task of point-to-point navigation in an urban setting where the goal is to drive
from a start to a goal location while reacting to other dynamic agents and following traffic rules.
We use Imitation Learning (IL) to train the driving agent. The goal of IL is to learn a policy π that
imitates the behavior of an expert π∗ (the expert implementation is described in Section 4). In our
setup, the policy is a mapping π : X −→ W from our novel object-level input representation X to the
future trajectory W of an expert driver. For following traffic rules, we assume access to the state of
the next traffic light relevant to the ego vehicle l ∈ {green, red}.

Tokenization. To encode the task-specific information required from the scene, we represent it using
a set of objects, with vehicles and segments of the route each being assigned an oriented bounding
box in BEV space (Fig. 1 right). Let Xt = Vt∪St, where Vt ∈ RVt×A and St ∈ RSt×A represent the
set of vehicles and the set of route segments at time-step t with A = 6 attributes each. Specifically, if
oi,t ∈ Xt represents a particular object, the attributes of oi,t include an object type-specific attribute
zi,t (described below), the position of the bounding box (xi,t, yi,t) relative to the ego vehicle, the
orientation φi,t ∈ [0, 2π], and the extent (wi,t, hi,t). Thus, each object oi,t can be described as a
vector oi,t = {zi,t, xi,t, yi,t, φi,t, wi,t, hi,t}, or concisely as {oi,t,a}6a=1.

For the vehicles Vt, we extract the attributes directly from the simulator in our main experiments
and use an off-the-shelf perception module based on CenterNet (62) (described in the supplementary
material) for experiments involving a full driving system. We consider only vehicles up to a distance
Dmax from the ego vehicle, and use oi,t,1 (i.e., zi,t) to represent the speed.

To obtain the route segments St, we first sample a dense set of Nt points Ut ∈ RNt×2 along
the route ahead of the ego vehicle at time-step t. We directly use the ground-truth points from
CARLA as Ut in our main experiments and predict them with a perception module for the PlanT
with perception experiments in Section 4.1. The points are subsampled using the Ramer-Douglas-
Peucker algorithm (63; 64) to select a subset Ût. One segment spans the area between two points
subsampled from the route, ui,t,ui+1,t ∈ Ût. Specifically, oi,t,1 (i.e., zi,t) denotes the ordering for
the current time-step t, starting from 0 for the segment closest to the ego vehicle. We set the segment
length oi,t,6 = ||ui,t − ui+1,t||2, and the width, oi,t,5, equal to the lane width. In addition, we clip
oi,t,6 <= Lmax,∀i, t; and always input a fixed number of segments Ns to our policy. More details
and visualizations of the route representation are provided in the supplementary material.
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Figure 2: Planning Transformer (PlanT). We represent a scene (bottom left) using a set of objects
containing the vehicles and route to follow (green arrows). We embed these via a linear projection
(bottom right) and process them with a transformer encoder. PlanT outputs future waypoints with
a GRU decoder. We use a self-supervised auxiliary task of predicting the future of other vehicles.
Further, extracting and visualizing the attention weights yields an explainable decision (top left).

Token Embeddings. Our model is illustrated in Fig. 2. As a first step, applying a transformer
backbone requires the generation of embeddings for each input token, for which we define a linear
projection ρ : R6 → RH (whereH is the desired hidden dimensionality). To obtain token embeddings
ei,t, we add the projected input tokens oi,t to a learnable object type embedding vector ev ∈ RH or
es ∈ RH , indicating to which type the token belongs (vehicle or route segment).

ei,t =

{
ρ(oi,t) + ev ∀ oi,t ∈ Vt,

ρ(oi,t) + es ∀ oi,t ∈ St.
(1)

Main Task: Waypoint Prediction. The main building block for the IL policy π is a standard
transformer encoder, τ : RVt+St+1×H → RVt+St+1×H , based on the BERT architecture (35).
Specifically, we define a learnable [CLS] token, c ∈ RH (based on (35; 37)) and stack this with
other token embeddings to obtain the transformer input [c, e1,t, ..., eVt+St,t]. The [CLS] token’s
processing through τ involves an attention-based aggregation of the features from all other tokens,
after which it is used for generating the waypoint predictions via an auto-regressive waypoint decoder,
γ : R(H+1) → RW×2. For a detailed description of the waypoint decoder architecture, see (18; 26).
We concatenate the binary traffic light flag, lt to the transformer output as the initial hidden state to
the decoder which makes use of GRUs (65) to predict the future trajectory Wt of the ego vehicle,
centered at the coordinate frame of the current time-step t. The trajectory is represented by a sequence
of 2D waypoints in BEV space, {ww = (xw, yw)}t+W

w=t+1 for W = 4 future time-steps:

Wt = γ(lt,ht[0]), where ht = τ([c, e1,t, ..., eVt+St,t]). (2)

Auxiliary Task: Vehicle Future Prediction. In addition to the primary waypoint prediction task, we
propose the auxiliary task of predicting the future attributes of other vehicles. This is aligned with
the overall driving goal in two ways. (1) The ability to reason about the future of other vehicles is
important in an urban environment as it heavily influences the ego vehicle’s own future. (2) Our main
task is to predict the ego vehicle’s future trajectory, which means the output feature of the transformer
needs to encode all the information necessary to predict the future. Supervising the outputs of all
vehicles on a similar task (i.e., predicting vehicle poses at a future time-step) exploits synergies
between the task of the ego vehicle and the other vehicles (66; 30). Specifically, using the output
embeddings {hi,t}Vt

i=1 corresponding to all vehicle tokens oi,t ∈ Vt, we predict class probabilities
{{pi,t+1,a}6a=1}

Vt
i=1 for the speed, position, orientation, and extent attributes from the next time-step

{oi,t+1,a}6a=1 using a linear layer per attribute type {ψa : RH → RZa}6a=1:

pi,t+1,a = Softmax (ψa(hi,t)), where a = 1, ..., 6. (3)
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We choose to discretize each attribute into Za bins to allow for uncertainty in the predictions since
the future is multi-modal. This is also better aligned with how humans drive without predicting exact
locations and velocities, where a rough estimate is sufficient to make a safe decision.

Loss Functions. Following recent driving models (9; 11; 30; 26), we leverage the L1 loss to the
ground truth future waypoints wgt as our main training objective. For the auxiliary task, we calculate
the cross-entropy loss LCE using a one-hot encoded representation pgt

i,t+1 of the ground truth future
vehicle attributes ogt

i,t+1. We train the model in a multi-task setting using a weighted combination of
these losses with a weighting factor λ:

L =
1

W

W∑
w=1

||ww −wgt
w ||1︸ ︷︷ ︸

Lwaypoints

+
λ

V

Vt∑
i=1

6∑
a=1

LCE

(
pi,t+1,a,p

gt
i,t+1,a

)
︸ ︷︷ ︸

Lvehicles

. (4)

4 Experiments

In this section, we describe our experimental setup, evaluate the driving performance of our approach,
analyze the explainability of its driving decisions, and finally discuss limitations.

Dataset and Benchmark. We use the expert, dataset and evaluation benchmark Longest 6 proposed
by (26). The expert policy is a rule-based algorithm with access to ground truth locations of the
vehicles as well as privileged information that is not available to PlanT such as their actions and
dynamics. Using this information, the expert determines the future position of all vehicles and
estimates intersections between its own future position and those of the other vehicles to prevent
most collisions. The dataset collected with this expert contains 228k frames. We use this as our
reference point denoted by 1×. For our analysis, we also generate additional data following (26)
but with different initializations of the traffic. The data quantities we use are always relative to the
original dataset (i.e., 2× contains double the data, 3× contains triple). We refer the reader to (26) for
a detailed description of the expert algorithm and dataset collection.

Metrics. We report the established metrics of the CARLA leaderboard (67): Route Completion
(RC), Infraction Score (IS), and Driving Score (DS), which is the weighted average of the RC and IS.
In addition, we show Collisions with Vehicles per kilometer (CV) and Inference Time (IT) for one
forward pass of the model, measured in milliseconds on a single RTX 3080 GPU.

Baselines. To highlight the advantages of learning-based planning, we include a rule-based planning
baseline that uses the same inputs as PlanT. It follows the same high-level algorithm as the expert but
estimates the future of other vehicles using a constant speed assumption since it does not have access
to their actions. AIM-BEV (18) is a recent privileged agent trained using IL. It uses a BEV semantic
map input with channels for the road, lane markings, vehicles, and pedestrians, and a GRU identical
to PlanT to predict a trajectory for the ego vehicle which is executed using lateral and longitudinal
PID controllers. Roach (12) is a Reinforcement Learning (RL) based agent with a similar input
representation as AIM-BEV that directly outputs driving actions. Roach and AIM-BEV are the closest
existing methods to PlanT. However, they use a different input field of view in their representation
leading to sub-optimal performance. We additionally build PlanCNN, a more competitive CNN-
based approach for planning with the same training data and input information as PlanT, which is
adapted from AIM-BEV to input a rasterized version of our object-level representation. We render
the oriented vehicle bounding boxes in one channel, represent the speed of each pixel in a second
channel, and render the oriented bounding boxes of the route in the third channel. We provide detailed
descriptions of the baselines in the supplementary material.

Implementation. Our analysis includes three BERT encoder variants taken from (68): MINI, SMALL,
and MEDIUM with 11.2M, 28.8M and 41.4M parameters respectively. For PlanCNN, we experiment
with two backbones: ResNet-18 and ResNet-34. We choose these architectures to maintain an IT
which enables real-time execution. We train the models from scratch on 4 RTX 2080Ti GPUs with
a total batch size of 128. Optimization is done with AdamW (69) for 47 epochs with an initial
learning rate of 10−4 which we decay by 0.1 after 45 epochs. Training takes approximately 3.2
hours for the PlanTMEDIUM variant on the 3× dataset. We set the weight decay to 0.1 and clip the
gradient norm at 1.0. For the auxiliary objective, we use quantization precisions Za of 128 bins for
the position, 4 bins for the speed and 32 bins for the orientation of the vehicles. We use Tin = 0 and
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Method Input DS ↑ RC ↑ IS ↑ CV ↓ IT ↓

Se
ns

or LAV* (30) Camera + LiDAR 32.74±1.45 70.36±3.14 0.51±0.02 0.84±0.11 -
TransFuser (26) Camera + LiDAR 47.30±5.72 93.38±1.20 0.50±0.60 2.44±0.64 101.24
PlanT w/ perception Camera + LiDAR 57.66±5.01 88.20±0.94 0.65±0.06 0.97±0.09 37.61

Pr
iv

ile
ge

d Rule-based Obj. + Route 38.00±1.64 29.09±2.12 0.84±0.00 0.64±0.07 -
AIM-BEV (18) Rast. Obj. + HD Map 45.06±1.68 78.31±1.12 0.55±0.01 1.67±0.16 18.14
Roach* (12) Rast. Obj. + HD Map 55.27±1.43 88.16±1.52 0.62±0.02 0.76±0.07 3.24
PlanCNN Rast. Obj. + Rast. Route 77.47±1.34 94.53±2.59 0.81±0.03 0.43±0.05 28.94
PlanT Obj. + Route 81.36±6.54 93.55±2.62 0.87±0.05 0.31±0.12 10.79

Expert (26) Obj. + Route + Actions 76.91±2.23 88.67±0.56 0.86±0.03 0.28±0.06 -

Table 1: Longest6 Results. We show the mean±std for 3 evaluations. PlanT reaches expert-level
performance and requires significantly less inference time than the baselines. *We evaluate the
author-provided pre-trained models for LAV and Roach.

δt = 1 for auxiliary supervision. The loss weight λ is set to 0.2. By default, we use Dmax =30m,
Ns = 2, and Lmax =10m. For our experiment with a full driving stack, we use a perception module
based on TransFuser (26) to obtain the object-level input representation for PlanT. Additional details
regarding this perception module as well as detailed ablation studies on the multi-task training and
input representation hyperparameters are provided in the supplementary material.

4.1 Obtaining Expert-Level Driving Performance

In the following, we discuss the key findings of our study which enable expert-level driving with
learned planners. We begin with a discussion of the privileged methods and analyze the sensor-based
methods in Section 4.1. Unless otherwise specified, the experiments consider the largest version of
our dataset (3×) and models (MEDIUM for PlanT, ResNet-34 for PlanCNN).

Input Representation. Table 1 compares the performance on the Longest6 benchmark. The rule-
based system acts cautiously and gets blocked often. Among the learning-based methods, both
PlanCNN and PlanT significantly outperform AIM-BEV (18) and Roach (12). We systematically
break down the factors leading to this in Table 2a by studying the following: (1) the representation
used for the road layout, (2) the horizontal field of view, (3) whether objects behind the ego vehicle
are part of the representation, and (4) whether the input representation incorporates speed.

Roach uses the same view to the sides as AIM-BEV but additionally includes 8m to the back
and multiple input frames to reason about speed. We see in Table 2a that training PlanCNN in a
configuration close to Roach (with the key differences being the removal of details from the map and
a 0m back view) results in a higher DS (59.97 vs. 55.27), demonstrating the importance of the route
representation for urban driving. While additional information might be important when moving
to more complex environments, our results suggest that the route is particularly important. Increasing
the side view from 19.2 to 30m improves PlanCNN from 59.97 to 70.72. Including vehicles to the
rear further boosts PlanCNN’s DS to 77.47 and improves PlanT’s DS from 72.86 to 81.36. These
results show that a full 360◦ field of view is helpful to handle certain situations encountered during
our evaluation (e.g. changing lanes). Finally, removing the vehicle speed input significantly reduces
the DS for both PlanCNN and PlanT (Table 2a), showing the importance of cues regarding motion.

Scaling. In Table 2b, we show the impact of scaling the dataset size and the model size for PlanT and
PlanCNN. The circle size indicates the inference time (IT). First, we observe that PlanT demonstrates
better data efficiency than PlanCNN, e.g., using the 1× data setting is sufficient to reach the same
performance as PlanCNN with 2×. Interestingly, scaling the data from 1× to 3× leads to expert-level
performance, showing the effectiveness of scaling. In fact, PlanTMEDIUM (81.36) outperforms the
expert (76.91) in some evaluation runs. We visualize one consistent failure mode of the expert that
leads to this discrepancy in Fig. 3a. We observe that the expert sometimes stops once it has already
entered an intersection if it anticipates a collision, which then leads to collisions or blocked traffic.
On the other hand, PlanT learns to wait further outside an intersection before entering which is
a smoother function than the discrete rule-based expert and subsequently avoids these infractions.
Importantly, in our final setting, PlanTMEDIUM is around 3× as fast as PlanCNN while being 4 points
better in terms of the DS and PlanTMINI is 5.3× as fast (IT=5.46ms) while reaching the same DS
as PlanCNN. This shows that PlanT is suitable for systems where fast inference time is a requirement.
We report results with multiple training seeds in the supplementary material.
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Method M
ap

Si
de

(m
)

B
ac

k
(m

)

Sp
ee

d

DS ↑
AIM-BEV (18) ✓ 19.2 0 - 45.06±1.68
Roach (12) ✓ 19.2 8 ✓ 55.27±1.43

PlanCNN

- 19.2 0 ✓ 59.97±4.47
- 30 0 ✓ 70.72±2.99
- 30 30 ✓ 77.47±1.34
- 30 30 - 69.13±1.43

PlanT
- 30 0 ✓ 72.86±5.56
- 30 30 ✓ 81.36±6.54
- 30 30 - 72.34±3.30

(a) Input Representation. DS on Longest6 (3 evalu-
ation runs) with different input properties.

1.0 1.5 2.0 2.5 3.0
Dataset size

50

55

60

65

70

75

80

85

DS

Expert
PlanCNN-18
PlanCNN-34

PlanT-mini
PlanT-small
PlanT-medium

(b) Scaling. Mean DS on Longest6 for different
dataset and model sizes. Circle size shows IT.

Table 2: We investigate the choices of the input representation (Table 2a) and architecture (Table 2b).
for learning-based planners. Including vehicles to the back of the ego, encoding vehicle speeds, and
scaling to large models/datasets is crucial for the performance of both PlanCNN and PlanT.

Loss. A detailed study of the training strategy for PlanT can be found in the supplementary material,
where we show that the auxiliary loss proposed in Eq. (4) is crucial to its performance. However,
since this is a self-supervised objective, it can be incorporated without additional annotation costs.
This is in line with recent findings on training transformers that show the effectiveness of supervising
multiple output tokens instead of just a single [CLS] token (70).

4.2 Combining an Off-the-Shelf Perception Module with PlanT

Next, we discuss the results of the sensor-based methods in Table 1. We compare the proposed
approach to LAV (30) and TransFuser (26), which are recent state-of-the-art sensor-based methods.
Our perception module is based on TransFuser, enabling a fair comparison to this approach. Therefore,
PlanT with perception only detects vehicles to its front and has a limited view to the sides (16m
instead of 30m). Our approach outperforms TransFuser (26) by 10.36 points and LAV by 24.92
points. While TransFuser uses an ensemble and manually designed heuristics to creep forward if
stuck (26), these are unnecessary for PlanT with perception. Since we do not use an ensemble, we
observe a 2.7× speedup (101.24ms vs. 37.61ms) in IT compared to TransFuser. We refer to the
supplementary material for a more detailed analysis.

4.3 Explainability: Identification of Most Relevant Objects

Finally, we investigate the explainability of PlanT and PlanCNN by analyzing the objects in the scene
that are relevant and crucial for the agent’s decision. In particular, we measure the relevance of an
object in terms of the learned attention for PlanT and by considering the impact that the removal
of each object has on the output predictions for PlanCNN. To quantify the ability to reason about
the most relevant objects, we propose a novel evaluation scheme together with the Relative Filtered
Driving Score (RFDS). For the rule-based expert algorithm, collision avoidance depends on a single
vehicle which it identifies as the reason for braking. To measure the RFDS of a learned planner, we
run one forward pass of the planner (without executing the actions) to obtain a scalar relevance score
for each vehicle in the scene. We then execute the expert algorithm while restricting its observations
to the (single) vehicle with the highest relevance score. The RFDS is defined as the relative DS of this
restricted version of the expert compared to the default version which checks for collisions against all
vehicles. We describe the extraction of the relevance score for PlanT and PlanCNN in the following.
Our protocol leads to a fair comparison of different agents as the RFDS does not depend on the ability
to drive itself but only on the obtained ranking of object relevance.

Baselines. As a naïve baseline, we consider the inverse distance to the ego vehicle as a vehicle’s
relevance score, such that the expert only sees the closest vehicle. For PlanT, we extract the relevance
score by adding the attention weights of all layers and heads for the [CLS] token. This only requires
a single forward pass of PlanT. Since PlanCNN does not use attention, we choose a masking method
to find the most salient region in the image, using the same principle as (56; 55; 54). We remove one
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(a) PlanT vs. Expert. PlanT waits
further outside the intersection than
the expert to avoid a collision.

(b) RFDS. Vehicles with the highest relevance score are marked with a
red bounding rectangle. We show examples for successful matching of
relevance score and intuition (green frames) and failures (red frames).

Figure 3: We contrast a failure case of the expert to PlanT (Fig. 3a) and show the quality of the
relevance scores (Fig. 3b). The ego vehicle is marked with a yellow triangle and vehicles that either
lead to collisions or are intuitively the most relevant in the scene are marked with a blue box.
object at a time from the input image and compute the L1 distance to the predicted waypoints for the
full image. The objects are then ranked based on how much their absence affects the L1 distance.

Method RFDS ↑
Inverse Distance 29.13±0.54
PlanCNN + Masking 82.83±6.79
PlanT + Attention 96.82±2.12

Table 3: RFDS. Relative score of
the expert when only observing
the most relevant vehicle accord-
ing to the respective planner.

Results. We provide results for the reasoning about relevant
objects in Table 3. Both planners significantly outperform the
distance-based baseline, with PlanT obtaining a mean RFDS
of 96.82 compared to 82.83 for PlanCNN. We show qualitative
examples in Figure 3b where we highlight the vehicle with the
highest relevance score using a red bounding rectangle. Both
planners correctly identify the most important object in simple
scenarios. However, PlanT is also able to correctly identify the
most important object in complex scenes. When merging into a
lane (examples 1 & 2 from the left) it correctly looks at the mov-
ing vehicles coming from the rear to avoid collisions. Example
3 shows advanced reasoning about dynamics. The two vehicles closer to the ego vehicle are moving
away at a high speed and are therefore not as relevant. PlanT already pays attention to the more distant
vehicle behind them as this is the one that it would collide with if it does not brake. One of the failures
of PlanT we observe is that it sometimes allocates the highest attention to a very close vehicle behind
itself (example 4) and misses the relevant object. PlanCNN has more prominent errors when there are
a large number of vehicles in the scene or when merging lanes (examples 2 & 3). To better assess the
driving performance and relevance scores we provide additional results in the supplementary video.

5 Conclusion
In this work, we take a step towards efficient, high-performance, explainable planning for autonomous
driving with a novel object-level representation and transformer-based architecture called PlanT.
Our experiments highlight the importance of correctly encoding the ego vehicle’s route for planning
and that incorporating a 360◦ field of view, information about vehicle speeds, and scaling up both
the architecture and dataset size of a learned planner are essential to achieve state-of-the-art results.
We show that even with a noisy and incomplete input obtained via a perception module, PlanT
significantly outperforms state-of-the-art end-to-end sensor-based models. Finally, we show that
PlanT can reliably identify the most relevant object in the scene via a new evaluation protocol that
focuses on explainability.

Our study has several limitations. Firstly, since planning is a challenging task in itself, we restrict the
scope of the main experiments to exclude perception noise. Second, our experiment with perception
(Section 4.1) uses a single off-the-shelf module that was not specifically optimized for PlanT, leading
to sub-optimal performance. A thorough analysis of the level of robustness to different perception
systems is an important research direction which is beyond the scope of this work. Studying this
issue and integrating PlanT with a state-of-the-art perception system for object detection and tracking
that prioritizes the key aspects of planning identified in this paper (e.g. detecting vehicles behind the
ego agent, estimating speed) is a promising next step.
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