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Abstract

Perception is a critical component of high-integrity applications of robotics and
autonomous systems, such as self-driving cars. In these applications, failure of
perception systems may put human life at risk, and a broad adoption of these
technologies requires the development of methodologies to guarantee and mon-
itor safe operation. Despite the paramount importance of perception, currently
there is no formal approach for system-level perception monitoring. This paper
investigates runtime monitoring of perception systems. We formalize the problem
of runtime fault detection and identification in perception systems and present a
framework to model diagnostic information using a diagnostic graph. We then
provide a set of deterministic, probabilistic, and learning-based algorithms that
use diagnostic graphs to perform fault detection and identification. Moreover, we
investigate fundamental limits and provide deterministic and probabilistic guar-
antees on the fault detection and identification results. We conclude the paper
with an experimental evaluation, which recreates several realistic failure modes in
the LGSVL open-source autonomous driving simulator, and applies the proposed
system monitors to a state-of-the-art autonomous driving software stack (Baidu’s
Apollo Auto). The results show that the proposed system monitors outperform
baselines, have the potential of preventing accidents in realistic autonomous driv-
ing scenarios, and incur a negligible computational overhead.

1 Introduction

The number of Autonomous Vehicles (AVs) on our roads is increasing rapidly, with major players
in the space already offering autonomous rides to the public [1]. Self-driving cars promise a deep
transformation of personal mobility and have the potential to improve safety, efficiency (e.g., com-
mute time, fuel), and induce a paradigm shift in how entire cities are designed [2]. One key factor
that drives the adoption of such technology is the capability of ensuring and monitoring safe op-
eration. In a recent survey [3], the American Automobile Association (AAA) reports that vehicles
with autonomous driving features consistently failed to avoid crashes with other cars or bicycles.
Moreover, an analysis by Business Insider [4] found that the number of accidents involving AVs
surged in 2021. This is a clear sign that the industry needs a sound methodology, embedded in the
design process, to guarantee safety and build public trust.

Safe operation requires AVs to correctly understand their surroundings, in order to avoid unsafe
behaviors. In particular, AVs rely on onboard perception systems to provide situation awareness
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and inform the onboard decision-making and control systems. Modern perception systems use both
data-driven and classical methods. While classical methods are well-rooted in signal processing
and estimation theory and have been extensively studied in robotics and computer vision, they may
still have unexpected failure modes in practice, e.g., local convergence in the Iterative Closest Point
for 3D object pose estimation [5] or premature termination of robust estimation techniques such as
RANSAC [6]. The use of data-driven methods further exacerbates the problem of ensuring correct-
ness of the perception outputs, since current neural network architectures are still prone to creating
unexpected and often unpredictable failure modes [7]. Due to the complexity of monitoring the
correct operation of the perception system, the self-driving car industry heavily relies on simulation
and testing to provide evidence of safety. Although there is an increasing interest in the area of
safety certification and runtime monitoring, the literature lacks a system-level framework to orga-
nize and reason over the diagnostic information available at runtime for the purpose of detecting
and identifying potential perception-system failures. Reliable runtime monitoring would enable the
vehicle to have a better understanding of the conditions it operates in, and would give it enough
notice to take adequate actions to preserve safety (e.g., switch to fail-safe mode or hand over the
control to a human operator) in case of severe failures. In this paper, we use the term “failure” (or
“fault”) in a general sense, including failures of the intended functionality [8, 9]. For instance, a
neural network can execute correctly (e.g., without errors in the implementation or in the hardware
running the network) but can still fail to produce a correct prediction for out-of-distribution inputs.
In this context, fault detection is the problem of detecting the presence of a fault in the system, while
fault identification is the problem of inferring which components of the system are faulty. The latter
is particularly important since (i) not every fault has the same severity, hence understanding which
component is failing may lead to different responses, (ii) a designer can use fault statistics to de-
cide to focus research and development efforts on certain components, and (iii) a regulator can use
information about specific faults to trace the steps or determine responsibilities after an accident.

Most of the existing literature (which we review more extensively in Section 2) has focused on
detecting failures of specific modules or specific algorithms, like localization [10, 11], semantic seg-
mentation [12], or obstacle detection [13]. These methodologies often use a white-box approach
(the monitor knows how the monitored algorithm works to some extent), and are sometimes com-
putationally expensive to run [12].

Contribution. This paper addresses this gap and provides methodologies for runtime monitoring
(in particular, fault detection and identification) of complex perception systems using a system-level
approach. Our first contribution is to formalize the problem (Section 3) and to present a proba-
bilistic and deterministic framework (Section 4.1) to organize heterogeneous diagnostic tests of a
perception system into a graphical model, the diagnostic graph. Our framework adopts a black-
box approach, in that it remains agnostic to the inner workings of the perception algorithms, and
only focuses on collecting results from diagnostic tests that check the validity of their outputs. Our
second contribution is a set of algorithms (Section 4.2) that use diagnostic graphs to perform fault
detection and identification. Our third contribution (Section 5) is to investigate fundamental limits
and provide deterministic and probabilistic guarantees on the fault detection and identification re-
sults. This allows us to establish formal guarantees on the maximum number of faults that can be
uniquely identified in a given perception system, leading to the notion of diagnosability. Finally, we
show that our framework is effective in detecting and identifying faults in a real-world perception
pipeline for obstacle detection (Section 6). In particular, we perform experiments using a realistic
open-source autonomous driving simulator (the LGSVL Simulator [14]) and a state-of-the-art au-
tonomous driving software stack (Baidu’s Apollo Auto [15]). The open-source version of our code
can be found at https://github.com/MIT-SPARK/PerceptionMonitoring.

2 Related Work

State of Practice. The automotive industry currently uses four classes of methods to claim the
safety of an AV [16], namely: miles driven, simulation, scenario-based testing, and disengagement.
The miles driven approach is based on the statistical argument that if the probability of crashes
per mile is lower for autonomous vehicles than for humans, then AVs are safer; however, such
an analysis would require an impractical amount (i.e., billions) of miles to produce statistically-
significant results [17, 16]. The same approach can be made more scalable through simulation or
scenario-based testing, however creating a life-like simulator is an open problem and enumerating
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all possible corner cases is a daunting task. Finally, the number of disengagement, defined as the
number of times a safety driver has to intervene to prevent a hazardous situation, does not give
enough evidence of the system safety.

An established methodology to ensure safety is to develop a standard that every manufacturer has to
comply with. In the automotive industry, the standard ISO 26262 [18] is a risk-based safety standard
that applies to electronic systems in production vehicles. It mostly focuses on electronic systems
rather than algorithmic aspects, hence it does not readily apply to fully autonomous vehicles [19].
The recent ISO 21448 [8], which extends the scope of ISO 26262 to cover AVs functionality, pri-
marily considers mitigating risks due to unexpected operating conditions, and provides high-level
considerations on best-practice for the development life-cycle. Koopman and Wagner [20] proposed
a standard called UL 4600 [21] specifically designed for high-level autonomy (levels 4 and 5).
This standard focuses on ensuring that a comprehensive safety case is created, but it is technology-
agnostic, meaning that it requires evidence of system safety without prescribing the use of any
specific approach or technology to achieve it.

State of the Art. Related work tries to tackle the problem of safety assurance using different strate-
gies. Formal methods [22–30] have been used as a tool to study safety of autonomous systems.
These approaches have been successful for decision systems, such as obstacle avoidance [31], road
rule compliance [32], high-level decision-making [33], and control [34, 35], where the specifications
are usually model-based and have well-defined semantics [36]. However, they are challenging to
apply to perception systems, due to the complexity of modeling the physical environment [37, 38].
Current approaches [39–41] consider high-level abstractions of perception [16, 42, 43] or rely on
simulation to assert the true state of the world [39, 40, 44]. Other approaches focus on adversarial
attacks for neural-network-based object detection [45–47]; these methods derive bounds on the mag-
nitude of the perturbation that induces incorrect detection result, and are typically used off-line [48].

Previous works on runtime fault detection and identification focuses on components of the per-
ception system [49]. Miller et al. [13] propose a framework for quantifying false negatives in ob-
ject detection. For semantic segmentation, Besnier et al. [12] propose an out-of-distribution de-
tection mechanism, while Rahman et al. [50] propose a failure detection framework to identify
pixel-level misclassifications. Lambert and Hays [51] propose cross-modality fusion algorithm to
detect changes in high-definition map. Liu and Park [52] propose a methodology to analyze the con-
sistency between camera image data and LiDAR data to detect perception errors. Sharma et al. [53]
propose a framework for equipping any trained deep network with a task-relevant epistemic un-
certainty estimate. Another line of works leverages spatio-temporal information to detect failures.
You et al. [54] use spatio-temporal information from motion prediction to verify 3D object detection
results. Balakrishnan et al. [42, 55] propose the Timed Quality Temporal Logic (TQTL) to reason
about desiderable spatio-temporal properties of a perception algorithm. Kang et al. [56] use model
assertions, which similarly place a logical constraint on the output of a module to detect anomalies.

Fault identification and anomaly detection have been extensively studied in other areas of engineer-
ing. Bayesian networks, Hidden Markov Models [57, 58], and deep learning [59] have been used to
enable fault identification, but mainly in industrial systems instrumented to detect component fail-
ures. Graph-neural networks have been used for anomaly detection (see [60] for a comprehensive
survey). In this context, “anomaly detection aims to identify the unusual patterns that deviate from
the majorities in a dataset” [60]. De Kleer and Williams [61] assumes the availability of a model
that predicts the behavior of the system and propose a methodology to detect failures by comparing
observations with a predicted output. Preparata, Metze, and Chien [62] study the problem of fault
diagnosis in multi-processor systems, introducing the concept of diagnosability; their work is then
extended by subsequent works [63–65]. Sampath et al. [66] propose the concept of diagnosability
for discrete-event systems [67, 68]. The system is modeled as a finite-state machine, and is said to
be diagnosable if and only if a fault can be detected after a finite number of events.

The proposed work extends the literature in several directions. First, we take a black-box approach
and remain agnostic to the inner workings of the perception system we aim to monitor (relaxing
assumptions in related work [61]). Second, we develop a fault identification framework that reasons
over the diagnostic information of heterogeneous and potentially asynchronous perception modules
(going beyond the homogeneous, synchronous, and deterministic framework in [62] or discrete-
event systems [67, 68]).
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3 Problem Statement: Fault Detection and Identification

3.1 Perception Systems

A perception system S comprises a finite set of interconnected modules M = {m1,m2, . . .m|M|};
for instance, the perception system of a self-driving car may include modules for lane detection,
camera-based object detection, LiDAR-based motion estimation, ego-vehicle localization, etc. Each
module m ∈ M produces one or more outputs. For instance, the lane detection module may produce
an estimate of the 3D location of the lane boundaries, while the pedestrian detection module may
produce an estimate of the pose and velocity of pedestrians in the surroundings. Some of these
outputs provide inputs for other perception modules, while other are the outputs of the perception
system and feed into other systems (e.g., to planning and control). The sets of modules’ outputs are
disjoint (i.e., each output is produced by a single module), and the set of all outputs is denoted by
O. We model the perception system as a graph of modules and outputs.

Definition 1 (Perception System). A perception system S is a directed graph S = (M ∪ O, E),
where the set of nodes M∪O describes modules and outputs in the system, while the set of edges E
describes which module produces or consumes a certain output. In particular, an edge (mi, oj) ∈ E
with mi ∈ M and oj ∈ O models the fact that module mi produces output oj . Similarly, and edge
(oj ,mi) ∈ E with oj ∈ O and mi ∈ M models the fact that module mi uses output oj .

We treat each module as a black-box and remain agnostic to the algorithms they implement. This
allows our framework to generalize complex perception systems, possibly including a combination
of classical and data-driven methods. For some examples of systems, see Appendix C.

3.2 Fault Detection and Fault Identification

Each module in S might fail at some point, jeopardizing the system performance or even its safety.
In particular, each module m ∈ M is assumed to have a set of failure modes. While the list of
failures can include any software and hardware failures, in this work we particularly focus on failures
of the intended functionality. For example, a neural-network-based camera-based object detection
module might experience the failure mode “out-of-distribution sample” when it processes an input
image, which indicates that while the module’s code executed successfully, the resulting detection
is expected to be incorrect. Similarly, each output o ∈ O has an associated set of failure modes. For
instance, the output of the camera-based object detector might experience a “mis-detection” failure
mode if it fails to detect an object, or a “mis-classification” failure mode if the object is detected but
misclassified. A module’s failure mode typically causes a failure in one of its outputs.

Definition 2 (Failure Modes). At each time instant, the i-th failure mode fi ∈
{INACTIVE,ACTIVE} ∼= {0, 1} is either ACTIVE (also 1) if such failure is occurring, or IN-
ACTIVE (also 0). If we stack the status (ACTIVE/INACTIVE) of all failure modes into a single
binary vector, i.e., the fault state vector f ∈ {0, 1}Nf (where Nf is the number of failure modes),
then f is all zeros if there are no faults, or has entries equal to ones for the active failure modes.

The goal of this work is then to address the following problems: (i) Fault Detection, namely, de-
ciding whether the system is working in nominal conditions or whether a fault has occurred (i.e.,
infer if there is at least an active failure mode in f ); (ii) Fault Identification, namely, identifying
the specific failure mode the system is experiencing (i.e., infer which failure mode is active in f ).

Fault detection is the easiest between the two problems, as it only requires specifying the presence of
at least a fault, without specifying which modules or outputs are experiencing it. Fault identification
goes one step further by explicitly indicating the set of active failure modes. Note that solving fault
identification implies a solution for fault detection (i.e., whenever we declare one or more modules
to be faulty, we essentially also detected there is a failure), hence in the rest of this paper we focus
on the design of a monitoring system for fault identification.

Remark 3 (Modules vs. Outputs). Our model treats modules and outputs as separate nodes. This is
convenient for two reasons. First, fault identification at the modules and outputs may serve different
purposes: output fault identification is more useful at runtime to identify unreliable information
and prevent accidents; module fault identification is more informative for designers and regulators.
Second, in practical applications we can rarely measure if a module is failing. On the other hand,
we can directly measure the outputs of the modules and develop diagnostic tests to check if an output
is plausible and consistent with other outputs in the system.
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4 Modeling Fault Identification with Diagnostic Graphs

In the previous section we have discussed how the goal is to identify the set of active failure modes.
Here we introduce the concept of diagnostic graphs (Section 4.1) to study fault identification: di-
agnostic graph will allow developing fault identification algorithms (Section 4.2) and understanding
fundamental limits (Section 5).

4.1 Diagnostic Tests and Diagnostic Graphs

The system S is equipped with a set of diagnostic tests that can (possibly unreliably) provide di-
agnostic information about the state of a subset of failure modes. For instance, we can compare
the outputs of different modules to ensure they are consistent (e.g., compare the obstacles detected
by the LiDAR-based obstacle detection against the obstacles detected by the camera-based obsta-
cle detection), or inspect that the output a certain module respects certain requirements (e.g., the
vision-based ego-motion module is tracking a sufficient number of features). Each diagnostic test is
a function t : S → {PASS, FAIL}, where S ⊆ {1, . . . , Nf} is a subset of the failure modes that
the test is checking, called the scope of the test, and the test returns a value z ∈ {PASS, FAIL},
called the outcome of the test.

In this paper we allow for both deterministic and probabilistic diagnostic tests. Deterministic diag-
nostic tests encode the set of possible test outcomes by establishing a deterministic relation between
failure modes in the test’s scope and the test outcome. This relation can also capture unreliable
outcomes, for example allowing multiple test outcomes for a given set of active failure modes (see
examples in Fig. 3 in the appendix). Deterministic tests can leverage formal methods tools or certi-
fiable perception algorithms [69–71]. However, most practical tests are likely to incorrectly detect
faults (i.e., produce false positive) or fail to detect faults (i.e., produce false negatives) with some
probability. For this reason, we also allow for an arbitrary probabilistic relationship between test
outcomes and failure modes in the test scope. For examples of deterministic and probabilistic diag-
nostic tests, see Appendix B. We remark that a single test does not suffice for fault identification.
The collection of the outcomes of multiple diagnostic tests is called a syndrome.

To enable fault detection and identification we define the concept of diagnostic graph, a structure
defined over a perception system that has the goal of describing the diagnostic tests (as well as more
general relations among failure modes) and their scope.

Definition 4 (Diagnostic Graph). A diagnostic graph is a bipartite graph D = (V,R, E) where the
nodes are split into variable nodes V , corresponding to the failure modes in the system, and relation
nodes R, where each relation φk(f) ∈ R, with k ∈ {1, . . . , |R|}, is a function over a subset of
failure modes f . Then an edge in E exists between a failure mode fi ∈ V and a relation φk ∈ R, if
fi is in the scope of the relation φk (i.e., if the variable fi appears in the function φk).

Relations capture constraints among the variables induced by the test outcomes or from prior knowl-
edge we might have about the failure modes. The relations can be test-driven relations if they rep-
resent diagnostic tests behaviors or a priori relations if they represent a priori knowledge about the
system (e.g., input/output relationships between modules or mutual exclusion constraints between
failure modes). Both kind of relations can be deterministic or probabilistic. The diagnostic graph
can also model temporal evolution of the failure modes by simply stacking multiple regular diag-
nostic graphs (one for each time step considered), preserving the failure modes, relations and edges
of each sub-graph. We call these graphs, temporal diagnostic graphs.

Remark 5 (Temporal Diagnostic Tests). Temporal diagnostic tests are used to monitor the evolu-
tion of the system over time (spatio-temporal constraints). For example the Timed Quality Temporal
Logic in [43] can be implemented with a temporal diagnostic test that spans multiple D(t)’s. Con-
sider the following example (as in [43]): “At every time step, for all the objects in the frame, if
the object class is cyclist with probability more than 0.7, then in the next 5 frames the same object
should still be classified as a cyclist with probability more than 0.6”. This can be modeled as a
diagnostic test that spans 5 diagnostic graphs and that returns FAIL if the predicate is false.

4.2 Algorithms for Detection and Identification

In this section we briefly describe how to perform fault identification over a diagnostic graph. In
the deterministic case, our inference algorithm looks for the smallest set of active failure modes that
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explains a given syndrome z, namely, the set of diagnostic test outcomes.

f⋆ = argmin
f∈{0,1}Nf

‖f‖1

subject to test-driven relations given the syndrome z,

a priori relations,

(D-FI)

Conversely, in the case of probabilistic relations, the fault identification problem reduces to the
maximum a posteriori (MAP) inference. In MAP inference, given a syndrome z, we look for the
most likely variables f⋆ that maximize the posterior distribution µ defined by the diagnostic graph:

f⋆ = argmax
f∈{0,1}Nf

µ(f | z) (P-FI)

Deterministic fault identification in Eq. (D-FI) can be solved using mixed-integer programming
solvers like Google OR-Tools [72]. The probabilistic fault identification instead can be solved using
probabilistic graphical models such as the factor graphs [73] or using learning methods such as factor
graph neural networks [74] or graph neural network (GNNs) [75]. It is straightforward to convert a
diagnostic graph into a factor graph, which allows us to use the computational tools in the literature
(both exact and approximate) to solve Eq. (P-FI) . In our experiments we use belief propagation
(Sec. 3 in [76]) to solve the MAP inference, which finds the optimal solution for tree-structured
factor graphs, and is known to empirically return good approximations for the MAP estimate in
general factor graphs. In our experiments we also use GNNs to solve Eq. (P-FI). In particular we
use GCN [77], GCNII [78], GIN [79] and GraphSAGE [80]. To do so, we convert the diagnostic
graph into an undirected graph (details in Appendix D.3).

While in the deterministic case we know the expression of the relations, in the probabilistic case the
probabilistic tests might depend on unknown parameters. There are several paradigms to learn these
parameters in factor graphs. In our experiments, we use a method called maximum margin learning
(Sec. 19.7 in [81]). Instead, in order to train the GNNs, we use a supervised learning approach. In
particular, we use a softmax classification function and negative log-likelihood training loss, which
is available in standard libraries, such as PyTorch [82].

5 Fundamental Limits

Given a diagnostic graph it is natural to ask, can we guarantee that our fault identification algo-
rithm will be able to correctly identify all active faults? Under which conditions? We answer these
questions in this section, where we introduce the concept of diagnosability.

5.1 Deterministic Diagnosability

We start with the definition of deterministic diagnosability.

Definition 6 (κ-diagnosability [62, 83]). A diagnostic graph D is κ-diagnosable if, given any syn-
drome, all active failure modes can be correctly identified, provided that the number of active failure
modes in the system does not exceed κ.

The concept of κ-diagnosability helps measure if the system has enough redundancy and if the
diagnostic tests are able to capture it for the purpose of fault identification. It basically requires
that each syndrome unequivocally encodes the configurations of failure modes that generated it. In
the general case, to compute the diagnosability value is necessary to check every subset of failure
modes of cardinality up to κ (and their syndromes). However, under technical assumptions, one can
directly compute the diagnosability by only looking at the topology of the diagnostic graph [84, 63].

Let us now move our attention to temporal diagnostic graphs. Denote with κ(D) the diagnosability
of D. Then the following result characterizes the diagnosability of temporal diagnostic graphs.

Theorem 7 (Diagnosability in Temporal Diagnostic Graphs). Let D[K] be a temporal diagnostic

graph built by stacking a set of K regular diagnostic graphs D(1), . . . ,D(K). Then κ(D[K]) ≥
mini∈{1,...,K} κ(D

(i)).

Proof. Proof in Appendix A.1.
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As an immediate result of Theorem 7, we have that the diagnosability of a temporal diagnostic graph
obtained by stacking “identical” regular diagnostic graph over time is monotonically increasing,
showing the benefits of temporal diagnostic graphs.

5.2 Probabilistic Diagnosability

The notion of κ-diagnosability introduced in the previous section imposes strong conditions on D.
When the tests are probabilistic, such a condition becomes too stringent: intuitively, κ-diagnosability
deals with the worst case over all possible test outcomes, which becomes too conservative when
every outcome is possible (with some probability). For this reason, we extend the definition of
diagnosability to deal with the case where the diagnostic graph includes probabilistic tests.

Towards defining a probabilistic notion of diagnosability, we introduce the Hamming distance

h(f ,f ′) =
∑Nf

i=1 1[fi 6= f ′
i ] between two binary vectors f and f ′ where 1 is the indicator function.

Assuming that f is the binary vector describing the active failures in the system, and that f ′ is an es-
timated vector of the fault states, the Hamming distance simply counts the number of mis-identified
faults. We are now ready to introduce the following probabilistic definition of diagnosability.

Definition 8 ((Probably Approximately Correct) PAC-Diagnosability). Consider a fault identifi-
cation algorithm ΨD applied to a diagnostic graph D. The diagnostic graph D is (γ, p)-PAC-
diagnosable under ΨD, if, for some 1 ≤ γ ≤ Nf

Pr
(z,f)∼F

[h (ΨD(z),f) ≤ γ] ≥ p

where F is the joint distribution of potential failures and test outcomes.

This definition simply says that a given fault identification algorithm applied to the diagnostic graph
D is (γ, p)-PAC-diagnosable if it expected to make less than γ mistakes with probability at least
p. Since the outcome of the tests is a random variable, so is the Hamming distance h(ΨD(z),f).
Therefore, we can define its expected value as hF (ΨD) = E(z,f)∼F [h(ΨD(z),f)] . This quan-
tity is the number of mistakes that the fault identification algorithm ΨD is expected to make. Let
us suppose we have a dataset W of i.i.d. samples of the underlying faults distribution F . Let

ĥW(ΨD) = 1/|W|
∑

(z,f)∈W h(ΨD(z),f) be the empirical number of mistakes the fault identifica-

tion algorithm ΨD makes on W . For instance, if we are given a dataset W describing the system
execution, with the corresponding ground truth failure modes states f , we can test our algorithm ΨD

and calculate the empirical number of mistakes ĥW(ΨD) it makes. Then, we can use the following
result to bound the expected number of mistakes our algorithm will make over all future scenarios.

Theorem 9 (Fault Identification Error Bound). Consider a dataset W of i.i.d. samples of the un-
derlying faults distribution F , and a fault identification algorithm ΨD over D. Then, for any δ > 0,
the following inequality holds with probability at least 1− δ:

hF (ΨD) ≤ ĥW(ΨD) +Nf

√

log(2/δ)

2|W|
.

Proof. Proof in Appendix A.2.

This result allows us to give performances guarantees by estimating the number of mistakes the fault
identification algorithm is expected to make on the provided dataset.

6 Experimental Evaluation

This section shows that diagnostic graphs are an effective model to detect and identify failures in
complex perception systems. In particular, we show that the proposed monitors (i) outperform
baselines in terms of fault identification accuracy, (ii) allow detecting failures and provide enough
notice to prevent accidents in realistic test scenarios, and (iii) add minimal overhead. In the following
we mainly focus on temporal diagnostic graph, additional results are reported in Appendix E.

We test our runtime monitors in several scenarios, specifically designed to stress-test the perception
system (for more details see Appendix F). The scenarios are simulated using the LGSVL Simula-
tor [14], an open-source autonomous driving simulator. We apply our monitors to a state-of-the-art
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Algorithm
Fault Identification Accuracy Fault Detection Accuracy Timing

All Outputs Modules All Outputs Modules Milliseconds

Factor Graph 93.60 96.88 83.74 81.60 91.41 71.78 2.53

Deterministic 89.26 92.33 80.06 93.25 93.25 93.25 3.68

Baseline (w/rel. scores) 90.18 92.69 82.67 85.28 85.28 85.28 0.27

Baseline 83.90 87.73 72.39 85.28 85.28 85.28 0.26

GCN 91.79 96.06 78.99 80.06 90.18 69.94 0.68

GCNII 92.60 96.01 82.36 78.83 85.89 71.78 24.56

GIN 93.21 96.47 83.44 83.13 92.64 73.62 0.50

GraphSage 92.71 96.42 81.60 79.14 89.57 68.71 0.85

Table 1: Results of the proposed algorithms for detection and identification on temporal diagnostic
graphs, averaged over all scenarios. Best values are highlighted in green, second-best in yellow.

perception system. In our experiments we focus on the object-detection pipeline of Baidu’s Apollo
Auto [15] version 7 [85]. Baidu’s Apollo is an open-source, sate-of-the-art, autonomous driving
stack that includes all the relevant functionalities for level 4 autonomous driving. For the details of
the diagnostic graph and diagnostic tests used in our experiments, see Appendix D.

Baselines. We compared the proposed monitors against two simple baselines. In the first baseline
(label: “Baseline”), whenever a diagnostic test returns FAIL, all failure modes in its scope are con-
sidered active. In the second baseline (label: “Baseline (w/rel. scores)”), modules are ordered by
a reliability score defined by the system designer. In our experiments we considered the radar to
be more reliable than the sensor fusion, which is more reliable than the LiDAR, which in turn is
more reliable than the camera. When a diagnostic test fails, this second baseline labels all the failure
modes in the test scope associated to the least reliable module (and its outputs) as ACTIVE.

6.1 Fault Detection and Identification Results

We used three metrics to evaluate the performance for both the fault detection and identification
problems: (i) accuracy, the percentage of correctly detected (resp. identified) failures over the total
number of samples; (ii) precision, the percentage of correct detections (resp. identifications) over the
number of failures reported (a monitor achieves high precision if it has a low rate of false alarms);
and, (iii) recall, the percentage of correct detections (resp. identifications) over the number of fail-
ures the system experienced (a monitor has high recall if it is able to catch a large fraction of failures
occurring in the perception system).

Fault Identification Results. Table 1 reports the fault identification accuracy of all compared
techniques, averaged across all test scenarios (described in Appendix F). The overall accuracy results
suggest that factor-graph-based probabilistic fault identification outperforms all other algorithms
and achieves 96.88% accuracy with temporal diagnostic graphs. GIN architectures achieve the
second-best performance. Looking at the results we notice that output fault identification has higher
accuracy than module fault identification; this is expected, since most of our tests directly involve
outputs, while we can only indirectly infer module failures via the a priori relations. Note that
the two statistics (output fault identification vs. module fault identification) are typically used for
different purposes, as discussed in Remark 3. Fig. 1 shows precision-recall trade-offs when using
temporal diagnostic graphs. Also in this case, the factor graph achieves the best performance overall,
with fault identification precision and recall being better in the output space. The figure shows that
the baseline makes conservative decisions (high recall and low precision).
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Figure 1: Precision/Recall for fault detection and identification on temporal diagnostic graphs.
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Fault Detection Results. Recall that fault detection is the problem of deciding whether the system
is working in normal conditions or whether at least a fault has occurred. Table 1 and Fig. 1 show
detection accuracy, precision, and recall. Table 1 shows that the deterministic approach and the
baselines do particularly well for fault detection: they both detect failure as soon as a single test
fails, which makes their accuracy high. On the other hand, the factor graph approach may prefer
explaining a failed test as a false alarm. Therefore, while factor graphs would be the go-to approach
for fault identification, a simpler baseline approach suffices for fault detection.

Timing. All algorithms perform inference in less than 4ms, except for GCNII which averages at
around 24ms. This is likely due to the fact that GCNII uses a deep architecture, which incurs an
increased computational cost. The best performing algorithm, i.e., the factor graph, can be executed
in real-time as its runtime averages around 2.5ms for temporal graphs. The fastest algorithm is the
baseline, with a runtime below 0.3ms for temporal graphs.

Diagnosability. Let us now discuss the deterministic diagnosability of the perception system consid-
ered in our experiments (the diagnostic graph is described in appendix Appendix D.2). If the tests are
reliable (never fail to detect a failure) the diagnostic graph used in our experiments is 5-diagnosable.
This means that if there are up to 5 active failure modes the deterministic fault identification will
be able to correctly identify them. If we instead assume the tests are unreliable, for example we
assume tests might fail when all the failure modes in their scope are active, the diagnostic graph is
3-diagnosable. It’s worth noticing that this does not mean that if there are more than 3 (or 5) active
failure modes the fault identification will surely fail, but rather that we do not have the guarantee that
it will not make any mistake. Fig. 2 show the PAC-Diagnosability bound defined in Definition 8 for
each of the compared techniques. The bound represents the number of fault identification mistakes
each algorithm is expected to make with a given confidence (δ in Theorem 9). The plots show that
with high probability, most of the algorithms are expected to make less than 1 mistake in the fault
identification (i.e., false alarms or false negatives). The factor graph has the lowest bound of all
methods.
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Figure 2: PAC-diagnosability bounds. (Left) Modules, (Right) Outputs. Lower is better.

7 Conclusions

This paper investigated runtime monitoring of complex perception systems. Toward this goal, we
formalized the concept of diagnostic tests, a generalization of runtime monitors, and introduced the
concept of diagnostic graph, as a structure to organize diagnostic information. We then provided
a set of deterministic, probabilistic, and learning-based algorithms that use diagnostic graphs to
perform fault detection and identification. Moreover, we investigated fundamental limits and pro-
vided deterministic and probabilistic guarantees on the fault detection and identification results. We
conclude the paper with the experimental evaluation, showing that the proposed system monitors
outperform baselines in terms of fault identification accuracy, and have the potential of preventing
accidents in realistic scenarios, while incurring in a negligible computational overhead.

This work opens a number of avenues for future work. First, we plan to test our monitors on real-
world datasets and to provide more examples of the proposed approach applied to other perception
subsystems (e.g., localization, lane segmentation). Second, we plan to add a risk metric to the fault
identification process that could help the decision layer to make more informed decisions. Finally,
in this paper, we used simple diagnostic tests. Moving forward, it would be desirable to use more
advanced diagnostic tests available in the literature.
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A Proofs

A.1 Proof for Theorem 7

Proof. Let z be a syndrome for the temporal diagnostic graph D[K], generated by a set of active

failure mode A, such that |A|= m ≤ mini∈{1,...,K} κ(D
(i)). Clearly, each element of A is a

variable node of one of the regular diagnostic graphs D(1), . . . ,D(K) that compose D[K], therefore

we can split A into the variables nodes of each regular diagnostic graph, obtaining A(1), . . . ,A(K)

(these sets are non-overlapping and are such that ∪K
i=1A

(i) = A). Similarly, we can project the

syndrome z into K sub-syndromes z(1), . . . , z(K) each containing only the test outcomes of the
corresponding regular diagnostic graphs (notice that doing the projection we lose the temporal tests,

if any). By construction |A(i)| ≤ m for each i = 1, . . . ,K. From the assumption, we know that

each sub-graph D(i) is m-diagnosable. Therefore, each sub-graph D(i) will be able to correctly

identify the set of active failure modes A(i) from the syndrome z(i). This means that D[K] is at least
m-diagnosable, concluding the proof.

A.2 Proof for Theorem 9

Proof. For each sample (z(i),f (i)) in W , the result of each Hamming distance will less or equal
than Nf . From the Hoeffding’s inequality we have that

Pr
[

|hF (ΨD)− ĥW(ΨD)|≥ ǫ
]

≤ 2exp

(

−
2ǫ2|W|

Nf
2

)

(1)

Setting the right-hand side of Eq. (1) to be equal to δ and solving for ǫ yields:

ǫ = Nf

√

log(2/δ)

2|W|
(2)

After setting the right-hand side to δ, Eq. (1) can be rewritten as:

Pr
[

|hF (ΨD)− ĥW(ΨD)|≤ ǫ
]

≥ δ (3)

Combining (2) and (3) and removing the absolute value we get:

Pr

[

hF (ΨD)− ĥW(ΨD) ≤ Nf

√

log(2/δ)

2|W|

]

≥ δ (4)

from which the result easily follows.

B Examples of Diagnostic Tests

In the following, we describe how to mathematically model the relation between the failure modes
and the test outcomes; this will be instrumental in solving the inverse problem of identifying the
failure mode from a given syndrome. We provide a deterministic and a probabilistic model for the
tests below.

Deterministic Tests. Deterministic diagnostic tests encode the set of possible test outcomes, by
establishing a deterministic relation between failure modes in the test’s scope and the test outcome.
We discuss potential models for deterministic diagnostic test below.

Ideally we would like the test be reliable, that is, to return FAIL if and only if at least one of the
failure modes in its scope is active. This leads to the definition of a “Deterministic OR” test.

Definition 10 (Deterministic OR). A diagnostic test t(fscope(t)) is a deterministic OR if its test
outcome z is

z =

{

PASS if ‖fscope(t)‖1= 0

FAIL otherwise
(5)
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This kind of tests can be hard to implement in practice. For example, imagine a diagnostic test that
compares the output of two object classifiers: if one of them produces a wrong label, it is easy to
detect there is a failure; however, if both classifiers are trained on similar data and both report the
incorrect label there is no way to detect the failure. In this case, the test outcome is unreliable. The
following definition introduces a type of unreliable test.

Definition 11 (Deterministic Weak-OR). A test t(fscope(t)) is a deterministic Weak-OR if its test
outcome z is

z =







FAIL if 0 < ‖fscope(t)‖1< |scope(t)|

PASS or FAIL if ‖fscope(t)‖1= |scope(t)|

PASS otherwise

(6)

Intuitively, a “Deterministic Weak-OR” may return PASS even if all failure modes are active, since
the test might fail to detect an inconsistency if all faults are consistent with each others (again, think
about two object classifiers failing in the same way). Even though the Weak-OR test may pass or
fail when all failure modes are active, its outcome remains deterministic.

Probabilistic Tests. Deterministic tests might not capture the complexity of real world diagnostic
tests. Most practical tests are likely to incorrectly detect faults (i.e., produce false positive) or fail to
detect faults (i.e., produce false negatives) with some probability. For this reason, in this paper, we
also allow for an arbitrary probabilistic relationship between test outcomes and failure modes in the
test scope.

A simple-yet-expressive way to formalize a probabilistic test is to use what we call a “Noisy-OR”
model. In particular, the Noisy-OR model represents the probability of a diagnostic test outcome as
a conditional probability distribution over the failure modes in its scope Pr(z | fscope(t)) as defined
below.

Definition 12 (Noisy-OR). A diagnostic test t(fscope(t)) is a probabilistic Noisy-OR if its test out-
come z follows

Pr(z = PASS | fscope(t)) =
∏

i∈scope(t)

Pr(z = PASS | fi) (7)

where Pr(z | fi) denotes the conditional probability of the test outcome (PASS/FAIL) conditioned
on the status (ACTIVE/INACTIVE) of the failure mode fi. Clearly, Pr(z = FAIL | fscope(t)) =
1− Pr(z = PASS | fscope(t)).

Now suppose each test has a probability pd,i of correctly identifying failure fi (detection proba-
bility), and a probability pa,i of false alarm for fi. Exploiting the fact that fi ∈ {0, 1}, we can
write Eq. (7) as:

Pr(z = PASS | fscope(t)) =
∏

i∈scope(t)

(1− pd,i)
fi(1− pa,i)

1−fi (8)

An example of probabilistic test outcome is given in Table 2.

C Examples of Diagnostic Graphs

C.1 Example 1: Multi-sensor Obstacle Detection

Consider the perception system in Fig. 4. We can associate a diagnostic graph to the system where
the variable nodes of the diagnostic graph are the failure modes of modules and outputs in the
system. The diagnostic graph, shown in Fig. 5, also includes two diagnostic tests and a priori
relations encoding input/output relationship between modules and outputs.

Each diagnostic test compares a pair of outputted obstacles, namely LiDAR obstacles and camera
obstacles (with failures f4 and f5), and camera obstacles and fused obstacles (with failures f4 and
f6).
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Test

L iDA R
Obst acles

Camer a
Obst acles

M isdet ect ion

M isdet ect ion

Figure 3: A test com-
paring two outputs,
LiDAR Obstacles and
Camera Obstacles

Scope Test outcome z

f1 f2 OR Weak-OR Noisy-OR

0 0 0 0

{

0 with prob. (1− pa,1)(1− pa,2)

1 with prob. pa,1 + pa,2 − pa,1pa,2

0 1 1 1

{

0 with prob. (1− pa,1)(1− pd,2)

1 with prob. pa,1 + pd,2 − pa,1pd,2

1 0 1 1

{

0 with prob. (1− pd,1)(1− pa,2)

1 with prob. pd,1 + pa,2 − pd,1pa,2

1 1 1 0 or 1

{

0 with prob. (1− pd,1)(1− pd,2)

1 with prob. pd,1 + pd,2 − pd,1pd,2

Table 2: Table of possible outcomes for the Deterministic OR and the proba-
bilistic Noisy-OR version of a test with scope f1 and f2.

L iDA R -based

Obst acle D et ect or

L iDA R

Obst acles

Camer a

Obst acles

Camer a-based

Obst acle D et ect or

Sensor  Fusion

A lgor i t hm

Fused

Obst acles

Out -of-dist r ibut ion sample

Out -of-dist r ibut ion sample

M isdet ect ion

M isdet ect ion

M isdet ect ion

M isassociat ion

Figure 4: Perception system including 3 modules (rectangles) and 3 outputs (circles). Modules are
connected by edges describing which module produces or consumes a given output. The failure
modes of each module (resp. output) are represented by red dots.

Figure 5: A diagnostic graph for the perception system example in Fig. 4. Red circles represent
variable nodes (failure modes) while squares represent relations. Test-driven Relations are shown in
blue, while a priori relations are shown in black.

C.2 Example 2: LiDAR-based Ego-motion Estimation

We provide a second example that also includes singleton diagnostic tests (having a single failure
mode in their scope) and includes explicit tests over modules. The example consists of a LiDAR-
based odometry system that computes the relative motion between consecutive LiDAR scans using
feature-based registration, see e.g., [86, 87]. The system S comprises two modules, a feature extrac-
tion module and a point-cloud registration module, as depicted in Fig. 6(left). The feature extraction
module extracts 3D point features from input LiDAR data, while the point-cloud registration module
uses the features to estimate the relative pose between two consecutive LiDAR scans. Suppose that
the feature extraction module is based on a deep neural network and that it can experience an “out-
of-distribution sample” failure, which causes the corresponding output to potentially experience
“too-many outliers” or “few features” failures. Similarly, the module point-cloud registration can
experience the failure “suboptimal solution”, which leads its outputs, the relative pose, to experience
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a “wrong relative pose” failure. Fig. 6(right) shows a diagnostic graph for the system. The system
is equipped with three diagnostic tests. A diagnostic test detects if the failure mode “few features”
is active by checking the cardinality of the feature set. If the point-cloud registration module is a
certifiable algorithm [88], we can attach a diagnostic test to the point-cloud registration module that
uses the module’s certificate to detect if the module is experiencing a “suboptimal solution” failure.
Another diagnostic test detects if the relative pose is wrong by checking that the relative pose does
not exceed some meaningful threshold given the vehicle dynamics. Finally, another test checks if
under the computed relative pose, the feature extractor has “too many outliers”. This can be achieved
by counting the number of features that are correctly aligned after applying the estimated relative
pose. The diagnostic graph also contains a priori relations encoding constraints on the input/output
relationships.

Too-many Out l ier s

N ot  enough feat ur es

W r ong R elat ive Pose

Subopt imal Solut ion

Out -of-dist r ibut ion 

sample

Point -Cloud

R egist r at ion

R elat ive

Pose

Feat ur es

Feat ur e

Ext r act or

Figure 6: (Left) Example of the LiDAR-based ego-motion estimation system S . The system is com-
posed by two modules (rectangles), each producing one output (circles). (Right) The corresponding
diagnostic graph, where red circles represent variable nodes (failure modes) while squares represent
relations (test-driven Relations in blue, a priori relations in black).

D Implementation Details

D.1 Apollo Auto

Baidu’s Apollo Auto [15] uses a flexible and modularized architecture for the autonomy stack based
on the sense-plan-act framework. The stack includes seven subsystems: (i) the localization subsys-
tem provides the pose of the ego vehicle; (ii) the high-definition map provides a high-resolution map
of the environment, including lanes, stop signs, and traffic signs; (iii) the perception subsystem pro-
cesses sensory information (together with the localization data) and creates a world model; (iv) the
prediction subsystem predicts future evolution of the world state; (v) the motion planning subsystems
and (vi) the routing subsystem generate a feasible trajectory for the ego vehicle, and finally, (vii) the
control subsystem generates low-level control signals to move the vehicle. In our experiments, we
focus on the perception subsystem, to which we apply our runtime monitors. In the following, we
briefly review the key aspects of the Apollo Auto perception system.

D.1.1 Apollo Auto Perception System

Apollo Auto’s perception system is tasked with the detection and classification of obstacles and
traffic lights.2 The perception module is capable of using multiple cameras, radars, and LiDARs to
recognize obstacles. There is a submodule for each sensor modality, that independently detects, clas-
sifies, and tracks obstacles. The results from each sub-module are then fused using a probabilistic
sensor fusion algorithm.

Obstacle Detection. Obstacles such as cars, trucks, bicycles, are detected using an array of radars,
LiDARs, and cameras. Each obstacle is represented by a 3D bounding-box in the world frame,

2Note that our monitors can be also applied to other perception-related subsystems, such as the localization
and high-definition map subsystem, see [89] for an example.
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Figure 7: Vehicle configuration and sensor field-of-view (FOV). LiDAR FOV is shown in green,
the camera FOV in blue and the radar FOV in orange.

the class of the object, a confidence score, together with other sensor-specific information (e.g., the
velocity of the obstacle). Each sensor is processed as follows:

Camera: The camera-based obstacle detection network is based on the monocular object detection
SMOKE [90] and trained on the Waymo Open Dataset [91]. The network predicts 2D
and 3D information about each obstacle, and then a post-processing step predicts the 3D
bounding box of each obstacle by minimizing the reprojection error of available templates
for the predicted obstacle class;

LiDAR: The LiDAR-based obstacle detection network, called Mask-Pillars is based on PointPil-
lars [92], but enhanced with a residual attention module to improve detection in case of
occlusion;

Radar: Apollo Auto uses directly the obstacles detections reported by the radar (assumed to have
an embedded detector [93]), that are post-processed to be transformed to the world frame.

D.1.2 Vehicle Configuration

The simulated vehicle is a Lincoln MKZ with one Velodyne VLS-128 LiDAR, one front-facing
camera with a field-of-view of 50◦, one front-facing telephoto camera (pointed 4◦ upwards) for
traffic light detection and recognition, one Continental ARS 408-21 front-facing radar, GPS, and
IMU.

We ran the Baidu’s Apollo AV stack on a computer with an Intel i9-9820X (4.1GHz) processor,
64GB of memory and two NVIDIA GeForce RTX 2080Ti. The simulator ran on a computer with
11th Generation Intel i7-11700F (4.8GHz) processor, 16GB of memory, and an NVIDIA GeForce
RTX 3060. The two computers were connected using a Gigabit Ethernet cable.

D.2 Diagnostic Graph

We focused our attention on the obstacle detection pipeline. The system we aim to monitor, together
with the failure modes considered, is shown in Fig. 8 The system is composed of four modules:

• Lidar-based Obstacle detector, based on a deep learning algorithm, subject to out-of-
distribution sample failure mode;

• Camera-based Obstacle detector, based on a deep learning algorithm, subject to out-of-
distribution sample failure mode;

• Radar-based Obstacle detector subject to misdetection failure mode;
• Sensor Fusion subject to misassociation failure mode.

Each module produces a set of detected obstacles. We identified three failure modes for each set of
detected obstacles:

• misdetection: the module detected a ghost obstacle or is missing an obstacle in the scene;
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• misposition: the module detected the obstacle correctly, but its position is incorrect (i.e.,
more than 2.5m error in our tests);

• misclassification: the module detected the obstacle correctly but the obstacle’s semantic
class is incorrect.

We equipped the obstacle detection system with 18 diagnostic tests. For each pair of modules’
outputs, namely (Lidar, Camera), (Radar, Camera), (Lidar, Sensor Fusion), (Radar, Sensor Fusion),
(Lidar, Radar), and (Camera, Sensor Fusion), there is a test that compares the outputs to diagnose
each of the output’s failure modes (i.e., misdetection, misposition, and misclassification). Intuitively,
each test compares the two sets of obstacles coming from the corresponding modules, and if they are
different, it reports if the inconsistency was due to a misdetection, misposition, or misclassification.
Moreover, we included a priori relation between every module and its output. In particular, the
modules are assumed to fail if their outputs have at least one active failure mode. In the probabilistic
diagnostic graph we also added an a priori relation for each module’s failure mode, indicating the
prior probability of that failure mode being active.

L iDA R -based

Obst acle det ect or
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Obst acles

Camer a

Obst acles

Camer a-based

Obst acle det ect or

Sensor  Fusion
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M isdet ect ion
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Figure 8: Perception system considered in our experiments. Modules are shown as rectangular
blocks, outputs are shown as rounded boxes, while failure modes are denoted with red dots.

D.2.1 Diagnostic Tests

We now describe the logic for the diagnostic tests we implemented. Consider two sets of synchro-
nized detected obstacles3, say A and B, produced by two modules, using some sensor data. Let Ω
be the region defined by the intersection of both sensor fields of view and a region of interest (e.g., a
region close to a drivable area4). Denote by AΩ and BΩ the set of obstacles restricted to the region
Ω, namely AΩ ⊆ A such that for each obstacle o in A, o is in AΩ if and only if o is inside the region
defined by Ω. The same relation holds for BΩ. Then the diagnostic test checking for misdetections
is defined as follows:

tmisdetection =

{

FAIL if |AΩ| 6= |BΩ|

PASS otherwise

Note that if the two sets of obstacles have a different cardinality —when restricted to the area co-
visible by both sensors— it means that one of the two sets contains a ghost obstacle or one of the
two sets is missing an obstacle. From a single test, we are not able to say which of the two sets is
experiencing the misdetection, but we know at least one output did.

3By synchronized we mean that the two outputs are produced at the same time instant.
4In our experiments, the region of interest is the area within 5 meters from a drivable lane.
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Let us now move our attention to the misposition failure mode. Let C be the set of matched obstacles,
that is, a pair of obstacles (l, r) —with l ∈ AΩ and r ∈ BΩ— is in C, if l and r represent the same
obstacles. A common approach for finding the set of matches is to select all the pairs that are closest
to each other (i.e., solving an assignment problem)5. The diagnostic test checking for mispositioned
obstacles is defined as follows:

tmisposition =

{

FAIL ∃(l, r) ∈ C such that |pos(l)− pos(r)|≥ θ

PASS otherwise

where pos(·) is the position of an obstacle and θ is an error threshold, chosen as θ = 2.5m in our
experiments.

Finally, the test checking for misclassified obstacles is defined as follows:

tmisclassification =

{

FAIL ∃(l, r) ∈ C such that cls(l) 6= cls(r)

PASS otherwise

where cls(·) is the class of the obstacle, i.e., the test fails if associated obstacles are assigned different
semantic classes.

D.2.2 Temporal Diagnostic Graph

To build a temporal diagnostic graph we stack 2 regular diagnostic graphs into a temporal diagnostic
graph. In the probabilistic case, each module failure mode is connected to its successive (in time) via
a priori relationships, which represent the transition probability between states in consecutive time
steps. No temporal a priori relations are added in the deterministic case. We also added temporal
tests. The logic of the tests presented in the previous section is applicable to temporal tests with
small changes. In temporal tests, the sets A and B are not time-synchronized anymore (e.g., they
are obstacles detected by the same sensor at consecutive time stamps), therefore the position of
each obstacle in each set must be adjusted for the distance the obstacle traveled between consecutive
detections. To use the tests described earlier in the temporal domain we used the following approach.
If the obstacle is equipped with an estimated velocity vector, since the time difference between
detections is usually below 30ms, we assume constant speed and integrate the speed over the time
interval to find an approximate position of each obstacle. When the velocity is not available, we use
the average speed of an obstacle (for a given obstacle’s class) and adapt the misposition threshold θ
to account for the uncertainty.

D.3 Graph-Neural-Network-based Fault Identification

Diagnostic Graphs to Undirected Graphs. In order to apply GNNs to our diagnostic graph D, we
need to convert D = (VD,RD, ED) into an undirected graph G = (VG, EG). Towards this goal,
we take the set of nodes VG to be both the set of failure modes and diagnostic test outcomes. Note
that we add the diagnostic test outcomes as nodes in the graph since this allows attaching the test
outcomes as features to these nodes. For each test tk we form a clique6 involving the set of nodes in
the test’s scope and the variable corresponding to the test zk, namely the set scope(tk) ∪ {zk}. We
then form another clique for each a priori relation φj ∈ Rprior using the set of failure modes N (φk)
connected to φj . For example if we have a factor φ(f1, f2; z2) we add the following (undirected)
edges to EG: (f1, f2), (f1, z2), (f2, z2). We attach a feature vector to each node in the graph. For the
test nodes, we use a one-hot encoding describing the test outcome as node feature. For the module
nodes, we use the failure probability (computed from the training data) as node features. We provide
more details on the node features in Section 6.

We now discuss how we set the feature vector for each node in the graph. The feature xtk ∈ R
2 for

a test tk is set as the one-hot encoding of the test outcome (i.e., [1 0] if the test passed, [0 1] if it
failed). For the failure mode nodes we do not have any measurable quantity at runtime; we therefore
use the training dataset to compute the feature vectors. In particular the feature vector xfi ∈ R

2 for
a failure mode fi is computed as follow: let ρi be the empirical probability that fi is ACTIVE, i.e.,

5We matched obstacles using a generalization of the Hungarian algorithm [94], with the cost of each match
being the Euclidean distance between obstacles.

6A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique
share an edge.
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ρi = 1
|W|

∑

(z,f)∈W 1[fi = ACTIVE]; then the feature vector is chosen as xfi = [1 − ρi, ρi]
T

.

Intuitively, the feature describes the prior probability of the failure mode fi’s state.

Network Architectures. We now discuss the architecture of the GNN. Our GNN is composed by a
linear layer that embeds the feature vectors in R

16, followed by a ReLU function. The output is then
passed to a stack of graph convolution layers interleaved with ReLU activation functions. We tested
four different graph convolution layers

• in the case of GCN, we stack 3 layers with 16 hidden channels each;
• in the case of GCNII, we stack 64 layers with 16 hidden channels each with α = 0.1,
β = 0.4;

• in the case of GIN, we stack 3 layers with 16 hidden channels each with the update function

ζ(k)(·) being a 2-layer perceptron for k = 1, . . . , 3;
• in the case of GraphSAGE, we stack 3 (and 6 for temporal diagnostic graphs) layers with

mean aggregator and 16 hidden channels each.

Finally, the readout function that converts the graph embedding to node labels is a linear layers
followed by a softmax pooling.

We implemented the GNNs in PyTorch [82] and trained them on the training dataset for 100 epochs
using the Adam optimizer. To reduce the amount of guesswork in choosing an initial learning rate,
we used the learning rate finder available in the PyTorch Lightning library [95]. The procedure is
based on [96]: the learning rate finder does a small training run where the learning rate is increased
after each processed batch and the corresponding loss is logged. Then, the learning rate is chosen to
be the point with the steepest negative gradient.

Figure 9: Example of conversion of the diagnostic graph in Fig. 5 into an undirected graph.

Learning to Identify Active Faults. In order to train the GNN to identify active faults, we use a
supervised learning approach. In particular, we use a softmax classification function and negative
log-likelihood training loss, which is available in standard libraries, such as PyTorch [82].

E Additional Results

E.1 Regular diagnostic graphs

Here we report the results of fault detection, identification and PAC-diagnosability bounds for the
proposed methods on regular diagnostic graph. Table 3 shows the accuracy of fault detection and
identification, together with the average runtime in milliseconds.

Comparing Fig. 1 to Fig. 10, we see steep decrease in the fault identification precision in the output
space in regular diagnostic graphs compared to the temporal diagnostic graph. The best-performing
model goes from around 97% precision of the temporal diagnostic graph to 90% of the regular
diagnostic graph.

E.2 Example Scenario: Using Monitoring to Prevent Accidents

We conclude the experimental section by showing how fault detection and identification can be
effectively used to prevent dangerous situations. To this aim, we developed an additional scenario
(not included in Table 4) where a deer crosses the road while the ego vehicle cruises on a straight
road (Fig. 12).
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Algorithm
Fault Identification Accuracy Fault Detection Accuracy Timing

All Outputs Modules All Outputs Modules Milliseconds

Factor Graph 93.30 96.72 83.03 76.67 88.48 64.85 0.79

Deterministic 91.06 93.69 83.18 89.09 89.09 89.09 3.25

Baseline (w/rel. scores) 92.39 94.65 85.61 89.09 89.09 89.09 0.1

Baseline 84.85 89.09 72.12 89.09 89.09 89.09 0.1

GCN 92.27 96.01 81.06 71.82 86.06 57.58 0.63

GCNII 87.61 93.94 68.64 68.48 87.88 49.09 19.88

GIN 91.89 96.06 79.39 83.94 86.06 81.82 0.48

GraphSage 92.84 96.46 81.97 76.67 89.09 64.24 0.59

Table 3: Results of the proposed algorithms for detection and identification on regular diagnostic
graphs, averaged over all scenarios. Best values are highlighted in green, second-best in yellow.
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Figure 11: PAC-diagnosability bounds for regular diagnostic graphs. (Left) Modules, (Right) Out-
puts. Lower is better.

The scenario is novel to the identification algorithm, i.e., not used for training, test, or validation.
The results of the failure identification are shown in Fig. 13, where we used the probabilistic fault
identification. Initially, the monitor detects no failure (rightmost green section). As the ego vehicle
gets closer to the undetected obstacle, the radar detects the obstacle but the camera does not. The
inconsistency between the two sets of obstacles causes the test between camera and radar to return
FAIL. Given the test’s outcomes, the factor graph correctly detects and identifies the failure, trigger-
ing an alarm (rightmost red section). As the ego vehicle gets even closer, the deer goes out of the
field-of-view of the radar while entering the LiDAR field-of-view. For a few meters, both camera
and LiDAR fail to detect the deer Fig. 14, but since it is out of the field-of-view of the radar, the
diagnostic test fails to report the failure7. As the obstacle re-enters the field-of-view of the radar, the
diagnostic test again returns FAIL, signaling the presence of a failure.

The first alarm is raised 7.19 s before the collision, flagging the camera misdetection as an active
failure mode. Before the collision, the AV has a speed of 8.43m/s. The car can reach a maximum
deceleration of 6m s−2. As result, the car would need 1.4 s to come to a complete stop. We note
that after detecting the fault, for a short interval of time the monitor detects no failure: this is due to

7This could be solved by improving the logic of the diagnostic test; for instance, it could predict that —while
the obstacle moved outside the field-of-view— it is unlikely it disappeared.
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Figure 12: Example scenario involving a deer crossing the road in front of the ego vehicle.

Figure 13: Fault identification results for the example scenario in Fig. 12. The car travels from
right to left. Initially, the monitor detects no failure (rightmost, green section). As the ego vehicle
gets closer to the obstacle, the LiDAR-based and camera-based obstacle detectors fail to detect
the deer while the radar-based obstacle detector correctly locates the obstacle; as a result the fault
identification/detection triggers an alarm (red sections).

the fact that the deer goes out of the radar field-of-view, and no other obstacle detector is capable of
detecting it, thus lacking redundancy to diagnose the failure; see the visualization and explanation
in Fig. 15.

To gather statistical evidence of the effectiveness of the fault detection, we run the same scenario
10 times at different times of the day (sun, twilight, and night) and different weather conditions
(including fog and rain). The probabilistic fault detection approach never raised false alarms in
these tests, and the average time between the alarm and the collision was 7.54 s. The car traveled at
an average speed of 6.16m/s, requiring 1.03 s to come to a complete stop. The fault identification
exhibited an average accuracy of 93.75%.
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Figure 14: Camera Image for the scenario in Fig. 12. Blue bounding box is the ground truth detec-
tion. The camera fails to detect the deer crossing the road (misdetection failure).

The radar detects the obstacle, but
the camera fails to do so

Camera and LiDAR fail to detect the
obstacle while it is outside the radar
field-of-view

Figure 15: Two snapshots from the example scenario of Fig. 12. Shaded areas represent the sen-
sor field-of-view (FOV): green, blue, and orange represent the LiDAR, camera, and radar FOVs,
respectively. On the left, the deer is outside the LiDAR FOV (so the LiDAR obstacle detector is not
supposed to detect the obstacle); the radar detects the obstacle, while the camera fails to detect it
even if it is inside its FOV. Since the corresponding diagnostic test fails, our monitors can detect the
failure. On the right, the deer is outside the radar FOV; in this case, both the camera and the LiDAR
fail to detect the obstacles (even though it is within their FOVs), hence no diagnostic test fails and
our monitor fails to detect the fault.
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F Scenarios

We designed a set of challenging scenarios to stress-test the Apollo Auto perception system. These
scenarios were created using the LGSVL Simulator Visual Scenario Editor, which allows the user to
create scenarios using a drag-and-drop interface. The vehicle behavior is tested on each scenario in
a multitude of situations including different time of day (noon, 6 PM, 9 PM) or weather condition
(rain and fog). The scenarios are described in Table 4.

Table 4: Scenarios. Fault-free. Fault-detected.

Scene Fault Detection Results

Hidden Pedestrian. A pedestrian, initially occluded by a track parked on the right-hand side
of the street, steps in front of the ego vehicle.

Overturned Truck. The ego vehicle encounters an overturned truck occupying the lane it
is driving in. The scenario recreates an accident occurred in Taiwan where a Tesla hit an
overturned truck on a highway [97].

Stopped Vehicle. While driving, the car in front of the ego vehicle makes a lane change to
avoid the stationary car that is in their lane. This leaves the ego vehicle with little to no time
to react to the stationary car.
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Cut Off Left. While driving in the right lane on a three-lane road, a vehicle from the left lane
cuts the ego vehicle off.

Cut Off Right. While driving in the left lane on a two-lane road, a vehicle from the right
lane cuts the ego vehicle off while turning into a parking lot.

School Bus Intersection. The ego vehicle drives through an intersection. A school bus
crosses the intersection coming from the left-hand side. As the ego vehicle crosses the inter-
section, a pedestrian steps into the intersection from the left-hand side.

Car in Front. A car is still in front of the ego vehicle preventing it to move forward.

Cones in the Lane. The ego vehicle is driving on a lane partially delimited by traffic cones,
while another vehicle is driving in the opposite lane. After passing traffic cones, another
vehicle exits a parking lot and merges right in front of the ego vehicle.
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Cyclist. The ego vehicle is stopped at an intersection and as it starts driving through the
intersection, a cyclist enters the field of view from the left-hand side of the intersection and
rides right in front of the ego vehicle.

Turkeys. While driving on a straight road, the ego vehicle must avoid a collision with two
turkeys that suddenly walk in front of the ego vehicle.

F.1 Dataset generation

We executed the diagnostic tests described in Appendix D.2 every 0.3 seconds, and used the corre-
sponding test outcomes to perform fault identification. Time synchronization of the modules’ output
is achieved by pairing outputs that are closest in time to each other. Ground-truth labels for the out-
puts’ failure modes are generated using the ground-truth detections provided by the simulator. In
particular, to generate the label for each failure mode of an output, we used the three diagnostic tests
described in Appendix D.2.1 comparing the set of obstacles to the ground-truth detections. For a
module m instead, since all modules have only one failure mode, the associated failure mode fm is
labeled as ACTIVE if and only if any failure mode if its output is ACTIVE. We collected 1650 reg-
ular diagnostic graphs, and split them into 1320 (80%) training samples, 165 (10%) testing samples,
and 165 validation samples. We also collected 1590 temporal diagnostic graphs, and split them into
1272 (80%) training samples, 159 (10%) testing samples, and 159 validation samples.
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