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Abstract

Simulators offer the possibility of scalable development of self-driving systems.
However, current driving simulators exhibit naive behavior models for background
traffic. Hand-tuned scenarios are typically used to induce safety-critical situations.
An alternative approach is to adversarially perturb the background traffic trajec-
tories. In this paper, we study this approach to safety-critical driving scenario
generation using the CARLA simulator. We use a kinematic bicycle model as a
proxy to the simulator’s true dynamics and observe that gradients through this
proxy model are sufficient for optimizing the background traffic trajectories. Based
on this finding, we propose KING, which generates safety-critical driving scenarios
with a 20% higher success rate than black-box optimization, which previous work
relies on. Furthermore, we demonstrate that the generated scenarios can be used to
fine-tune imitation learning agents, leading to improved collision avoidance.

1 Introduction

After years of steady progress, autonomous driving systems are getting closer to maturity (18). Due to
the high consequences of failure, they have to satisfy extraordinarily high standards of robustness in
the face of unseen and safety-critical scenarios. However, real-world data collection and validation for
these situations lacks the necessary scalability (23;21). To cover this long-tail of driving scenarios,
simulation is a promising solution. Unfortunately, current simulators such as CARLA (11) build on
simple behavior models for background agents and do not provide the necessary diversity in traffic.
This poses a major challenge in the adoption of driving agents trained in simulation using imitation
learning (IL) (265 135 [7; 18; 1385 1225 275 6)) or reinforcement learning (RL) (55 33)), which are often brittle
to o0.0.d. inputs (12). To induce safety-critical situations, hand-crafted scenarios are typically added
to the simulation. Unfortunately, the scenarios have to be manually re-tuned to each driving agent,
limiting scalability.

Recent work (235 (1} [10; 95 [34; 28)) has framed the problem of generating safety-critical scenarios
through the lens of adversarial attacks, iteratively simulating the scenario and adjusting its parameters
to increase a driving cost wrt. to the driving system under test. As simulators and self-driving
stacks are often non-differentiable, these approaches have resorted to black-box optimization (BBO).
In this work, we instead propose KING, a procedure that generates safety-critical scenarios via
backpropagation. Through a simple approximation to the true gradient, KING can handle non-
differentiable rendering functions and driving systems, while finding safety-critical perturbations
more reliably than BBO-based alternatives. We use the generated scenarios fine-tune an end-to-end
IL agent and show that this leads to improved robustness, reducing collisions by over 50%.

Machine Learning for Autonomous Driving Workshop at the 36th Conference on Neural Information Processing
Systems (NeurIPS 2022), New Orleans, USA.
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Figure 1: Generating safety-critical scenarios for robust driving. Left: we propose KING, a
novel optimization method to generate safety-critical driving scenarios which iteratively updates the
initial scenario using gradients through a differentiable kinematics model and successfully induces a
collision with the ego agent. Right: fine-tuning on expert behavior in safety-critical perturbations
leads to a more robust agent.

2 Related Work

End-to-End Driving: We are interested in stress-testing and improving end-to-end learning-
based autonomous driving systems. While there are a few RL methods for this task (5} [33), most
work leverages IL. Some adhere closely to the end-to-end learning paradigm (265 3L (75 [8} 27),
directly inferring driving actions from raw sensor observations. However, others use interpretable
intermediate representations [35;2). In particular, bird’s-eye view (BEV) semantic occupancy grid
representations are widely used in modern driving approaches (38; 31} 45 [37; [6). This representation
can be inferred from images (20} 30; 24} [13; [16} [6; 2535 [19). In our study we consider two IL-based
driving agents reflecting both schools of thought: (1) a planner called AIM-BEV acting on ground-
truth perception represented as a BEV semantic occupancy grid, and (2) an end-to-end agent acting
on camera and LiDAR observations called TransFuser (27).

Generating Safety-Critical Scenarios: Previous work on generating safety-critical scenarios relies
on BBO techniques and explores a variety of search space parameterizations, such as initial velocity
or position of adversarial agents (105 [9; 28)), a high-level route graph (1)) or parameterized driving
policies (23). In AdvSim (34)), the search space is parameterized as a sequence of kinematic bicycle
model states for each adversarial agent, with steering and acceleration actions as free parameters. We
also adopt this simple and expressive parameterization for KING. Different from this line of work,
we propose a gradient-based procedure to optimize over these parameters rather than resorting to
BBO techniques. Concurrent work presents STRIVE (29), a framework that also generates critical
scenarios via gradient-based optimization. Here, an adversarial agent is parameterized as a latent
vector of a learned motion forecasting model. STRIVE focuses on a simple, privileged rule-based
planner rather than end-to-end IL agents and uses a proxy of the driving agent to enable gradient-based
optimization, while KING directly optimizes for collisions wrt. the actual driving agent.

3 Safety-Critical Scenario Generation for Robust Imitation

We now outline our overall approach to the gradient-based generation of safety-critical scenarios for
stress-testing and improving the robustness of IL-based driving agents.

Driving Agent. As the driving agents we consider (1) AIM-BEV, a neural planner acting on
ground-truth BEV visual abstractions similar to the AIM-VA model in (6) and (2) TransFuser (27), a
state-of-the art image and LiDAR-based IL model. Formally, they are represented as a parameterized
policy 7, that takes in an observation o, € RoXWoxCo and goal location X 40, € R? indicating the
intended high-level route on the map, and plans a trajectory represented by four future 2D waypoints
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Figure 2: Gradient paths. To unroll a simulation, we first render an observation o, of the traffic
state s; using a rendering function R. Both the ego agent policy 7, and adversarial agents then take
actions. The actions of the ego agent a? depend on the observation and a goal location Xgoq;. The
actions of the adversarial agents a:~° form the search space of the generation procedure. Given all
actions, the next state s; 1 is computed using a differentiable kinematics model «. Gradients from
the cost at time ¢ can then be propagated back to preceding timesteps. The derivative has components

along two paths: an efficient and a compute-intensive

w € R4x2:
T (04, Xgoar) : RFIXWoxCo s RZ _y RAXZ, 1

For AIM-BEV, o, is a BEV semantic occupancy grid encoding information on the road, lanes and
other vehicles. For TransFuser it consists of camera and LiDAR data. Based on the predicted

waypoints, the final actions a € [—1, 1]2 in the form of throttle and steering commands are produced
by lateral and longitudinal controllers. Both models are trained on observation-waypoint pairs (0, w)
drawn from a dataset D,.., of expert driving in regular traffic.

Safety-Critical Perturbation. To optimize for safety-critical perturbations of a non-critical scenario,
we iteratively simulate it in closed-loop and adjust its parameters to be more challenging for the
driving agent (or ego agent) under test. Importantly, as the scenario is simulated in closed loop, the
ego agent can react to these perturbations.

LetS = {st};‘f be a sequence of traffic states instantiating a particular simulation, where s; consists
of the BEV position, orientation and speed of all agents at time ¢. Then, a simulation is unrolled
based on a kinematics model s;1 = k(a+, s¢). Based on this framework, a scenario is parameterized

by the sequence of actions {a?o }tT executed by other traffic participants (or adversarial agents),
which determines their trajectory. The actions of the ego agent are obtained from the driving policy by
rendering an observation o, of the current state s; using a rendering function o; = R (s¢, M), where
M is a map describing the static aspects of the simulation. To find a safety-critical perturbation,
the scenario’s parameters are optimized to increase a driving cost C wrt. the ego agent, which is
motivated by prior work (15 105 34):

C(S) = ¢S90(S) + A 4200 (S) + v ¢324(S). 2

Here, collisions involving the ego agent are encouraged via an attractive potential ¢-7”, and collisions

between adversarial agents and deviations of the adversarial agents from the driveable area are
discopragf.:d via thp repulsive potentials with ¢Zglf and qbggg . This is similar to commonly used cost
functions in planning (3651315 4).

Kinematics Gradients: Given that the sequence of states S is unrolled based on the differ-
entiable kinematics model, we can backpropagate costs at any timestep ¢ to the set of actions
{a;_1,a4_2,...,a0} at previous timesteps. In the full unrolled computation graph of the simulation,
partial derivatives of the cost at any timestep can be taken wrt. the actions in preceding timesteps
by recursively applying the chain rule along two paths: a direct path through only the kinematics
model and an indirect path, which additionally involves the driving policy 7, and renderer R. This is
illustrated in Fig. 2]

With KING, we propose an approximation to the true gradients, which only considers the direct
path and stops gradients through the indirect path. While this introduces an error in the gradient
estimation, we empirically find it to work well while leading to several advantages. Firstly, it enables



gradient-based generation in the common case where the rendering function or driving policy is
non-differentiable, preventing gradients to be taken wrt. the indirect path. Secondly, even when all
components are differentiable, taking gradients wrt. to the indirect path involves backpropagating
through the driving policy and rendering function (dotted red arrows in Fig. [2) - a significant
computational overhead. We investigate this setting for AIM-BEV where both the driving policy and
rendering function are differentiable in Section[4.2]and show that given a fixed computational budget,
this overhead leads to results worse than KING. We hypothesize that utilizing gradients through both
paths becomes more important as the driving policy becomes robust to attacks.

Robust Training for IL: We are further interested in improving robustness by augmenting the
original training data with the generated safety-critical scenarios. To this end, we pursue a simple
yet effective strategy: (1) we generate a large set of safety-critical scenarios, (2) we filter these for
scenarios in which a priviliged rule-based expert algorithm finds a safe alternate trajectory, (3) we
collect a dataset of observation-waypoint pairs D.,.;; using the expert, and (4) we fine-tune the policy
m,, on a mix of the safety-critical data D.,.;; and the original dataset D, ...

4 Experiments

We begin by presenting the research questions we aim to answer in this study.

Can gradient-based attacks outperform black-box optimization (BBO) for safety-critical sce-
nario generation? We are interested in reducing the optimization time needed to take a set of
non-critical scenario initializations and find interesting scenarios. Given the computational overhead
of computing gradients and performing a backward pass, we analyze the gains that can be achieved
for this task with gradient-based attacks over BBO in Section[4.2] In addition, as shown in Fig.
there are two paths for gradients through a simulator. We aim to understand the computational cost of
backpropagating through each path and the corresponding gains in terms of collision rates.

Are gradient-based attacks applicable to non-differentiable simulators? While our main ex-
periments are conducted using a differentiable simulator, in Section[d.3] we aim to investigate the
applicability of KING to non-differentiable rendering functions, such as CARLA’s camera and LiDAR
Sensors.

Can we improve robustness by augmenting the training distribution with critical scenarios? We
are interested in the analyzing robustness of the fine-tuned IL model that uses the data augmentation
strategy described in Section[3] In Section[4.4] we investigate this on both the regular benchmark
(hand-crafted scenarios) and held-out safety-critical test scenarios generated by KING.

4.1 Benchmarking IL Agents on Hand-Crafted Scenarios

To gain an initial understanding of their robustness, we first benchmark the agents used in our study
with hand-crafted scenarios from CARLA. As an additional benchmark that aims to maximize the
traffic interactions achievable with such scenarios, we select a set of short routes through intersections
involving dense traffic. We describe these benchmarks below. The results provide a reference for
performance of our AIM-BEV agent and the existing TransFuser agent on these settings which are
relevant for the following experiments. All our experiments are conducted using CARLA version
0.9.10.1.

Experimental Setup: AIM-BEV and TransFuser (27) are trained via supervised learning to imitate
a privileged expert on data containing regular CARLA traffic. The expert is a rule-based algorithm
similar to the CARLA traffic manager autopilot. We evaluate these models on two benchmarks: (1)
the NEAT validation routes from (6), and (2) a set of 82 routes through intersections in CARLA’s
Town10 with dense traffic. The NEAT routes provide a holistic evaluation of the driving performance,
but the evaluation is time-consuming. This set contains routes varying in length from 100m to
3km with regular CARLA traffic and hand-crafted scenarios. Since several of the routes are long
and contain low traffic densities, poor collision avoidance has limited impact on the final metrics.
For a more focused evaluation on collisions with traffic, the Town10 intersection routes are shorter
in length (80m-100m). In this setting, we ensure a high density of dynamic agents by spawning
vehicles at every possible spawn point permitted by the CARLA simulator. Furthermore, each route
is guaranteed to contain a hand-crafted scenario in which multiple vehicles enter the intersection



Table 1: Performance on hand-crafted scenarios. We show the mean = std over 3 evaluations.
AIM-BEYV has fewer infractions than TransFuser on the NEAT validation routes. However, both
agents collide in over 17% of the Town10 intersection routes.

\ NEAT validation routes (0) \ Town10 intersections
Method | RCt ISt DSt CR| | RC? ISt DS 1 CR |
AIM-BEV 96.77+332  0.95+000 92.24+3.32 2.38+4.12 | 93.86+0.14 0.92+001 86.74+067 17.48+1.86

TransFuser (27) 99.25+130 0.78+0.03 77.594201 11.90+4.12 | 93.68+201 0.85+000 80.03+0.79 17.48+0.70
Privileged Expert \ 99.83+007 1.00+0.00 99.83+0.07  0.00+0.00 \ 94.89+033  0.97+000 92.81+053 3.66-0.00

from different directions at the same time. We selected Town10 for this benchmark as we found it to
be the most challenging in preliminary experiments. On both of these benchmarks, we report the
official metrics of the CARLA leaderboard, Route Completion (RC), Infraction Score (IS) and
Driving Score (DS). RC is the percentage of the route completed by an agent before it gets blocked
or deviates from the route. IS is a cumulative multiplicative penalty for every red light violation, stop
sign violation, collision, and lane infraction. DS is the final metric, computed as the RC multiplied
by the IS for each route. Each model is tested with three different evaluation seeds. In addition, we
report the collision rate (CR), which is the percentage of routes in which the agent was involved in a
collision. Additional details regarding the driving metrics, rule-based expert, and training dataset for
the driving policy are provided in the supplementary.

Results: The performance of both IL-agents as well as the rule-based expert which uses privileged
information is shown in Table[I] Note that these methods have different inputs, and are not directly
comparable. AIM-BEV achieves superior results in comparison to TransFuser. In particular, its
significantly higher IS on the NEAT routes indicates that it is proficient at avoiding collisions when
placed in sparse and non-adversarial CARLA traffic. On the Town10 intersections, AIM-BEV has
a better IS than TransFuser, but we observe that the CR of both agents is similar (17.48%). This is
much higher than the expert (CR=3.66%), showing that hand-crafted scenarios in dense traffic remain
challenging for current IL-based methods. These hand-crafted scenarios are not adaptive to the agent,
i.e., the same scenarios are applied for both AIM-BEV and TransFuser. In the following, we study
the more targeted approach of actively generating safety-critical scenarios that are adaptive to the
agent being attacked.

4.2 Comparison to BBO for Safety-Critical Scenario Generation

Next, we analyze the efficacy of KING for the generation of safety-critical scenarios, by comparing it
with several BBO baselines for attacking AIM-BEV.

Experimental Setup: One scenario in our experimental setup involves rolling out a policy for 20
seconds of simulation time (80 timesteps at 4fps). We find this time horizon to be sufficient for
the ego agent to traverse a route from the start location to the end location while coming in close
proximity to the adversarial agents. We compare several adversarial optimization techniques on
80 such scenarios. We obtain 4 maps (Town03-Town06) from the CARLA simulator. The 4 maps
have a wide variety of road layouts, including intersections, single-lane roads, multi-lane highways,
exits, and roundabouts. We sample a dense set of candidate start locations and end locations for the
ego agent from the set of all junctions available in these 4 maps. The 80 ego agent routes in our
evaluation are obtained by uniformly sampling 20 candidate routes per CARLA town. For each of
these routes, we then initialize the adversarial agents to mimic regular CARLA traffic to obtain an
initial, non-critical scenario, which allows explicit control over the traffic density. We use three traffic
densities in our evaluation: 1, 2 and 4 agents (additional details in supplementary). The adversarial
scenarios are evaluated using the collision rate (CR), which is the percentage of routes for which the
adversarial scenario search yielded a collision while respecting behavioral constraints. A search is
only considered successful if all adversarial agents stay on drivable parts of the map (i.e., the road)
and do not collide with other adversarial agents. To evaluate convergence, we report the average
time to 50% collision rate (¢5,9). This measures the average computation cost (in GPU seconds)
required to find a collision in 50% of the total scenarios available. Finally, we report the runtime of
each technique as the average number of optimization seconds per iteration (s/it). The ¢599 and
s/it metrics for KING as well as all baselines are evaluated on a single RTX 2080Ti GPU. For all



Table 2: Critical scenario generation on CARLA. We show the CR, t5¢9 and s/it for different
optimization techniques in three traffic settings, as well as the aggregated metrics. KING finds
collisions in over 80% of the initializations.

| 1 Agent | 2 Agents | 4 Agents | Overall
Method | CRT tson | sfit] | CRT tsoy | shit] | CRT sy sht] | CRT tage | shit]
Random Search 62.50 9.25 1.30 | 68.75 7.38 1.35 | 68.75 1522 148 | 66.67 9.66 138
Bayesian Optimization | 63.75 11.88 1.46 | 68.75 10.01 1.66 | 63.75 22.12 2.06 | 65.00 1434 1.73
SimBA (13) 60.00 14.14 130 | 71.25 1435 1.35 | 61.25 19.68 148 | 64.17 1584 1.38
CMA-ES (14) 67.50 9.34  1.31 | 75.00 6.73 1.36 | 62.50 9.39 1.52 | 68.33 8.17 140
Bandit-TD (17) 37.50 - 3.87 | 30.00 - 4.39 | 21.25 - 5.02 | 29.58 - 4.43
KING Direct + Indirect | 81.25 17.63  3.17 | 76.25 11.58 3.22 | 80.00 13.14 340 | 79.17 14.09 3.26
KING (Ours) 86.25 9.98 1.78 | 82.50 6.96 1.88 | 78.75 6.40 2.03 | 82.50 778 190

methods, we use a compute budget of 180 seconds per route on a single GPU, leading to a total
experimental budget of up to 4 GPU hours for 80 routes.

Results: We now assess the efficiency of KING compared to BBO. To this end, we report the
CR, t50% and s/it of our approach and several baselines in Table [2] We consider the three traffic
density settings separately, as well as the overall metrics for the complete set of 80x 3 scenarios. Our
baselines optimize the scenario parameters via BBO. In particular, besides Random Search and
Bayesian Optimization, we consider SimBA (13), CMA-ES (14) and Bandit-TD (17). SimBA is a
variant of Random Search that greedily maximizes the objective and CMA-ES is a state-of-the-art
evolutionary algorithm. Finally, Bandit-TD computes numerical gradients by integrating priors into a
finite differences approach.

KING obtains a significantly higher CR than the BBO baselines in all 3 settings, increasing the
number of scenarios for which a safety-critical perturbation is found by over 20%. Among the BBO
baselines, CMA-ES attains the best overall scores with respect to both CR and ¢5(9,. Interestingly,
the best performance for BBO is often observed for N = 2 agents. As we increase N from 1 to 2, it
becomes easier for the baselines to find one nearby agent that can be perturbed to collide with the ego
agent. However, further increasing NV to 4 makes it harder to maintain plausible trajectories where
the adversarial agents do not collide with each other or go off-road, leading to reduced performance.
As the dimensionality of the search space increases (e.g. N = 4), KING begins to outperform the
baselines in terms of £549, by a large margin.

We also compare the proposed approximation in KING against the setting where we use gradients
through entire simulation, including the driving policy and renderer (“KING Direct + Indirect” in
Table [2). While also reliably finding safety-critical perturbations, the computational overhead of
backpropagating through the indirect path leads to worse overall results given the same computation
budget. This suggests the approximation in KING is reasonable for efficiently generating safety-
critical scenarios. Additional results and details regarding the hyper-parameter choices for BBO are
provided in the supplementary material. Since we observe that gradients through the direct path
only are sufficient, we now conduct a detailed qualitative analysis where we apply KING to attack
TransFuser, which requires the use of CARLA’s non-differentiable camera and LiDAR sensors for
rendering.

4.3 Analysis of Safety-Critical Scenarios

In this section, we analyze the safety-critical scenarios generated by KING for both AIM-BEV and
TransFuser in detail. Specifically, we show the distribution of the resulting scenarios with a traffic
density of N = 4 agents in Fig. [3] For both driving agents, we first filter out the set of scenarios
where KING is unable to find a collision (“No Collision") as well as those that are not solvable by the
rule-based expert (“Not Solvable"). We cluster the remaining scenarios using k-means (similar to
(29)) to obtain 6 clusters of failure modes such as cut-ins (a; ), rear-ends (as) and unsafe behavior in
unprotected turns (e,f). From the frequency of scenarios with “No collision" in Fig. 3] we observe
that both AIM-BEV and TransFuser collide in at least 80% of the scenarios. This is a significant
deviation from the collision avoidance of both models in the benchmarks shown in Table[I] where
they attain a CR below 20%. The large amount of collisions for TransFuser indicates that KING can
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Figure 3: Collision types. KING generates a diverse set of challenging but solvable scenarios. We
group these into 6 clusters (a-f). The illustrations depict the ego agent in red and the adversarial
agent in blue. The scenarios include (a) cut-ins and rear-ends caused by the ego agent, (b) head-on
collisions, (c) merges, (d) side collisions with oncoming traffic, and t-bone collisions in intersections
(e and f).

Figure 4: KING scenarios - AIM-BEV. In in-
tersections, AIM-BEV often fails to yield to the
perturbed traffic. This leads to t-bone collisions,
either by AIM-BEV (left) or the adversarial agent
(right), corresponding to clusters (e) and (f) in
Fig.[3

Figure 5: KING scenario - TransFuser (27). We
show a scenario along with camera and LiDAR
inputs two seconds before and at collision. Trans-
Fuser fails to slow down for an adversarial agent
which stops inside the intersection (red box).

achieve promising results when applied out-of-the-box to driving simulators with non-differentiable
rendering functions.

We show qualitative examples in Fig. @] and 5] and additional examples in the supplementary material.
Both AIM-BEV and TransFuser frequently collide in intersections when they encounter traffic that
behaves differently from the traffic observed during training. Importantly, the “Not solvable" column
shows that for both agents, only around 20% of the scenarios have no feasible alternate trajectory.
This leaves a large proportion of solvable scenarios in the 6 clusters shown in Fig.[3] The most
frequent failure modes of both models are observed in clusters (a) and (b), which involve cut-ins,
rear-ends, and head-on collisions. The rule-based expert solves these challenging scenarios by
accurately forecasting the motion of the adversarial actors using privileged information. Interestingly,
the failure cases are fairly evenly distributed over the 6 clusters which involve a wide variety of
relative orientations between the colliding agents. The examples in Fig. 4 correspond to clusters (e)
and (f). We highlight examples from clusters (a;) and (as) for our experiment in Fig. [6| The high
frequency and diversity of solvable scenarios generated by KING indicate its potential to augment
the original training data for IL models, which we investigate next.

4.4 Evaluating Robustness after Fine-Tuning

Finally, we analyze the efficacy of the generated scenarios in augmenting the regular data D,.., to
yield more robust driving agents. Here, we evaluate robustness both wrt. safety-critical scenarios



Table 3: Robust training for AIM-BEYV. Results shown are the mean and std over 3 evaluation
seeds. Fine-tuning with safety-critical scenarios reduces the CR by over 50% on other safety-critical
scenarios as well as hand-crafted scenarios from CARLA.

\ Held-out KING scenarios \ Hand-crafted scenarios (Town10 intersections)
Dataset | CR | | RC 1 IS¢ DS 1 CR |
No Fine-tuning 100.00+0.00 93.86+0.14 0.92-+0.01 86.74+0.67 17.48+1.86
Dieg 57.14+0.00 95.66-+0.51 0.90+0.00 86.85+0.62 19.51+0.00
Derit 28.57+0.00 91.92+0.19 0.96-+0.00 88.37+0.41 6.10-+0.00
Derit U Dyeg 28.57+0.00 94.42+0.36 0.96+0.36 90.20-+0.00 8.13+0.70

Figure 6: Improved collision avoidance on held-out KING scenarios with AIM-BEV. Comparison
of AIM-BEYV before and after fine-tuning on Dc,;; U D;¢q in two KING scenarios. Ego agent in red,
adversarial agent in blue. Best viewed zoomed in.

generated by KING and to hand-crafted scenarios in the CARLA simulator (using the Town10
intersections benchmark).

Experimental Setup: The goal of this experiment is to collect training data for improving collision
avoidance. To this end, we build a large set of safety-critical scenarios by attacking AIM-BEV
using initializations from Town03-Town06 of CARLA with N = 4 agents. To ensure meaningful
supervision, we filter the resulting scenarios for ones where KING finds collisions that are solvable
by the expert. This results in around 300 scenarios from which we hold out 20% for evaluation. We
ensure that there is no overlap between the training and evaluation during this split by preventing
routes with the same ego vehicle start location from being in both splits. Additional details regarding
the training data and hyper-parameters are provided in the supplementary material.

Results: We report the driving performance of AIM-BEV after fine-tuning on D.jy U D,.q in
Table 3] Since the trajectories of the adversarial agents are fixed after optimization via KING, some
of the scenarios may be solvable by simply adopting different overall driving styles, rather than
becoming more proficient at collision avoidance. To quantify this, we fine-tune each model with only
the original training data D,.., as a baseline, which reduces the CR from 100% to 57.14% on the
held-out KING scenarios. Additionally, we compare to fine-tuning on only the critical scenarios D¢
and the initial checkpoint from Table[T] (“No Fine-tuning"). Among the three fine-tuning strategies,
using only D,..4 leads to unsatisfactory results, with a CR of 19.51% on the Town10 intersections
benchmark. Using only D,.;; leads to a large reduction in CR on both evaluation settings. However,
the model has a lower RC and only a small improvement in DS when compared to the D,.., baseline
on the Town10 intersections. Finally, using the combined dataset of D.,.;; U D,.4 gives the best
results. In this setting, we obtain a CR of 28.57% on the KING scenarios, which is identical to the
model fine-tuned with only D,,.;;. However, the DS of this model on Town10 is improved by over 3
points, since it reduces the CR while maintaining a similar RC to the original model. This shows that
the simple strategy of fine-tuning on a mixture of regular and safety-critical data is an effective way
of learning from the scenarios generated by KING.

In Fig. |6l we show qualitative driving examples of the original and fine-tuned AIM-BEV agents on
held-out KING scenarios, which belong to clusters (a;) and (a3) from Fig. El ‘While these scenarios
are straightforward to handle for an expert driver, AIM-BEYV fails to brake for a vehicle stopping in
between two lanes and is unable to maintain a safe distance in merging maneuvers, which highlights
its brittleness in 0.0.d scenarios. These scenario types do not frequently emerge naturally from the



CARLA simulator’s background agent behavior which governs D,..4. By incorporating data from
D.rit during training, the driving agent can learn to handle these scenarios safely.

5 Conclusion

We propose a novel gradient-based safety-critical scenario generation procedure, KING, which
achieves significantly higher success rates compared to existing BBO-based attacks while being more
efficient. By augmenting the training data with scenarios from KING, we are able to significantly
improve the collision avoidance of an imitation learning-based driving agent.

Acknowledgments: This work was supported by the BMWi (KI Delta Learning, project numbers:
19A19013A, 19A190130), the BMBF (Tiibingen Al Center, FKZ: 011S18039A, 011S18039B) and
the DFG (SFB 1233, TP 17, project number: 276693517). We thank the International Max Planck
Research School for Intelligent Systems (IMPRS-IS) for supporting Katrin Renz and Kashyap Chitta.
We also thank Aditya Prakash and Bernhard Jaeger for proofreading.

References

[1] Abeysirigoonawardena, Y., Shkurti, F., Dudek, G.: Generating adversarial driving scenarios
in high-fidelity simulators. In: Proc. IEEE International Conf. on Robotics and Automation
(ICRA) (2019)

[2] Behl, A., Chitta, K., Prakash, A., Ohn-Bar, E., Geiger, A.: Label efficient visual abstractions
for autonomous driving. In: Proc. IEEE International Conf. on Intelligent Robots and Systems
(IROS) (2020)

[3] Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D.,
Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for
self-driving cars. arXiv.org 1604.07316 (2016)

[4] Casas, S., Sadat, A., Urtasun, R.: Mp3: A unified model to map, perceive, predict and plan. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2021)

[5] Chen, D., Koltun, V., Krihenbiihl, P.: Learning to drive from a world on rails. In: Proc. of the
IEEE International Conf. on Computer Vision (ICCV) (2021)

[6] Chitta, K., Prakash, A., Geiger, A.: Neat: Neural attention fields for end-to-end autonomous
driving. In: Proc. of the IEEE International Conf. on Computer Vision (ICCV) (2021)

[7] Codevilla, F., Miiller, M., Lopez, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via
conditional imitation learning. In: Proc. IEEE International Conf. on Robotics and Automation
(ICRA) (2018)

[8] Codevilla, F., Santana, E., L6pez, A.M., Gaidon, A.: Exploring the limitations of behavior
cloning for autonomous driving. In: Proc. of the IEEE International Conf. on Computer Vision
(ICCV) (2019)

[9] Ding, W., Chen, B, Li, B., Eun, K.J., Zhao, D.: Multimodal safety-critical scenarios generation
for decision-making algorithms evaluation. IEEE Robotics and Automation Letters (RA-L) 6(2),
1551-1558 (2021)

[10] Ding, W., Xu, M., Zhao, D.: Learning to collide: An adaptive safety-critical scenarios generating
method. In: Proc. IEEE International Conf. on Intelligent Robots and Systems (IROS) (2020)

[11] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban driving
simulator. In: Proc. Conf. on Robot Learning (CoRL) (2017)

[12] Filos, A., Tigas, P., McAllister, R., Rhinehart, N., Levine, S., Gal, Y.: Can autonomous vehicles
identify, recover from, and adapt to distribution shifts? In: Proc. of the International Conf. on
Machine learning ICML) (2020)



[13] Guo, C., Gardner, J.R., You, Y., Wilson, A.G., Weinberger, K.Q.: Simple black-box adversarial
attacks. In: Proc. of the International Conf. on Machine learning ICML) (2019)

[14] Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation 9(2), 159-195 (2001)

[15] Hendy, N., Sloan, C., Tian, F., Duan, P., Charchut, N., Xie, Y., Wang, C., Philbin, J.: Fishing
net: Future inference of semantic heatmaps in grids. arXiv.org 2006.09917 (2020)

[16] Hu, A., Murez, Z., Mohan, N., Dudas, S., Hawke, J., Badrinarayanan, V., Cipolla, R., Kendall,
A.: FIERY: future instance prediction in bird’s-eye view from surround monocular cameras. In:
Proc. of the IEEE International Conf. on Computer Vision (ICCV) (2021)

[17] Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: Black-box adversarial attacks with
bandits and priors. In: Proc. of the International Conf. on Learning Representations (ICLR)
(2019)

[18] Janai, J., Giiney, F., Behl, A., Geiger, A.: Computer Vision for Autonomous Vehicles: Problems,
Datasets and State of the Art, vol. 12. Foundations and Trends in Computer Graphics and Vision
(2020)

[19] Loukkal, A., Grandvalet, Y., Drummond, T., Li, Y.: Driving among Flatmobiles: Bird-Eye-View
occupancy grids from a monocular camera for holistic trajectory planning. arXiv.org 2008.04047
(2020)

[20] Mani, K., Daga, S., Garg, S., Sai Shankar, N., Murthy Jatavallabhula, K., Madhava Krishna,
K.: MonoLayout: Amodal scene layout from a single image. In: Proc. of the IEEE Winter
Conference on Applications of Computer Vision (WACV) (2020)

[21] Norden, J., O’Kelly, M., Sinha, A.: Efficient black-box assessment of autonomous vehicle
safety. arXiv.org 1912.03618 (2019)

[22] Ohn-Bar, E., Prakash, A., Behl, A., Chitta, K., Geiger, A.: Learning situational driving. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2020)

[23] O' Kelly, M., Sinha, A., Namkoong, H., Tedrake, R., Duchi, J.C.: Scalable end-to-end au-
tonomous vehicle testing via rare-event simulation. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS) (2018)

[24] Pan, B., Sun, J., Leung, H.Y.T., Andonian, A., Zhou, B.: Cross-view semantic segmentation for
sensing surroundings. IEEE Robotics and Automation Letters (RA-L) (2020)

[25] Philion, J., Fidler, S.: Lift, splat, shoot: Encoding images from arbitrary camera rigs by
implicitly unprojecting to 3d. In: Proc. of the European Conf. on Computer Vision (ECCV)
(2020)

[26] Pomerleau, D.: ALVINN: an autonomous land vehicle in a neural network. In: Advances in
Neural Information Processing Systems (NIPS) (1988)

[27] Prakash, A., Chitta, K., Geiger, A.: Multi-modal fusion transformer for end-to-end autonomous
driving. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2021)

[28] Priisalu, M., Pirinen, A., Paduraru, C., Sminchisescu, C.: Generating scenarios with diverse
pedestrian behaviors for autonomous vehicle testing. In: Proc. Conf. on Robot Learning (CoRL)
(2022)

[29] Rempe, D., Philion, J., Guibas, L.J., Fidler, S., Litany, O.: Generating useful accident-prone
driving scenarios via a learned traffic prior. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) (2022)

[30] Roddick, T., Cipolla, R.: Predicting semantic map representations from images using pyramid

occupancy networks. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
(2020)

10



[31] Sadat, A., Casas, S., Ren, M., Wu, X., Dhawan, P., Urtasun, R.: Perceive, predict, and plan:
Safe motion planning through interpretable semantic representations. In: Proc. of the European
Conf. on Computer Vision (ECCV) (2020)

[32] Sauer, A., Savinov, N., Geiger, A.: Conditional affordance learning for driving in urban
environments. In: Proc. Conf. on Robot Learning (CoRL) (2018)

[33] Toromanoff, M., Wirbel, E., Moutarde, F.: End-to-end model-free reinforcement learning for
urban driving using implicit affordances. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (2020)

[34] Wang, J., Pun, A., Tu, J., Manivasagam, S., Sadat, A., Casas, S., Ren, M., Urtasun, R.: Advsim:
Generating safety-critical scenarios for self-driving vehicles. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (2021)

[35] Xiao, Y., Codevilla, F.,, Pal, C., Lopez, A.M.: Action-Based Representation Learning for
Autonomous Driving. In: Proc. Conf. on Robot Learning (CoRL) (2020)

[36] Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., Urtasun, R.: End-to-end interpretable
neural motion planner. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2019)

[37] Zhang, Z., Liniger, A., Dai, D., Yu, F., Van Gool, L.: End-to-end urban driving by imitating a
reinforcement learning coach. In: Proc. of the IEEE International Conf. on Computer Vision
Icecv) (2021)

[38] Zhou, Y., Sun, P, Zhang, Y., Anguelov, D., Gao, J., Ouyang, T., Guo, J., Ngiam, J., Vasudevan,
V.: End-to-end multi-view fusion for 3d object detection in lidar point clouds. In: Proc. Conf.
on Robot Learning (CoRL) (2019)

11



	Introduction
	Related Work
	Safety-Critical Scenario Generation for Robust Imitation
	Experiments
	Benchmarking IL Agents on Hand-Crafted Scenarios
	Comparison to BBO for Safety-Critical Scenario Generation
	Analysis of Safety-Critical Scenarios
	Evaluating Robustness after Fine-Tuning

	Conclusion

