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Abstract

Averaging predictions of a deep ensemble of networks is a popular and effective
method to improve predictive performance and calibration in various benchmarks
and Kaggle competitions. However, the runtime and training cost of deep ensembles
grow linearly with the size of the ensemble, making them unsuitable for many
applications. Averaging ensemble weights instead of predictions circumvents this
disadvantage during inference and is typically applied to intermediate checkpoints
of a model to reduce training cost. Albeit effective, only few works have improved
the understanding and the performance of weight averaging. Here, we revisit
this approach and show that a simple weight fusion (WF) strategy can lead to a
significantly improved predictive performance and calibration. We describe what
prerequisites the weights must meet in terms of weight space, functional space and
loss. Furthermore, we present a new test method (called oracle test) to measure
the functional space between weights. We demonstrate the versatility of our WF
strategy across state of the art segmentation CNNs and Transformers as well as real
world datasets such as BDD100K and Cityscapes. We compare WF with similar
approaches and show our superiority for in- and out-of-distribution data in terms
of predictive performance and calibration.
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1 Introduction

Real-world applications for which AI systems are in the safety-critical path, i.e., represent the basis
for the decision-making process, impose the highest demands on the AI modules composing these
systems. This refers to generalization capability, robustness, calibration, and for practical reasons,
computational efficiency. Deep ensembles can demonstrably contribute to an improvement in the
mentioned points (27; 16) except for efficiency. For a variety of applications, e.g., autonomous driving
and driving assistance systems, the efficiency consideration is not insignificant. Despite a steadily
increasing performance of information processing capabilities by both hardware and software, the
required computing power and runtime is a tremendous challenge for a large number of applications.
Fusion of weights instead of predictions or logits (20; 12) ultimately leads to a single set of weight
only, thus effectively addressing the limited computational budget requirement. The runtime of fused
weights is exactly the same as for a single network, with the additional benefit of encapsulating
diverse information from multiple networks.

Fort et al. (10) show that although the same Deep Neural Network (DNN) architecture was trained
with the same data and hyperparameters (only the initialization was different), the weak spots of the
resulting weights were different. The basic idea of averaging weights is to compensate the weak
spots of the individual weights. Averaging weights have been shot to lead to wider optima and better
generalization (18). So far, few works have proposed a better understanding and improvements of
this strategy. In addition, weight averaging has been mostly applied to classification tasks and the
breakthrough to real world tasks such as semantic segmentation has been largely missing. One reason
for the missing breakthrough may be that too little is known about the prerequisites of the weights to
be fused and how these prerequisites could be fulfilled.

Here we focus on the real world task of semantic segmentation and shed light on the prerequisites of
the weights to be fused. These preconditions include measurements in the weights space and function
space between the weights. We measure the weight space using the cosine similarity which should be
as high as possible for the weight fusion. At the same time, the weights in function space should be
as far away as possible, since the distance correlates with the diversity of the weak spots. The higher
the diversity, the higher the potential for weight fusion. For the measurement of the function space,
we introduce the so-called oracle testing, which is novel to the best of the authors’ knowledge. We
give insights and guidance to find the optimal compromise between weight space and function space
and describe two approaches to generating the weights to be fused. We apply weight fusion to three
SOTA architectures: DeepLabV3+ (4), HRNet (36), and Segmenter (33). We use the BDD100K (40),
Cityscapes (6) and ACDC (32) dataset for our experiments.

Our main contribution is to demonstrate a simple and effective method to fuse two or more sets of
DNN weights into a single one. (i) Our weight fusion method improves predictive performance and
calibration without impacting runtime cost. (ii) In extensive studies, we derive important properties
of DNN weights towards weight fusion. (iii) We introduce a new testing method that can measure
the functional space between weights, called oracle testing. (iv) We conduct extensive experiments
on multiple SoTA segmentation architectures (CNNs and Transformers) on multiple real world
datasets. (v) We show the superiority of our approach in a comparison with Stochastic Weight
Averaging (SWA) (18) and deep ensembles for in-distribution as well as for out-of-distribution data
(ACDC) (32).

2 Weight Fusion

Our approach of weight fusion is to generate at least two weights of the same DNN and to fuse them
with a weighted averaging into a single network. The goal of the weight fusion is to improve the
performance as well as the calibration of the DNN, while not impacting the runtime performance of
the DNN.

Formally, we define a training dataset D = f(xi;yi)gni=1 with n samples and labels, where xi 2
Rh�w�c are images with spatial resolution h � w and c color channels, and yi 2 Rh�w�1 are
semantic segmentation labels (one label for each pixel in xi). We consider a neural network f�(�)
with trainable parameters �, that processes the input image xi and outputs a semantic map prediction
ŷi. Different random initializations of the parameters � lead to different sets of weights after training.
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We denote with �(�) the parameters of a specific training process � and with f�(�)(�) the corresponding
network.

The weight fusion represents a weighted averaging of the weight files (checkpoints) computed from
two different training runs. Formally we define the element-wise fusion of two sets of parameters as
follows: �� = ��(1) + ��(2), where �(1) and �(2) are two sets of parameters for f , � and � are fusion
parameters with � = 1� �, and �� is the set of fused weights.

2.1 Weight Properties for Improved Fusion

We hypothesize that weights �(�) must satisfy three properties to achieve optimal performance and
calibration improvements: (i) high cosine similarity to each other; (ii) a high value in oracle testing;
(iii) a low loss on the validation data. In the following we detail these properties.

(i) Cosine similarity. Cosine similarity is a measure of the similarity of two vectors. The cosine
of the angle between two vectors �(1) and �(2) (we flatten and concat the DNN parameters into a
single vector) is determined by: cos() = �(1)��(2)

jj�(1)jj�jj�(2)jj . An angle of 0 degrees corresponds to 1, i.e.,
the vectors are parallel, while an angle of 90 degrees results in 0, i.e., the vectors are perpendicular
to each other. Cosine similarity can be considered as a measurement in the weight space. DNNs
with different initializations can reach highly different local optima after training. Two networks can
have very similar predictions but low similarity, e.g., convolutional filters from the two networks are
permuted. Since the weight fusion is done element-wise it is essential for the two networks to not be
far away from each other as the final weights �� risk being useless. We add the pytorch code snippets
for weight fusion and cosine similarity in Appendix C.

(ii) Oracle testing. In Oracle testing, an oracle merges all true positives of the DNN predictions into
a single output/prediction based on the ground truth. Then, the corresponding metric is calculated for
the merged prediction (e.g., mIoU). If the DNN predictions are very similar in their errors, the result
of the metric will be similar to the single predictions. In other words, the DNNs are close together
in the functional space. If the DNN predictions are diverse in terms of true positives, the oracle test
yields a high value. This means that the DNNs are far away in the function space. The quality of an
ensemble is a major advantage of DE (20) over other approaches (10). Higher diversity means that the
models are not stuck in the same local optimum and do not have the same weak spots. Quantitatively,
diversity is usually computed as dissimilarity between predictions from pairs of networks (1; 10; 30).
Oracle testing takes the ground truth into account and can be considered as a measurement in the
function space. The pytorch code snippet is listed below in 1.

1 for num in range(number_weights):
2 mask[num] = [outputs[num] == ground_truth]
3 outputs[0][mask[num]] = outputs[num][mask[num]]

Listing 1: Iterate over the number of weights to be used to calculate the oracle testing. Outputs is a
list containing the output of the models.

(iii) Validation loss. Empirically, we can show that the validation loss of the weights to be fused is
a relevant factor and should be close to its local minimum.

2.2 Generation of DNN Weights

To generate the weights, we distinguish the following two options, which we examine in more detail
in sec. 3.

1) The weights are generated by training from “scratch” (see §3.1). Here it is necessary to keep the
hyperparameters as well as the training data the same for each training run. To achieve a high oracle
test result, we show in our experiments with DeeplabV3+, HRNet, and the Segmenter that changing
the initialization seed is sufficient. This change does reduce cosine similarity, but only slightly. With
this approach we achieve a good compromise between cosine similarity and oracle testing for the
mentioned architectures.

2) The weights are derived from a finetuning where an already trained weight is used as starting
weight (see §3.2). The same data is used for the finetuning as for the prior training. The finetuning is
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performed with a cosine annealing learning rate schedule and can range from one to several cycles.
The cosine annealing learning rate schedule is de�ned as:lr = 1

2 �
P N

T =1 start_lr�
�
1 + T

N ��

�
. T is

the current iteration andN is the total amount of iterations, i.e., the multiplication of the number of
epochs by the number of iterations per epoch. The length of the cycles can range from one to several
epochs. The height of the start-learning rate for the cycles is crucial for the optimal property of the
weights for the fusion.

Further procedure. In 1) and 2) we use the presented properties (cosine similarity, oracle testing,
validation loss) of the weights to determine the suitable weights for the fusion. Then, we determine
the fusion parameter� using grid search in 0.05 steps on the validation data. Please note that training
the� parameter would not lead to any noteworthy improvement for the following two reasons: (i)
Finer resolution of the step size did not achieve any signi�cant improvements� +0 :1 mIoU). (ii)
There is little reduction in computational effort when comparing the forward passes required for
the grid search with the forward plus backward passes required in a training process over multiple
epochs. Once several fused weights have been determined, one selects the fused weight with the best
predictive performance on the validation data as the �nal fused weight. This procedure is transferable
to new DNNs, datasets or tasks.

3 Experiments

The generation of the weights to be fused can be done in two ways. (i) By training from “scratch”
and (ii) �netuning. Therefore, we divide the experiments into two subsections. §3.1 describes weight
fusion based on weights obtained through multiple trainings from scratch. We show that our weight
fusion approach generalizes to multiple DNN architectures as well as datasets. We demonstrate
statistically signi�cant results for three state-of-the-art architectures for semantic segmentation
DeeplabV3+ (4), HRNet (36) and Segmenter (33), based on real world datasets such as BDD100K
and Cityscapes. We consider the fusion properties for performing weight fusion, but not focusing on
analysing them in this subsection.

In §3.2, we use a �nal trained weight as a starting point for �netuning. We demonstrate detailed
analysis on cosine similarity, oracle testing and validation loss in the context of weight fusion. For
this and subsequent experiments, we limit ourselves to using DeeplabV3+ and BDD100K due to
limited compute budget.

To avoid negative in�uence of label errors in the ground truth data of the BDD100K dataset, we
adapted it manually. Furthermore, we split the available 7k images into 5k training data, 1k validation
data and 1k test data. The process for adaptation and splitting as well as a description of Cityscapes (6)
and ACDC (32) is described in more detail in Appendix D. For reproducibility of the experiments,
we list all the hyperparameters used for the trainings in Appendix C.

3.1 Fusion of Weights Trained from Scratch

For the generation of the weights we run several trainings from scratch. We change only the
initialization by specifying different random seeds, i.e., the architecture, the hyperparameters and
the training data remain exactly the same. These constraints lead to weight sets with a good
compromise between oracle testing and cosine similarity, which is needed for weight fusion. To
ensure a certain statistical signi�cance, we performed four training runs each with DeepLabV3+,
HRNet and Segmenter on the BDD100K and Cityscapes datasets - a total of 20 runs.1 This serves
to reduce statistical �uctuations due to different sources of variation (7) and allowing us to reliably
attribute the performance improvement to weight fusion only. The resulting 4 weights per DNN
architecture and dataset allow for 6 different possible combinations when fusing 2 weights each
according to: n !

r !( n � r )! with n = 4 and r = 2.

Fig. 1 illustrates the behavior of the DeepLabV3+ architecture during weight fusion in terms of
predictive performance and calibration. Fig. 1(a) shows the mIoU for DeepLabV3+ on the validation
data from BDD100K and Cityscapes and on the test data from BDD100K. The mIoU values are
obtained by averaging the mIoU values over the 6 fused weights and are represented by a black line.

1Due to convergence dif�culties with the Segmenter on the BDD100K data, we limit the evaluation of weight
fusion to Cityscapes.

4



(a) (b)

Figure 1: DeepLabV3+ performance and calibration for 6 fused weights averaged for� from 0 to 1
in 0.05 steps. Please note that�=� = 0/1 corresponds to the single weights.(a) mIoU (b) ECE.

Table 1: Per class mIoU in % with the fusion parameters�=� = 0.1/0.9 for BDD100K and 0.15/0.85
for Cityscapes. The number between brackets shows the improvement (green) or deterioration (red)
compared to the single weights. Especially the classes with a small pixel density have improved the
most. Please note that the classtrain was not learned at all probably due to the limited images
containingtrain in the BDD100K training data.

Road Sidewalk Building Wall Fence Pole Traf�c Light Traf�c Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Overall
2*BDD100K 94.71 65.40 85.77 29.29 51.14 52.91 58.33 56.29 86.49 51.17 95.32 65.73 46.36 90.70 58.88 81.41 0.00 55.87 57.30 62.27

(+0.14) (+0.51) (+0.25) (+0.02) (+0.14) (+2.86) (+4.67) (+3.46) (+0.12) (+0.56) (+0.17) (+2.10) (-1.33) (+0.39) (+1.73) (+2.30) (0.00) (+1.42) (+3.67) (+1.14)
2*Cityscapes 97.73 82.92 91.39 52.72 56.77 60.09 67.03 75.64 91.56 62.95 94.06 79.41 60.62 93.48 64.25 80.67 61.55 58.86 74.59 73.94

(+0.03) (-0.01) (+0.25) (+0.44) (-0.23) (+0.78) (+2.93) (+1.67) (+0.17) (+0.14) (+0.60) (+1.25) (+1.00) (+0.01) (-0.35) (+0.25) (+0.99) (+0.20) (+1.36) (+0.53)

The colored areas show the minimum and maximum mIoU values. The x-axis describes� and� , the
scalar values used as fusion parameter. The mIoU values are mirrored at the point� = 0.5, so that the
order of the weights can be neglected. For this reason, the x-axis that extends to 0.5 is complete. It is
illustrated that with the fusion parameters�=� = 0.1/0.9 and 0.15/0.85, the maximum mIoU value is
obtained over the 6 averaged mIoU values (see arrows in Fig. 1(a)). Table 1 shows the classes mIoU
for these fusion parameters. It can be seen that the classes with a low pixel density such astraffic
light , traffic sign , bicycle andperson bene�t the most from weight fusion.

How this behavior looks in semantic segmentation masks can be seen in Fig. 2(a). The images with
� = 0 and� = 1 correspond to the single predictions of weights 0 and 1, respectively. As alpha
approaches 0.5, fewer predictions are seen for the small classes such astraffic light , person,
etc., which explains the increased precision and reduced recall. Looking at thesidewalk in the
image with� = 0.15, we notice that it is most similar to ground truth. This shows that the fused
weight is not simply an alignment of the two weights 0 and 1, but represents a completely new
function. In other words, the weight fusion results in a new point in function space. More �gures
con�rming this behavior can be found in Appendix D.

Further analysis was done on the weight fusion by evaluating the calibration of the fused DNNs
based on the expected calibration error (ECE) (14; 26), see Fig. 1(b). Explanation of the ECE are in
Appendix H available. It can be seen that the lowest ECE is found at� = 0.1 where the ECE reaches
the lowest value for all three data splits, which means that a signi�cantly better calibration is achieved
matching its counterpart maximum mIoU in Fig. 1(a). This indicates that the fusion does not only
improve the mIoU but also improves the calibration of the network. Further evaluations regarding
precision and recall as well as Kullback-Leibler (KL) divergence can be found in Appendix I.

Average results for DeepLabV3+, HRNet, and Segmenter are shown Table 2. The numbers in
parentheses indicate the improvement (green) and deterioration (red) from the single weight. Please
note that the numbers given are averages over 4 single weights and the resulting 6 fused weights.
Furthermore, for the sake of clarity, the same� parameter was used for all 6 fused weights, i.e.,
there was no individual selection of� , which would have led to even better results. For the results
on BDD100K, the� value that performed best on the validation data was used. Improvements in
performance (mIoU, precision, recall) and calibration (ECE, KL) can be seen across the board. This
demonstrates that the weight fusion is also transferable to different CNNs and also Transformers.
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(a) (b)

Figure 2: (a) Illustration of semantic segmentation for different alpha values using DeepLabV3+ and
an example image from BDD100K.� = 0.0 and 1.0 show the predictions of the single weights.�
= 0.15 shows the prediction of the fused weight where the pedestrian and the sidewalk are better
segmented. Please note that the color white representsvoid . (b) Visual comparison of the SWA,
weight fusion (WF) and single weight (SW) methods. WF is able to segment the rider correctly (see
ellipse).

Table 2: Results for three architectures.

DeepLabV3+ HRNet Segmenter

BDD100K Cityscapes BDD100K Cityscapes Cityscapes

Metrics alpha=0.1 alpha=0.1 alpha=0.45 alpha=0.1 alpha=0.05
Mean IoU (%) (" ) 62.24 (+1.10) 73.94 (+0.53) 55.57(+0.79) 69.65(+0.23) 70.88 (+0.34)
Precision (%) (" ) 75.28 (+2.92) 86.47 (+2.19) 72.05(+0.46) 83.68(+1.20) 84.14(+0.30)

Recall (%) (" ) 72.69 (-1.34) 82.66 (-1.40) 65.31(+1.56) 79.86(+0.63) 80.24(+0.22)
ECE (#) 0.034 (-0.031) 0.041 (-0.071) 0.111(-0.002) 0.132(-0.007) 0.030(-0.001)

KL (" ) 1.919 (+0.312) 1.826 (+0.297) 0.858(-0.077) 0.952(+0.07) 2.445(+0.016)

3.2 Fusion of Finetuned Weights

Besides training from scratch (see §3.1), �netuning is a way to generate the weights for the WF.
Finetuning uses the same data as training from scratch. A fully trained weight is used for initialization
which we consider as starting weight. In our experiments the �netuning is performed with learning
rates between 0.002 and 0.02 in 0.002 steps and covers 10 epochs. The cosine annealing learning rate
schedule was used so that the 10 epochs correspond to one cycle (see Fig. 3(a)). For the fusion we
use the starting weight (at epoch 50) and one of the individual checkpoints of the respective epochs 1
to 10. For this experiment we use the DeepLabV3+ and the BDD100K validation data set. Fig. 4(a)
and (b) show the cosine similarity and the mIoU of the oracle testing, respectively, for the starting
weight and the weight of the 10th epoch. Fig. 4(c) shows the mIoU after fusion of the starting weight
with the checkpoint of the 10th epoch along the fusion parameter� for the corresponding learning
rates. The improvements of the mIoU compared to the starting weight, which is 58.61 %, are marked
with a diamond. From Fig. 4 we derive the following �ndings:

Finding 1: Cosine similarity and oracle testing are correlated.

The cosine similarity measures the distance of the weights in the weight space and the oracle testing
in the functional space. The closer the weights are in weight space, the closer they are in functional
space and vice versa. Using Fig. 4(a) and (b) it can be seen that the lower the learning rate the closer
they are together in weight space (cosine similarity approaches 1.0) and at the same time they are
close together in functional space (oracle testing approaches the single weight mIoU of 58.61 %).

Finding 2: Cosine similarity must not be too low.

A low cosine similarity is equivalent to a long distance in weight space. For a successful fusion the
weights must not be too far apart in weight space. Based on the mIoU of the fused weights (see
Fig. 4(a) and (c)) it can be seen that a cosine similarity smaller than about 0.925 at no� value results
in a higher mIoU than the starting value. This is the case for learning rates 0.02, 0.018 and 0.016.
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