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Abstract

The perception component of autonomous driving systems is often designed and
tuned in isolation from the control component based on well-known performance
measures such as accuracy, precision, and recall. Commonly used loss functions
such as cross-entropy loss and negative log-likelihood only focus on minimizing
the loss with respect to misclassification without considering the consequences
that follow after the misclassifications. In other words, this approach fails to
take into account the difference in the severity of system-level failures due to
misclassification and other errors in perception components. Therefore in this
work, we proposed a novel feedback learning training framework to build the
perception component of an autonomous system that is aware of system-level
safety objectives, which in turn, enhances the safety of the vehicle as a whole.
The crux of the idea is to utilize the concept of a rulebook to provide feedback
on system-level performance as safety scores and leverage them in designing and
computing the loss functions for the models in the framework. The framework was
trained and tested on an open-sourced dataset, and the experimental results showed
that the resulting model had shown superior system-level safety performance over
the baseline perception model.

1 Introduction

A typical autonomous driving system usually consists of two main components, perception and
control. Perception component will first observe the environment using sensors such as a camera and
LiDAR to capture the RGB images and point clouds. Utilizing the captured information, perception
component classifies the objects and relevant features and creates a representation of the environment
around the system. The control component then evaluates the perceived environment to make
decisions and compute the corresponding actuation commands, which change the system’s state (for
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the simplicity of the presentation, we consider planning and decision-making as part of the control
component).

In recent years, deep learning models have thrived in the computer vision domain and have achieved
high accuracy in many tasks such as classification [1] and object detection [2]. As these tasks are
essential functions of the perception component, deep learning models are widely deployed in the
perception component of autonomous systems. However, even the most advanced state-of-the-art
deep learning models could not confidently guarantee a 100% accuracy in the abovementioned
tasks due to various reasons and limitations of the models. As a result, the downstream control
component may make incorrect decisions due to inaccuracy in the perceived environment as the
control component does not have the ability to evaluate the correctness of the perception results.

In this regard, formal methods can be utilized to precisely define safety and other complex properties,
and they have been successfully applied in the verification and synthesis of the control component
of autonomous system [3–11]. On top of that, many tools were also developed to formally specify
and verify simple machine learning(ML)-based systems [12–15]. Their applications to ML-based
perception components, however, are still limited due to the difficulty of formally specifying properties
that reflect human-level perception [16]. In recent literature, formal verification was done on simpler
functions in neural networks; for example, in [15], the authors verify or specify the property of the
activation function’s output instead of the neural network itself, and in [12], the formal specification
and verification only returns counter-example for system-level safety rule, but the explicit connection
between the perception model and counter-example still requires human intervention for analysis.
Additionally, as discussed in [16, 17], all misclassifications are not the same; some are more likely to
result in system-level failure and more severe consequences. Therefore, it is necessary to develop a
training framework capable of instilling system-level specifications and contextual semantics.

To address the issues mentioned, we present a novel method to incorporate system-level safety rules
into an autonomous driving system via feedback learning. The contributions are listed as follows:

1. Propose a novel feedback learning training framework that instills system-level safety rules
into the perception component of a safe autonomous driving system.

2. Develop a method to incorporate a formally defined rulebook component containing the
system-level safety rule in deep learning model training.

3. Show the improvement in autonomous driving system safety on an open-sourced dataset.

2 Preliminary

Before introducing the proposed framework, this section provides the fundamental building block of
the framework. There are two terminologies that will be mentioned throughout the paper: rule and
rulebook. In [18], rule and rulebook are defined as below:

Definition 1 (Rule) Given a set of realizations Ξ , rule is defined as a function fr : Ξ 7→ R≥0.

In an autonomous driving system, realization Ξ in this definition can be interpreted as the world
trajectory that includes the trajectory of all objects in the environment. Given two realizations
ξ1, ξ2 ∈ Ξ, fr evaluates each realization and returns a non-negative value corresponding to the
severity of rule violation. Numerically, if fr(ξ1) > fr(ξ2), it means that realization ξ1 have a more
severe violation of the rule than ξ2. If fr(ξ1) = 0, it means that realization ξ1 has no violations with
respect to the rule.

Definition 2 (Rulebook) A rulebook is a tuple ⟨R,≤⟩, where R is a finite set of rules and ≤ is a
preorder on R.

In our paper, we only consider a special case of rules preordering known as total preorder, where the
rules in R are all comparable and have a clear distinction in rank or level in the rulebook hierarchy.
In this case, the set of rules can be organized into a hierarchy of M levels, with the rules in the higher
levels indicating greater importance and priority. Given N number of rules, each level in the rulebook
hierarchy should have ≥ 1 rules, so N ≥ M . With the total preorder in place, the rulebook in this
paper can be described as a function frb : Ξ 7→ RM

≥0.
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3 Proposed framework

Figure 1: Figure shows the training framework to instill system-level rules into perception model.

In this section, we provided an overview of our proposed framework that could train the perception
component of an autonomous driving system with system-level objective awareness via feedback
learning. Our proposed framework mainly consists of the following components: (i) perception, (ii)
control, (iii) simulator, (iv) rulebook, and (v) loss function, as illustrated in Fig. 1.

Starting from the leftmost of the figure, the perception component (in this case, an object detection
deep learning model) takes in images captured by the vehicle camera and returns the detected classes
of objects in sight, with their respective bounding boxes that localize the objects, and the confidence
of the object predictions. The output from the perception model, along with the current vehicle state
information such as position and velocity are then passed into the control component, and the control
component evaluates the information received and returns a corresponding command to the actuators
(e.g., steering, brake, throttle). After obtaining the command, the next component, simulator, updates
the system state (e.g., vehicle position and velocity) and the environment. The new state is again fed
back to the control component, and this iteration will repeat until it triggers a terminating condition
in the simulator. Upon reaching the terminating condition, the simulator ends the simulation and
outputs the trajectory of the vehicle system.

In the next stage, the rulebook component evaluates these trajectories against the environment
ground truth and N number of system-level safety objectives in the rulebook for potential violations.
Depending on the severity of the violations, the rulebook will provide feedback in the form of a
vector of length M with non-negative real numbers, where a larger number indicates a more severe
violation. The feedback from the rulebook and the performance metrics of the perception model
will be used in the next step of the framework, which is the loss computation, and this loss will be
backpropagated to update the weights of the perception model. This process is then repeated until the
framework reaches convergence. Ultimately, the training will ensure the autonomous driving system
capable of adhering to the system-level safety objectives enlisted in the rulebook.

Perception component The perception component is defined as a function fp : D 7→ E, where D
is the set consisting of all possible input sensor data and E represents the set of all possible perceived
environments. For example, D can represent the set of RGB data captured from a camera and point
cloud captured from radar and LiDAR, while E represents the set of all possible object detection
results and distance between the vehicle and perceived objects.

Control component Control component’s main functionality is to return a reasonable command
(or action) given the perceived environment from perception component and current vehicle state,
as illustrated in Figure 1. Therefore, the control component can be formally defined as a function
fc : E × S 7→ C, where S represents the vehicle state and C is the action space of the controller.
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Simulator Simulator is the component that executes the command returned by the control com-
ponent through vehicle simulation and returns the updated vehicle state. Thus the simulator can be
defined as a function fs : C × S 7→ S.

Rulebook component We utilize the concept of rule and rulebook as defined in Section 2 to specify
system-level safety objectives. In this framework, the values returned by rulebook are interpreted
as the violation scores of the rules at each level of the hierarchy. Specifically, given a sequence ξ of
states in S × E, the rulebook component returns frb(ξ) = [γ1, γ2, ..., γM ] ∈ RM

≥0, where γi is the
weighted sum of the violation scores of the rules at level i. Note that as will be further discussed in
the Remark 1, a state in ξ corresponds to the true state of both the system (obtained, e.g., from the
simulator) and the environment (obtained, e.g, from the annotation of the sensor data).

Remark 1 There are three key differences between the rulebook component and the control compo-
nent. First, unlike the logic in the controller, the rules in the rulebook do not affect the motion of the
vehicle. Instead, the rules defined in the rulebook are system-level rules where the sole purpose is to
perform system-level safety evaluation and provide feedback in the form of violation scores. Secondly,
besides receiving the vehicle trajectory from simulator, in order to perform evaluation, rulebook
component will also have access to the ground truth environment, as illustrated in Figure 1 , while
the control component, on the other hand, will only have access to the perceived environment. The
detailed information from ground truth allows the rulebook to have a more accurate representation
of the environment and be able to evaluate the trajectories correctly. Lastly, rulebook evaluation is a
post hoc operation that takes place after the vehicle has moved, while on the other hand, the control
component anticipates, plans, and makes decisions before an event (potential collision) happens.

Loss Function In our proposed framework, the loss function (L) mainly consists of two parts, the
perception loss LP (or in our case, object detection loss) that aims to improve the framework’s object
detection capability and the rulebook loss LR that aims to enhance the framework with system-level
safety objectives. LP will vary depending on the object detection model used in the perception
component, and it will be discussed in detail in later sections along with the object detection model.
LR on the other hand, is a loss component we proposed in order to provide system-level safety and
violations feedback to the perception model. As described in Section 3, the violations feedback is
expressed in a length M vector with non-negative real numbers, representing the degree of violation
of each safety rule in the rulebook. The violation feedback is translated into rulebook loss by using a
weighted mean square error equation, where the weight corresponds to the importance and severity
of each rule.

4 Results and discussion

4.1 Datasets

4.1.1 NuScenes dataset

Figure 2: nuScenes camera image with 2D object bounding boxes and LiDAR data overlay.

In this paper, we used a public large-scale autonomous-driving dataset, nuScenes [19], to demonstrate
the performance of the proposed framework. The dataset contains consecutive RGB camera images of
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dimension (1600 × 900) captured in numerous driving scenes, such as varying weather, daytime and
nighttime, and location, which provides sufficient rich backgrounds to generalize the perception model
performance to different road conditions and realistic driving scenarios to validate the framework
performance. Besides that, each captured image is also annotated with 3D object bounding boxes and
their respective object classes.There are a total of 23 fine object class labels available in the dataset,
but for simplicity, we use their respective course object class labels instead, which include animal,
pedestrian, movable objects, and vehicle. On top of the bounding boxes and object classes, nuScenes
dataset also contains LiDAR data that measures the relative distance between the vehicle and the
objects on the camera frames. Figure 2 shows an example of a camera image captured using a camera
mounted on the middle front of the vehicle and was superimposed with the ground truth 2D object
bounding boxes and LiDAR point clouds data. Together, these annotations not only tell the location
of the objects in each camera image but also how far each object is ahead of the vehicle.

4.1.2 Data pre-processing

After introducing the dataset used in this paper, we will now discuss the data pre-processing steps
performed in preparation for model training. First of all, for simplicity, we only used the images
captured using the middle front camera, and we downselected the scenes with more than 39 frames
to ensure frame-to-frame consistency. Each scene in this dataset is captured over a duration of 20
seconds and was annotated with a 2Hz frequency, which results in approximately 40 keyframes per
scene. 99.88% of the middle front camera scenes contain more than 39 frames; thus a total of 849
scenes (or 33,960 frames) were downselected for further processing. Next, by default, the camera
frames are only annotated with 3D bounding boxes, but for the implementation of our object detection
model, 2D bounding boxes are also required. Thus, we first project the 3D bounding boxes on the
respective RGB frame to get the cuboid-shaped bounding boxes, then we compute the 2D bounding
box vertices by finding the maximum and minimum coordinates of the projected bounding boxes.
Finally, along with the computed 2D bounding boxes, the data was split randomly into train and
validation sets with a split ratio of 7:3 respectively. In total, the train set contains 594 scenes (23,760
frames), and the validation set contains 255 scenes (10,200 frames).

4.2 Perception component - implementation

In this section, we discuss the object detection model used in the perception component. Note that the
model proposed is not restricted, and it can be replaced with other object detection models if desired.

4.2.1 YOLOv5 Network

In our application, we selected one of the state-of-the-art object detection models known as YOLOv5
[20], that have numerous successful implementation cases. In the past two years, YOLOv5 was
implemented in various object detection tasks, for example, in detecting people [21–24], road
defects [25, 26], street trees [27] and vehicles [28]. YOLOv5 models are introduced in five different
sizes; nano, small, medium, large, and extra-large, with the model sizes sorted in ascending order.
Out of these different sizes, we selected the small model (YOLOv5s) for our perception component.
The YOLOv5s model is configured with a 0.33 height multiplier and 0.5 width multiplier and will
generate a model weight with only 14 MB, 7.25 M model parameters, and 16.8 GFLOPs. There are
several reasons for this decision. Despite the small model size, YOLOV5s achieve great performance
in the Common Objects in Context (COCO) [29] dataset. The fast inferencing speed also allows for a
quick simulation in the feedback loops, and it is beneficial in an autonomous driving setting where
real-time responses and decision-making are crucial criteria.

Regardless of the model size, YOLOv5 architecture can be broken down into three parts, including
the model backbone, model neck, and model head. In object detection models, the model backbone
plays a heavy role in image feature extraction, and in YOLOv5, the architecture used is Cross Stage
Partial Network (CSPNet) [30] developed by Wang et al. (2019). Following the model backbone is
the model neck, where the main role is to generate feature pyramids that consist of feature maps of
different scales. In YOLOv5, the Path Aggregation Network (PANet) [31] developed by Liu et al.
(2018) was used as the model neck, and the feature pyramid learned is a significant component in
training the model to identify similar objects with various sizes. The last part of the model architecture
is the model head, where the main purpose is to output the prediction of object classes with their
corresponding bounding boxes and confidence.
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4.2.2 Training

In this proposed framework, the training is performed in two consecutive phases. In the first phase,
the YOLOv5 model will go through the original object detection training pipeline without the
feedback loop. This phase aims to train the YOLOv5 model to obtain decent object detection
performance before enhancing it with the system-level safety objectives in the later phase. In our
experiment, the model is trained with an image input dimension of (416× 416), with zero padding to
preserve the original aspect ratio. There are several augmentation techniques that was used during the
training process, including image scaling, translation, image flipping, Hue-Saturation-Value(HSV)
augmentation, mixup [32] and mosaic augmentation to provide a greater and richer variation in the
training images. In each training, the model weight was initialized using the YOLOv5s weights
pre-trained on the Common Objects in Context (COCO) [29] dataset. There are several reasons to
start the training with the pre-trained weights. First of all, the COCO dataset contains 80 object
classes, in which many of the classes are similar to the object classes in nuScenes dataset. Given the
great performance of the pre-trained weights on the COCO dataset, the model has already learned
some meaningful features to detect and classify objects in an image. Essentially, these learned
features could be transferrable to the training on nuScenes dataset to provide a good starting point
and even facilitate a faster convergence in the training process.

In the second training phase, the main purpose shift from solely learning to perform object detection
to simultaneously learning the system-level safety objectives as well. Two main aspects differ
between the first and second training phases. First and foremost, using the best model weights from
phase 1 training, the model resumes training with the addition of the feedback loop that includes the
control, simulator, and rulebook components as shown in Figure 1. This feedback loop imitates a
simple autonomous driving setting with the rulebook reflecting the degree of safety of the driving
behavior. Secondly, most of the augmentations performed in first phase training such as the translation,
scaling and mosaic augmentations are suppressed in the second phase training. The main reason to
suppress these augmentations is to preserve the position of the ground truth bounding boxes with
their corresponding LiDAR distances in order to create realistic and plausible simulation scenarios in
the feedback loop.

4.2.3 Training hyperparameters and settings

For the results presented in this section, the experiments are conducted using the following hyperpa-
rameters and settings. The best performance was achieved using an input batch size of 64, and using
stochastic gradient descent (SGD) optimizer with a momentum of 0.937, weight decay of 0.0005,
and initial learning rate of 0.01. Using the YOLOv5s pre-trained weights as weight initialization, the
model is able to converge and reach the best mAP at epoch 29 with a training time of 4 min per epoch.
In phase 2 training, the batch size is increased to 80 (to 2 scenes with 40 frames per scene), and
with data augmentation suppressed as explained in Section 4.2.2. All experiments were conducted
using NVIDIA Titan RTX GPU, and a fixed random seed 0 was used in the training arguments to
ensure results reproducibility. To provide a thorough study, we execute phase 2 training under two
different loss settings, where the first model will be trained using the combination of perception loss
and rulebook loss, and the second model will be trained using only the rulebook loss. After each
training completes, the model weights and architectures are saved for evaluation on object detection
performance and compliance with the safety rules in the rulebook.

4.3 Control Component - implementation

In this section, we will provide the detail of the control component as mentioned in Section 3. In
Section 4.2.1, a YOLOv5 model is used as the perception component, and given an image, the
model will output the bounding boxes center coordinate (x, y), width (w) and height (h), object
classes (cls), and prediction confidence (conf ). On top of that, by incorporating the LiDAR data,
the estimated distance (dobj) for each object can be obtained by finding the minimum value in each
enclosed predicted bounding box region. Given the above, we can express the perceived environment
as e = {[x, y, w, h, cls, conf, dobj ]} ∈ E. Next, the vehicle state S describes the state of the vehicle
throughout the simulation. It consist of the vehicle’s position (p), velocity (v), and acceleration (a),
thus it can be expressed as s = {[p, v, a]} ∈ S. Lastly, the command return by the controller can
be expressed as c = {−1, 0, 1} ∈ C, with each discrete value indicating the deceleration, maintain
velocity, and acceleration command, respectively.
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4.4 Simulator - implementation

At the beginning of each simulation, the system state was initialized with the vehicle position p = 0m,
velocity v = 0ms−1, and a fixed acceleration value of a = 3ms−2. In our simulation, each frame
from a scene was treated as a static image (or observation), and the perceived objects in a frame
remain the same from timestep to timestep, but each object’s distance will be updated as the vehicle
moves forward during the simulation. Due to the restriction of a static image in simulation, the
vehicle will only move in the forward (z) direction. However, the vehicle motion can be extended
into 3D by performing the same computation in the other axis of directions. Next, the time interval
(τ ) of each simulation step was set as a small value of τ = 0.1s. Although a small time interval
increases the simulation’s computation load, it creates a more realistic simulation and provides finer
control for the vehicle.

4.4.1 Update vehicle state

As described in Section 4.3, the system state consists of vehicle position, velocity, and acceleration.
Besides the fixed acceleration value, the updated position, and velocity of the vehicle can again be
estimated using two kinematic equations. First, the updated velocity v′ can be estimated using the
equation v′ = max((v + caτ), 0), which clips all negative velocity values to zero to ensure the
vehicle does not move backward. After computing the updated velocity v′, the value can be used to
compute the vehicle displacement d = 1

2τ(v
′ + v), and finally the updated position to p′ = p+ d.

4.5 Rulebook Component - implementation

As mentioned above in Section 2, in our paper, rulebook is a set of total preordered rules, and in
our implementation of the autonomous driving system, there are three rules that we imposed on the
vehicle. The details of the rules are described below with Rule 1,2 and 3 arranged in descending
levels of the rulebook hierarchy.

Rule 1: Avoid collision with pedestrians. This rule will evaluate the vehicle’s trajectory to verify if
there is any collision with pedestrians during the simulation. If a collision occurs, a violation
score γ1 will be returned, and the higher the impact velocity, the larger the magnitude of the
score will be. In implementation, γ1 can be computed as γ1 = nped × v, where nped is the
number of pedestrians in the collision, and v is the vehicle velocity during collision.

Rule 2: Avoid collision with other objects. Rule 2 is similar to Rule 1 but will evaluate the collision
with any other objects instead.

Rule 3: Maintain velocity if vehicle is within [d1, d2] range of an object. d1 and d2 are the
predefined distances measured from the objects of interest with d2 > d1. Rule 3 will
evaluate the vehicle’s velocity as it approaches within the range [d1, d2] to an object and
verifies if the vehicle is maintaining a constant non-negative velocity. If the vehicle violates
this rule, a violation score γ3 will be returned.

4.6 Loss function

As discussed in Section 4.2.1, we selected the YOLOv5 model in our perception component, so the
perception loss will correspond to the losses used in YOLOv5 model training. The training of the
YOLOv5 model uses three losses, including the bounding boxes regression loss, objectness loss,
and classification loss, where each loss contributes to different training objectives. Bounding boxes
regression loss is computed using mean square error loss and it was used to train a model to predict
the coordinates of the bounding boxes for objects in an image. The second part of the perception
loss is objectness loss, that was computed using binary cross-entropy loss, and it trains the model to
distinguish if a bounding box contains an object of interest or simply the background. The third part
of perception loss is the classification loss, computed using the cross-entropy loss, and it trains the
model to classify the objects captured in the bounding boxes to their corresponding classes.

Our proposed rulebook loss, on the other hand, is used to instill the system-level objectives into the
model, and it is computed using a weighted mean square error equation with the length M vector
input from the rulebook component. Recall that the non-negative real numbers in the vector represent
the degree of violation of each safety rule in the rulebook.
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Table 1: Table shows the object detection evaluation results.

Models Metrics

Precision Recall mAP@0.5 mAP@0.5:0.95

M1,P : Best Phase 1 Model 0.675 0.418 0.574 0.297
M2,PR: Perceptiona& Rulebook Loss 0.634 0.426 0.533 0.260
M2,R: Rulebook Loss Only 0.656 0.426 0.511 0.247
a Perception Loss: Bounding boxes regression loss + objectness loss + classification loss

However, on top of knowing the degree of violation of each rule, the severity of the violation might
also be different between the rules themselves, and this information should also be reflected in the
loss computation. For example, violating the rule to avoid collision with pedestrians (Rule 1) might
have worse consequences that violating the rule of maintaining speed (Rule 3). In order to address
that, each rule is assigned a weight w, where a rule with more severe consequences upon violation
will be assigned a higher weight to scale up the loss incurred. Therefore, the rulebook loss LR can be
expressed as a weighted MSE loss of LR = 1

N

∑N
i=1 wi(ti − γi)

2, where wi is the weight assigned
to the ith rule, ti is the target value, and γi is the safety violation score for ith rule. In our experiment,
for simplicity, we defined ti = 0 for all i, but this value can be updated to different optimal target
values under different scenarios respectively.

In the implementation of the control, simulator, and rulebook component, the internal computations
are implemented using PyTorch math functions with gradient computation enabled for PyTorch
AutoGrad computations [33], and each component is structured as PyTorch modules to allow forward
and backward propagation during the training. This allows the gradients to backpropagate through
the three components to the perception model after loss computation and essentially completes the
feedback learning cycle.

4.7 Experiment results

Table 2: Table shows a summary of the changes in violation scores using model M2,PR and M2,R.

Scenes Scores
M2,PR −M1,P M2,R −M1,P

Num. Scene
Total Scene

Percentage Avg. Num. Scene
Total Scene

Percentage Avg.
∆Scorea ∆Scorea

Improvementb 19 / 50 38% -299.3 24 / 50 48% -305.3
Deterioration 5 / 50 10% 223.6 0 / 50 0% -
No changes 26 / 50 52% - 26 / 50 52% -

Always zero 14 / 26 54% - 15 / 26 58% -
a Avg. ∆Score: Average changes in violation scores. Smaller value indicates better performance.
b Improvement: Violation scores reduced compared to model M1,P .

There are two research questions that we are addressing with the following results; with the addition of
a safety-rule-based feedback loop, (i) How does it affect the performance of the perception component
(object detection)? (ii) Did the vehicle become safer (violation reduced) after training?

First, we will answer the first question, i.e., the object detection performance by looking at the results
tabulated in Table 1. There are three models that we are examining, including (i) M1,P : the best
model from the first training phase, and (ii) M2,PR: the second phase model trained using both
perception loss and rulebook loss, and (iii) M2,R: the second phase model trained using only the
rulebook loss. From Table 1, the model from first phase training (M1,P ) shows the best detection
results by having the highest precision, mAP@0.5, and mAP@0.5:0.95 values. This result is expected
as the main focus of phase 1 training is solely trained using the objectness loss, classification loss,
and bounding box loss, for which the main purpose is to focus on object detection. Moving on to the
next two rows in the table, we observe that all the evaluation metrics values (except recall) for phase
2 models (M2,PR and M2,R) were slightly lowered compared to M1,P model. In general, t here are
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two reasons that could contribute to the decrease in detection performance for phase 2 models. First,
phase 2 training is initialized using M1,P , the best performing detection model, but the additional
rulebook loss shifted the objective of the model to consider not only the detection but also the safety
rules. Thus through the phase 2 training process, part of the detection performance achieved by
M1,P from the first training phase deteriorates but compensated with the improvement in safety.
The second reason that could contribute to the decrease in detection performance is the suppression
of data augmentation in phase 2 training. In order to recreate a realistic simulation, most of the
data augmentation that could alter an object’s position in an image such as translation and mosaic
augmentations are suppressed as discussed in Section 4.2.2. This essentially reduces the variation and
diversity of the training images, causing a decrease in robustness and detection performance. Next,
comparing the performance between model M2,PR and M2,R, M2,PR is having a higher mAP@0.5
and mAP@0.5:0.95, and similar recall value compare to M2,R. This is because unlike model M2,R,
model M2,PR still pertains the perception loss on top of the rulebook loss, so although the detection
performance for model M2,PR is not as great as model M1,P , it still outperforms model M2,R.

However, besides object detection results, a greater goal of this paper lies in the second research
question, which is the improvement in vehicle safety after the training with a feedback loop and
rulebook loss. For this second part of the results, the vehicle safety is evaluated by comparing the
violation scores in simulation between the models (M2,PR −M1,P ) and (M2,R −M1,P ). In other
words, the violation score computed using model M1,P will act as the baseline, and by taking a score
difference for each scene between, for example, M2,PR and M1,P , we can evaluate if M2,PR had
shown any improvement (violation score reduced) or deterioration (violation score increased) after
going through the second phase training. Table 2 tabulates a summary of the changes in violation
scores using model M2,PR and M2,R, where a score improvement is indicated by the negative average
score difference. From the table, we observe that both models M2,PR and M2,R had successfully
reduced the violation scores in some of the test scenes, i.e., improving vehicle safety. Starting from
model M2,PR in the table, we observe that out of 50 test scenes, there are 19 scenes (equivalent
to 38% of total test scenes) that show an improvement in the violation score, which is a positive
result but there is also 5 scenes that show deterioration and 26 scenes with no changes in violation
scores. This result, however, is outperformed by model M2,R which has 24 scenes (48% of total test
scenes) that show improvements, and none of the test scenes shows a deterioration in violation scores.
Besides the superior number of scenes with score improvements, the average violation score changes
in M2,R also shows a smaller value of -305.3, indicating that the magnitude of score improvement is
also greater for model M2,R compared to model M2,PR. In short, model M2,R that was trained only
using rulebook loss in the second phase of training is showing a greater improvement in vehicle safety
as compared to model M2,PR that was trained using both perception and rulebook losses. Finally,
the last row of the table shows that, among the scenes that shows no changes in the violation scores,
more than 50% of them have no safety violations (zero violation scores) to begin with, so essentially
these scenes cannot be improved further, but on the other hand, this also means that the remaining
scenes does have safety violations and there is still room for improvements.

5 Conclusion and future work

We proposed a novel framework capable of learning system-level objectives via feedback learning
and ultimately enhancing the safety of autonomous driving systems. We also utilized a rulebook
component that contains system-level safety objectives and provides a violation score that reflects
the severity of rule violations. Finally, we demonstrated the object detection and safety performance
of the models before and after going through the proposed feedback learning training. There are
currently two directions for our future research. First, we will attempt a different violation score
aggregation strategy to allow the aggregation of rules with different hierarchies of importance and
to find a balance between object detection and vehicle safety performance. Secondly, we will also
utilize autonomous driving simulation tools such as CARLA [34] to gain a greater degree of freedom
in controlling the simulation and scenario generation.
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A Control mechanism

Internally, the command returned by the controller is governed by the vehicle stopping distance
(dstop) and the control logic, which are listed as follows. First of all, the vehicle stopping distance
(dstop) can be computed as dstop = v2/2a where v and a are the current velocity and acceleration,
respectively. Using the computed dstop, the controller can estimate the projected vehicle position and
the distance between the vehicle and the perceived objects (dobj) at that projected position. Then the
controller will return a command obeying the following logic:

Logic (1): Is dobj < dped? In order to avoid collision with pedestrians, the vehicle should maintain
sufficient clearance distance (dped) with pedestrians and should decelerate if the vehicle gets
too close to a pedestrian.

Logic (2): Is dobj < doth? Besides keeping distance from pedestrians, the vehicle should also maintain
sufficient clearance distance (doth) with other objects.

Logic (3): Is dsafe1 < dobj < dsafe2? [dsafe1 , dsafe2 ] is specified as a safe object’s distance range
where the vehicle should slowly transition from acceleration to maintain velocity (and
eventually decelerate) as it comes within this proximity of the perceived objects. In our case,
dsafe1 = dped if the object is pedestrian or dsafe1 = doth if the object is other objects, and
dsafe2 = dsafe1 + 2 (meters).

With the logic in place, the controller’s command is returned as:

c =

{ −1 if (1) or (2) is True
0 else if (3) is True
1 otherwise

(1)

B Simulation terminating condition

As mentioned in Section 3, the simulator will return the newly updated vehicle state to the controller,
and the interaction cycle between controller and simulator repeats as the simulation progresses.
Within this interaction cycle, there are three terminating conditions that will stop the simulation and
proceed to the next step in the feedback loop.

Cond. 1: Number of iteration steps = 200. During the simulation, an iteration counter keeps track of
the number of updates performed by the simulator, and the simulation will terminate when
this counter reaches 200.

Cond. 2 Vehicle velocity v = 0 and controller command c = 0 or c = −1. If the vehicle fully
stopped during the simulator (e.g., stopped in front of an object), and the controller command
returns the “maintain speed” or “decelerate" command, the updated vehicle state will be the
same as the initial state (at the timepoint of the simulation), and thus the simulation should
be terminated.

Cond. 3 Vehicle distance traveled ≥ 70 m. The LiDAR data used to estimate the object distances
have a usable return of up to 70 m; thus 70 m was used as the maximum vehicle travel
distance that terminates the simulation when exceeded.

As the simulation terminates, the simulator will return the vehicle trajectory information (Ψ), includ-
ing a series of position, velocity, and acceleration throughout the simulation, and this information
will be passed to the next component, the rulebook, for system-level safety evaluation.
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