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Abstract

Distracted driving action recognition from naturalistic driving is crucial for both
driver and pedestrian’s safe and reliable experience. However, traditional computer
vision techniques sometimes require a lot of supervision in terms of a large amount
of annotated training data to detect distracted driving activities. Recently, the
vision-language models have offered large-scale visual-textual pre-training that can
be adapted to unsupervised task-specific learning like distracted activity recognition.
The contrastive image-text pretraining models like CLIP have shown significant
promise in learning natural language-guided visual representations. In this paper,
we propose a CLIP-based driver activity recognition framework that predicts
whether a driver is distracted or not while driving. CLIP’s vision embedding offers
zero-shot transfer, which can identify distracted activities by the driver from the
driving videos. Our result suggests this framework offers SOTA performance on
zero-shot transfer for predicting the driver’s state on three public datasets. We also
developed DriveCLIP, a classifier on top of the CLIP’s visual representation for
distracted driving detection tasks, and reported the results here. https://github.
com/Zahid-isu/DriveCLIP

1 Introduction

Distracted activity understanding while driving is essential for safety and reliability in transportation.
According to National Highway Traffic Safety Administration (NHTSA), almost 3,142 people were
killed in 2020 due to distracted driving in the U.S. Therefore, distracted driving action recognition
has become a potential research problem. The objective of this study is to identify distracted driving
actions by drivers from naturalistic driving videos.

Recently, vision-language-based multimodal pretraining frameworks have exhibited promising results.
These multimodal pretraining frameworks use carefully crafted contrastive-loss (see CLIP [1]), which
allows us to come up with a very robust embedding of text and vision tasks simultaneously. This
approach allowed several domains to use an almost zero-shot approach towards tasks such as object
classification and object detection from images [1, 2]. In this paper, we explore using CLIP’s vision
and language embeddings for distracted driving action recognition.

In distracted driving action recognition, we are provided with a video of the driver from a camera
mounted on the dashboard of a car. This video contains a large time window of data on the driver’s
behavior. Our task is to use this video data to identify if the driver is distracted or not. For this, it
seems reasonable to train a video-text model from scratch. However, directly training a language-
video model is unaffordable because it requires large-scale video-text pertaining data and a massive
number of GPU resources (e.g., thousands of GPU days). A feasible solution is to adapt the pretrained
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language-image models to the video domain. Recently, several studies have explored how to transfer
the knowledge from the pretrained language-image models to other downstream tasks [2–4].

The proposed approach can avail of two advantages the pretrained CLIP [1] model offers. First, it
leverages the training-free zero-shot transfer. It is more feasible and scalable to use natural language
supervised video activity understanding rather than fully relying on a supervised approach. The
existing computer vision approaches learn to memorize human annotated labels or features, and most
of the time, these features are non-transferable. Therefore, this model often does better on a specific
dataset but fails to perform well on other datasets. Second, the visual representation can be further
finetuned with minimal annotations and training to improve the overall performance.

In summary, the key contributions of this paper are:

1. We explore the idea of using zero-shot transfer of CLIP pretrained weights for the task of
distracted driving action recognition without dataset-specific training.

2. With proper prompt engineering, we demonstrate superior performance on several datasets
of distracted driver action recognition using zero-shot transfers from CLIP.

2 Related Works

Driver action recognition has been extensively studied over the last few years, but it still undergoes
continuous research. Different approaches have been used in several studies. Lots of low-level
hand-crafted feature engineering like Cuboids [5], 3DHOG [6], and Dense Trajectories [7, 8] were
used to capture the temporal aspects in the video. However, most of these dataset-specific approaches
were not end-to-end trained on a large-scale dataset and lacked generalization.

Before the era of transformers majority of the proposed approaches relied on different CNN net-
works [9–11] as feature extractors of video data. Some CNN-based frameworks collected facial
detection [12], optical flow [13], and body pose estimation [14] based features to study video actions.
However, these models fail to generalize well, only focus on one feature, and might collapse if
the feature extractor fails. Although 3D CNNs [15, 16] can learn temporal features from video
frames, it imposes a burden of computational cost and difficulty of implementation in the real-world
video domain. Another common approach is ensembling multiple CNN networks [17, 18] like
ResNet50 [19], Vgg19 [20], Xception[21], Inception-v3 [22] as different feature extractor and do
weighted ensemble to create a global feature. Also, two streams’ fusion-based approaches [23–25]
can learn RGB appearance and temporal features individually that can be merged later. In recent
times, vision transformer(ViT) based approaches [26–28] have taken over after CNN for the video
action recognition tasks.

Despite decent performance on benchmark datasets, these models are critically dependent on large-
scale datasets that require huge data annotation effort. Moreover, most of these models are trained to
map a set of predefined categories that thwart learning the transferable visual concepts on unseen
data. Instead of learning narrow visual features within a uni-modal framework, learning from natural
language supervision will offer more flexibility and generality. Recently vision-language-based
pretraining approaches based on CLIP [1] like VideoCLIP [3], and ActionCLIP [2] show advanced
performance in video action recognition and understanding tasks.

3 Our approach

The main motivation of our work is to understand drivers distracted activity from videos and build an
end-to-end driver monitoring system. By distracted driving activity, we mean any activity that diverts
drivers’ attention from safe driving. For example, talking on the phone, drinking, or eating. However,
distracted driving activity detection became much more complicated because of the low-quality
video data and the human labor involved in annotating the videos. Therefore, we need a generalized
framework that performs well without solely relying on the labeled data. To accomplish this goal, we
proposed a contrastive vision language-based pretrained framework. Figure 1 depicts the overview
of our approach. The base model [1] is pretrained on around 400 million image-text pairs from the
web, which excels in most visual understanding-based tasks. One key advantage of using a pretrained
network over other approaches is connecting the "already learned" visual representation to language,
which offers zero-shot transfer. We adopted the pre-trained visual embedding for zero-shot transfer
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Figure 1: DriveCLIP multimodal framework exploits the pretrained CLIP pipeline to extract video-
text semantic information.

Table 1: Distracted driving prompt categories

Prompt ID Distracted actions Prompt descriptions

0 adjusting "driver is adjusting his or her hair while driving a car"
1 drinking "driver is drinking water from a bottle while driving a car"
2 eating "driver is eating while driving a car"
3 picking "driver is picking something from floor while driving a car"
4 reaching "driver is reaching behind to the backseat while driving a car"
5 singing "driver is singing a song with music and smiling while driving"
6 talking "driver is talking to the phone on hand while driving a car"
7 yawning "driver is yawning while driving a car"

on driving datasets and fine-tuned a linear classifier for the distracted activity detection task. We
referred to task-based fine-tuning as a step of training a simple classifier layer on top of the pretrained
embedding for a specific task (object detection, action recognition, etc.) and evaluated the whole
model’s performance on a corresponding dataset.

4 Experiments

4.1 Dataset

We tested our approach on three driving datasets- SynDD1 [29], StateFarm [30] and AUC [17]. These
datasets are commonly used as a benchmark for studying distracted driver behavior. The SynDD1
dataset consists of annotated videos of eighteen distracted action categories with three camera views.
For this work, we merged similar categories and considered eight distinct actions shown in table 1.
The StateFarm dataset has ten activity categories with images captured from the right-side camera
view. The AUC dataset also contains ten activity categories having a right-side camera view.

4.2 Experimental setup and prompt engineering

In this study, we adapted the CLIP [1] framework in the driving domain. The zero-shot transfer and
task-based finetuning branches were explored to evaluate the "task learning capability." To investigate
the representation learning capability, we fit a linear classifier on top of the representation extracted
from the model and measured its performance. For training the linear probe (see CLIP [1]), we used
an NVIDIA Tesla T4 GPU with batch size 100. Since the original CLIP model employs semantic
information in text labels rather than the traditional one-hot labels, it is necessary to provide a
textual description or prompt for each action category. Therefore, We used full sentences as prompts
for describing the classes instead of a single word. The prompt descriptions are shown in table 1.
As reported in [1], prompt ensembling can increase the overall performance. We tried manually
fine-tuning the prompts for running the experiments, which can be further optimized in the future.
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Table 2: Zero-shot results on SynDD1 dataset (see model configs 4)

CLIP visual backbone Top-1 accuracy Top-5 accuracy

ViT-L/14 53.50 74.50
ViTL/14@336px 54.00 65.00
ViT-B/16 47.50 64.50
ViT-B/32 38.00 45.50

Table 3: Linear probe performance on SynDD1, StateFarm, and AUC dataset (see model configs 4)

CLIP visual
backbone

accuracy on
SynDD1

accuracy on
StateFarm

accuracy on
AUC

Benchmark
StateFarm (2020)

Benchmark
AUC (2019)

ViT-L/14 85.666 98.226 88.609 97.00 [31] 95.98[17]
ViT-B/32 75.478 96.988 84.786 method: method:
ViT-B/16 73.567 96.205 84.327 CNN AlexNet
RN101 65.197 90.553 73.624 ensemble ensemble

5 Results

5.1 Zero-shot transfer

For zero-shot transfer, the unseen frames were inferred using the CLIP model. During the forward
pass, the framework computes the visual and textual features from the input frames and the text
prompts, respectively. Then, it computes the cosine similarity between the visual and textual features
and provides a top-5 ranking of the most probable classes. The zero-shot results on the SynDD1
dataset are shown in table 2. The table shows that the vision transformer-based CLIP model with
ViT-L/14 visual backbone performs better than the other variants for zero-shot transfer.

5.2 Linear probe experiments

To justify the task-based fine-tuning, we trained a linear classifier on top of the CLIP visual embedding
for the datasets mentioned above. We separately plugged in four visual backbones as feature extractors
and showed their corresponding linear probe results in table 3. Note that, for comparing the results
with benchmark approaches, we considered the same camera views and classes. The best-performing
visual encoder with ViT-L/14 architecture achieved around 85.67% accuracy on the SynDD1 dataset
for ten classes. The average F1 score is 0.4109 for the original eighteen classes of the SynDD1 dataset,
which outperforms the recent benchmark [32] of 0.3492. Also, this model outperforms some of the
recent StateFarm benchmarks [31, 33, 34] that used CNN ensembling and attention-based approaches.
It achieved around 88.61% accuracy for the AUC dataset compared to the recent benchmarks of
95.5-95.9%[17, 35]. Apart from the three vision transformer backbones, one ResNet-101 backbone
(RN101) was also tested; however, it performed poorly compared to the vision transformers.

5.3 Class-level analysis

Table 6 shows the class-level F1-scores of DriveCLIP on the SynDD1 dataset. From this table and the
confusion matrix shown in figure 2, we can conclude that "eating," "singing," and "yawning" were
the confusing classes for this framework compared to other obvious classes. We found that these
actions produce image features that are similar looking and need further optimization.

6 Conclusion and Future works

In this work, we proposed a vision-language-based framework to detect distracted driving behavior.
This framework demonstrated its efficacy on three distinct datasets with superior performance
compared to traditional deep models for the same task. Future work would be, optimizing the
vision-language approach in terms of prompt learning can excel the existing approaches at distracted
driving detection for naturalistic driving scenarios.
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A Appendix

A.1 DriveCLIP configuration

Table 4: Linear classifier hyperparameter list

Item Description/values

Input image size (3x224x224)
Batch size 100
Maximum iteration 1000
L2 regularization strength 0.42919
Hyper-parameter sweep range [10−6- 106]
Log-steps 50
Hyper-parameter solver lbfgs
Search approach GridSearchCV and HalvingGridSearchCV (scikit-learn)
Dataset used for search Validation split
Model configuration Visual-encoder: Vision transformer

(ViT-B/32, ViT-B/16, ViT-L/14, ViTL/14@336px), ResNet (RN-101)
ViT-B/32 (L=12, N=12, d=768, p=32)
ViT-B/16 (L=12,N=12, d=768, p=16)
ViT-L/14 (L=24, N=16,d=1024, p=14)
ViTL/14@336px (ViTL/14 pretrained at 336 pixel resolution,
input image size=3x336x336)
Text encoder: CLIP text transformer (L=12, N=8)
where L denotes the layers, N refers to the number of attention heads,
d represents the embedding dimension, and p is the patch size

Temperature value(initial) 0.07
Maximum text sequence length 77 words
Maximum vocabulary size 49408

A.2 Class-level analysis

Table 5: Experiment details for class-level analysis

Item Details

Model configuration Visual encoder: ViT-L/14
Text encoder: basic CLIP text encoder

Dataset SynDD1[29]
Class no. 08
Total drivers 14
Total frames 4405
Camera view Dashboard
Train driver IDs Total=10 [’76189’, ’61597’, ’25470’, ’79336’, ’56306’,

’65818’, ’49381’, ’76803’, ’24491’, ’19332’]
Valid driver IDs Total=2 [38058, 35133]
Test driver IDs Total=2 [24026, 42271]
Maximum iteration 1000
L2 regularization value 0.42919

7



Table 6: Precision, recall, and F1-score for class-level analysis

Action classes Precision Recall F1-score

"driver is adjusting his or her hair while driving a car" 0.51 0.74 0.60
"driver is drinking water from a bottle while driving a car" 0.70 0.86 0.78
"driver is eating while driving a car" 0.60 0.31 0.41
"driver is picking something from floor while driving a car" 0.76 0.96 0.85
"driver is reaching behind to the backseat while driving a car" 0.79 0.94 0.86
"driver is singing a song with music and smiling while driving" 0.44 0.30 0.36
"driver is talking to the phone on hand while driving a car" 1.00 0.77 0.87
"driver is yawning while driving a car" 0.56 0.42 0.48

Figure 2: Class-level confusion matrix on SynDD1 dataset (dashboard camera view).
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