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Abstract

Autonomous vehicle (AV) stacks are typically built in a modular fashion, with
explicit components performing detection, tracking, prediction, planning, control,
etc. While modularity improves reusability, interpretability, and generalizability,
it also suffers from compounding errors, information bottlenecks, and integration
challenges. To overcome these challenges, a prominent approach is to convert the
AV stack into an end-to-end neural network and train it with data. While such
approaches have achieved impressive results, they typically lack interpretability and
reusability, and they eschew principled analytical components, such as planning
and control, in favor of deep neural networks. To enable the joint optimization of
AV stacks while retaining modularity, we present DiffStack, a differentiable and
modular stack for prediction, planning, and control. Crucially, our model-based
planning and control algorithms leverage recent advancements in differentiable
optimization to produce gradients, enabling optimization of upstream components,
such as prediction, via backpropagation through planning and control. Our results
on the nuScenes dataset indicate that end-to-end training with DiffStack yields
substantial improvements in open-loop and closed-loop planning metrics by, e.g.,
learning to make fewer prediction errors that would affect planning. Beyond
these immediate benefits, DiffStack opens up new opportunities for fully data-
driven yet modular and interpretable AV architectures. Project website: https:
//sites.google.com/view/diffstack

1 Introduction

Intelligent robotic systems, such as autonomous vehicles (AVs), are typically architected in a modular
fashion and comprised of modules performing detection, tracking, prediction, planning, and control,
among others [15; 44; 30; 45; 2; 32; 55; 33]. Modular architectures are generally desirable because
of their verifiability, interpretability and generalization performance; however, they also suffer from
compounding errors, information bottlenecks, and integration challenges.

A promising line of work tackling these issues focuses on making AV stacks more integrated (by
relaxing inter-module interfaces) and data-driven (by optimizing modules jointly with respect to their
downstream task). For example, in the context of AV perception, recent work has achieved substantial
performance gains by jointly training tracking models with detection [53] and prediction models [49;
48]. To extend such a joint, data-driven approach to decision making, existing approaches replace
hand-engineered components, e.g., planning and control algorithms, with deep neural networks [5;
51; 9]. As neural networks are differentiable, they can be optimized end-to-end for a final control
objective; however, they offer weaker generalization, little to no interpretability or safety guarantees.

We introduce DiffStack, a differentiable AV stack with modules for prediction, planning, and control
that combines the benefits of modular and data-driven architectures (Fig. 1). The prediction module
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Figure 1: We desire AV architectures that are modular and differentiable, combining interpretability,
reusability, and generalizability with data-driven end-to-end learning. We take an important step
towards this end with DiffStack, a differentiable AV stack for prediction, planning, and control.

in DiffStack is a learned neural network that predicts the future motion of agents; the planning and
control modules are principled, hand-engineered algorithms that produce AV actions given the current
world state and motion predictions. Importantly, our hand-engineered planning and control algorithms
are differentiable, enabling the training of the upstream prediction module for a downstream control
objective by backpropagating gradients through the algorithms. In doing so, DiffStack can jointly
optimize the entire stack for the final control objective, as in end-to-end neural networks, however it
also maintains the interpretability and formal guarantees of standard modular AV architectures.

To make the planner and controller differentiable, we build upon the growing body of work on
differentiable algorithm networks [26]. In particular, we leverage the differentiable Model Predictive
Control (MPC) algorithm [1] for our controller. While differentiable algorithms show great promise,
most prior works consider relatively simple control problems, e.g., pendulum and cartpole in [1]. To
the best of our knowledge, this is the first work to demonstrate that, through careful design choices
and integration, differentiable algorithms can be composed into stacks and trained with real-world
data for AV prediction, planning, and control.

We evaluate DiffStack in both open-loop and closed-loop simulation settings using the large-scale,
real-world nuScenes dataset [6]. Our results show some immediate benefits of differentiable stacks:
by training a prediction model with respect to the final control objective, DiffStack increases the
effectiveness of predictions for decision making by up to 15% over a large number of diverse scenarios.
DiffStack achieves this by, e.g., learning to make fewer prediction errors that would negatively affect
planning. Further, DiffStack outperforms alternative handcrafted planning-aware prediction losses;
compensates for artificially introduced integration errors; and tunes an interpretable cost function
to make resulting plans more similar to human driving. Beyond these immediate benefits, our work
demonstrates the feasibility and potential of differentiable AV decision making stacks, making an
important step towards a new class of data-driven yet modular AV architectures.

2 Related work

Modular AV architectures. Many state-of-the-art methods for AV perception have achieved
substantial gains by relaxing bottlenecks between learned neural network modules and training
multiple modules together. Examples include works that more tightly integrate object detection and
tracking [53], as well as prediction with object detection [48], classification [19], and tracking [47; 20;
49]. While successful, these works focus on AV modules where neural networks are already commonly
employed and thus differentiable, i.e., perception and prediction. Looking downstream, there are
many works that focus on more tightly integrating prediction within planning [54; 29; 18; 10; 41],
however, these works only use predictions in planning rather than improve the prediction module
with information from planning. Recently, works such as [8; 17; 31] present potential avenues
for designing upstream modules in a planning-aware fashion. In particular, Ivanovic and Pavone
[17] propose an evaluation metric for motion prediction that considers the impact of predictions
on downstream planning. While this metric can be used to train prediction with information from
planning, we will show in Section 4 that the resulting improvement is less than with DiffStack.

Data-driven AV architectures. Another line of work eschews modularity entirely, and learns a
policy network directly from data [5; 39; 21]. The approach benefits from the removal of information
bottlenecks and performance scaling with increasing dataset sizes. However, fully end-to-end
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Figure 2: DiffStack is comprised of differentiable modules for prediction, planning, and control.
Importantly, this means that gradients can propagate backwards all the way from the final planning
objective, allowing upstream predictions to be optimized with respect to downstream decision making.

approaches lack interpretability, important for debugging, verification, and safety guarantees; it is also
unclear how well purely data-driven methods can generalize to unseen or rare-but-critical scenarios.
Accordingly, recent works have focused on reintroducing structure and interpretability to learned
policy networks. Most notably, the Neural Motion Planner [51] and follow-up methods [52; 13; 9]
use object detection and agent behavior prediction as interpretable intermediate auxiliary learning
objectives while training a joint backbone network from sensors directly to decision making. An
important downside of this approach is that all components are neural networks, preventing the
incorporation of principled planning and control algorithms, which are otherwise common in practice.

Differentiable algorithms. The idea of making existing model-based algorithms differentiable
opens up new design paradigms that blend data-driven deep learning with classic model-based
algorithms [26]. When both neural network models and fixed algorithmic computation can be
expressed in the same “neural programming" framework, one can perform joint end-to-end learning
even in structured modular architectures. Differentiable algorithms have been explored in various
robotic domains including localization [23; 25], mapping [22; 27], navigation [24; 16; 26], and robot
control [34; 1; 36; 14]. Our work is motivated by the initial successes of these approaches in rather
simple robotic domains. To the best of our knowledge, this is the first work to apply differentiable
algorithms in the context of autonomous driving stacks including prediction, planning, and control.

3 DiffStack: A Differentiable and Modular Autonomous Vehicle Stack

DiffStack is an autonomous driving stack with modules for prediction, planning, and control (Fig. 2).
At a high level, DiffStack produces a trajectory for the AV to follow given a goal state, the tracked
states of other agents, and a lane graph. To do so, it predicts where non-AV agents could move in the
future; uses the predictions to select a safe, low-cost, and dynamically-feasible motion plan from a
set of candidates; and finally optimizes the plan to yield a continuous and smooth ego-trajectory.

The key feature of DiffStack is that it is differentiable, i.e., we can compute ∂Lj/∂θi, the gradient
of the training objective Lj of downstream module j with respect to the parameters θi of upstream
module i. Differentiability enables training all parameters jointly for the overall objective of the stack
with a gradient-based optimizer. We can also interpret DiffStack as a neural network with interpretable
internal representations and fixed computational blocks for planning and control. Section 3.1 will
describe how these components are made differentiable.

The main use case considered in this paper is to train the prediction module with respect to a final
control objective. Different agents’ predictions have different importance to the ego-vehicle (see
examples in Appendix B). Standard metrics used to train prediction models are agnostic to the
consequences of downstream planning, treating harmless and dangerous errors equally [8; 17]. By
training directly for the end-objective of ego control, we expect DiffStack’s prediction module to not
only be accurate, but also synergize with planning and yield better overall ego controls.

We consider two open-loop training settings. In reinforcement learning (RL) experiments we optimize
a hindsight cost that measures the quality of an ego trajectory in hindsight, i.e., after observing the
future trajectory of other agents in the scene. The hindsight cost can be viewed as a negative reward for
RL. In imitation learning (IL) experiments we compare the planned ego trajectory to the ego-vehicle’s
enacted motion in the data through a mean-squared-error (MSE) loss. We additionally explore using
DiffStack to tune the hand-specified planning and control cost functions. In this section, we describe
each module in DiffStack and their respective training setups, with more details in Appendix C.
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Nomenclature. Ego refers to the AV and agent denotes a non-AV vehicle or pedestrian. States
s are 2D positions and velocities for pedestrians; 2D positions, heading, and longitudinal velocity
for vehicles. Control variables u are heading rate and longitudinal acceleration. A trajectory is a
sequence of states, or states and controls, depending on the context. Distances between states are
measured using the 2D Euclidean distance, whereas root-mean-squared state distance over time is
used for trajectories. We perform two types of optimization: training (sometimes called learning)
optimizes parameters of the stack θ over a dataset for a training objective or loss L; planning and
control optimizes the ego trajectory se to minimize a cost C with θ fixed.

3.1 DiffStack modules

Prediction. We employ Trajectron++ [40], a state-of-the art CVAE that takes TH seconds of state
history for all agents a ∈ A as input and outputs multimodal trajectory predictions,

ŝ
(1:T )
a,k = CVAEθ

(
s

gt,(−TH :0)
a′∈A

)
for k ∈ K, (1)

where k ∈ K is a mode of the output distribution. The encoder of the CVAE processes agent
state histories with recurrent LSTM networks and models inter-agent interactions using graph-based
attention. The decoder is a GRU that outputs a Gaussian Mixture Model (GMM) for each future
timestep. The GMM modes correspond to the CVAE’s K=25 discrete latent states. To ensure
predictions are dynamically-feasible, GMMs are defined over controls and then integrated through
a known (differentiable) dynamics function to produce a trajectory. We use the default model
configuration without map and ego conditioning. We augment the input states with an ego-indicator
variable to allow for ego-agent relation reasoning. The raw prediction training objective is the
InfoVAE loss, Lpred = LInfoVAE

(
ŝa,k, s

gt
a

)
, the same as for the original Trajectron++.

Planning. The planner is a sampling-based algorithm that generates a set of N dynamically-feasible
ego trajectory candidates, P={sn, un}n∈N , and selects the candidate with the lowest cost. Namely,

splan, uplan = arg min
sn,un∈P

C(sn, un; ŝa∈A, g,m), (2)

whereC is the cost function, ŝa∈A are multimodal predictions from the prediction module, g is a given
goal, and m is a lane graph. To generate trajectory candidates we sample a set of lane-centric terminal
states, fit a cubic spline from the current state to the terminal state, and reject dynamically-infeasible
trajectories. The cost function is a weighted sum of standard handcrafted terms,

C = w1Ccoll(s, ŝa∈A) + w2Cg(s, g) + w3C`⊥(s,m) + w4C`](s,m) + w5Cu(u), (3)

penalizing collisions, distance to the goal, lateral lane deviation, lane heading deviation, and con-
trol effort, respectively. Most notably, the collision term incorporates predictions into planning,
Ccoll(s, ŝa∈A) =

∑
a∈A

∑
t∈1:T ϕ

(∑
k∈K πk||s(t) − ŝ

(t)
a,k||2

)
, where ŝa,k is the k-th mode of the

predicted trajectory distribution for agent a, πk is the probability of the k-th mode, ϕ is a Gaussian
radial basis function, and || · || is the Euclidean norm. For simplicity, we only perform prediction for
the vehicle closest to the ego and use GT futures for other agents. The remaining terms of (3) are
defined in Appendix C.

We desire the planner to be differentiable, i.e., we wish to compute δLplan(splan,uplan)
δθ where Lplan is

a measure of plan quality given some form of training data, and θ are parameters of the prediction
model and/or the cost function. Using the chain rule, δLplan

δθ =
δLplan

δC(ŝθ)
δC(ŝθ)
δŝθ

δŝθ
δθ , where the last

term is differentiable because C is composed of differentiable functions. We make the middle term
differentiable by relaxing the min operator of (2) into sampling from a categorical distribution,
effectively treating the planner as a classifier during training, where the probability pn of choosing
candidate n is proportional to exp(−C(sn, un; ·)). We can then use cross entropy as the training loss,
Lplan = LCE = −∑n∈N 1(sn = s∗) log pn, where the target trajectory s∗ is chosen depending on
the training setup (see Section 3.2).

Control. The control module performs MPC over a finite horizon using an iterative box-constrained
linear quadratic regulator (LQR) algorithm [43]. Formally, we aim to solve

sctrl, uctrl = arg min
s,u

C(s, u; ŝa∈A, g,m) s.t. s(0)=sinit, s(t+1)=fd(s(t), u(t)), u≤u≤u, (4)
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Table 1: Open-loop evaluation results. DiffStack outperforms all baselines in planning and control
metrics because it trains its prediction model for the downstream task.

Method Pred. End ADE (m) ↓ NLL (nats) ↓ Planning Loss ↓ Hindsight Cost ↓
Obj. Obj. ± Std. Err. ± Std. Err. ×10−2,± Std. Err. ×10−2,± Std. Err.

No prediction – – 0.00± 0.00 0.00± 0.00

Standard X 1.32± 0.06 0.42± 0.04 −3.76± 0.23 −1.61± 0.05
Distance weighted X 1.34± 0.06 1.19± 0.10 −4.04± 0.22 −1.68± 0.04
∇Cost weighted [17] X 1.43± 0.10 −1.06± 1.52 −4.29± 0.20 −1.77± 0.07
DiffStack (no Lpred) X 1.37± 0.06 8.01± 0.75 −5.13± 0.22 −1.87± 0.04
DiffStack X X 1.27± 0.07 0.38± 0.05 −5.13± 0.18 −1.86± 0.04

GT prediction – – −7.56± 0.00 −2.25± 0.00

where C denotes the cost function, fd the dynamics, sinit the current ego state, and u, u the control
limits. We use the cost defined in (3) for C and the dynamically-extended unicycle [28] for fd. We
initialize the trajectory with splan, uplan from the planner. The algorithm then iteratively forms and
solves a quadratic LQR approximation of (4) around the current solution s(i), u(i) for iteration i,
using first- and second-order Taylor approximations of fd and C, respectively. The trajectory is
updated to be close to the LQR optimal control while also decreasing the original non-quadratic cost.
We stop iterations upon convergence or a fixed limit.

To make the control algorithm differentiable, we leverage Amos et al. [1]: The iLQR optimal
trajectory can be differentiated with respect to the control and dynamics functions by implicitly
differentiating the underlying KKT conditions of the last LQR approximation. The gradients can be
analytically computed by one additional backward pass of a modified iterative LQR solver. If iLQR
fails to converge, we do not backpropagate gradients. In our setting, fd is fixed and we backpropagate
gradients to C and further to the prediction module.

3.2 End-to-end training

An important question for data-driven AV stacks is the training objective and data. Learning in the
real world is prohibitively expensive, and building a simulator with realistic traffic agent behavior
is an open challenge. Accordingly, standard practice is to perform open-loop training with human
driving data [3; 51; 52; 18; 10; 12; 11]. We consider two common types of open-loop training settings:
reinforcement learning (RL) and imitation learning (IL).

In the RL setting, we aim to minimize the (hindsight) cost of DiffStack’s output trajectories over
training examples in the dataset, LHC =Ch

(
sctrl, uctrl; s

gt
a∈A, g,m

)
. The hindsight cost Ch captures

the quality of a trajectory in hindsight, i.e., after knowing the future trajectory of non-ego agents
sgt
a∈A, similar to the concept of rewards in RL. We choose Ch identical to the control cost C, but

with GT future trajectories instead of predictions for other agents. Note that our open-loop training
setup does not account for the effect of ego actions on other agents; nevertheless, we treat recorded
trajectories as GT futures, as in the prediction literature [38]. Given GT futures, LHC is differentiable
wrt. parameters in DiffStack, so Lctrl =LHC can be directly optimized as the control module’s loss.
In the IL setting, we aim to minimize the MSE between DiffStack’s output ego trajectory and the GT
in the dataset, LIL =

∑
t=1:T ||s

(t)
ctrl − sgt,(t)||2.

The total loss for training the stack is a linear combination of module-wise objectives, L=α1Lpred +
α2Lplan + α3Lctrl. We experiment with different combinations of losses, including setting each αi
to zero. In the rest of the paper, we omit αi for brevity.

4 Experiments

Our experiments investigate the following questions: 1) can DiffStack learn predictions that lead
to better plans? 2) how does DiffStack compare to alternative planning-aware training techniques?
3) can DiffStack correct systematic integration errors? 4) can DiffStack learn the control cost from
imitation? 5) do our open-loop results translate to closed-loop evaluation?
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Standard DiffStack Standard DiffStack

Figure 3: Left: The standard stack predicts an unlikely lane intrusion with high confidence, causing
the planner to swerve. In contrast, DiffStack’s prediction assigns most of the probability mass to
reasonable trajectories that consider the presence of the ego vehicle, and the resulting motion plan
stays well within lane boundaries. Right: The standard stack incorrectly predicts that a vehicle would
collide into the ego-vehicle from behind with high probability, causing the ego-vehicle to move
into the intersection. DiffStack assigns more probability to the agent slowing down, as a result the
ego-vehicle slows down before the intersection.

We begin with open-loop experiments (1–4), and then present closed-loop results (5) in Section 4.3.

4.1 Experimental setup

Dataset. We use the nuScenes dataset [6], comprised of state annotations for vehicles and pedestrians
in 1000 scenes across Boston and Singapore. For training and open-loop evaluation we sample suitable
planning scenarios from the dataset with TH =4s history and T =3s future data. For each scenario,
we choose one vehicle to act as the ego. Details including dataset splits are in Appendix D.

Metrics. We evaluate DiffStack’s prediction module via standard prediction metrics: average
displacement error (ADE) for the most-likely prediction and negative log-likelihood (NLL) for its
full distributional output. To evaluate planning and control, we use the cross-entropy planning
loss Lplan = LCE, and control loss Lctrl. We report the hindsight cost for reinforcement learning
(Lctrl = LHC) and MSE for imitation learning experiments (Lctrl = LMSE). Since control is an AV
stack’s end-goal, Lctrl reflects the overall performance of the stack. To make these metric values more
interpretable, we report them relative to a No prediction baseline and a GT prediction-based oracle.
The baseline ego plans without predictions (ignoring the predicted agent), providing a performance
lower bound. The GT oracle plans with GT futures in place of predictions, providing an (imperfect)
notion of a performance upper bound. All results are averaged over our validation set, and we report
standard errors of the mean over 5 training seeds.

Baselines. We compare DiffStack with standard AV stacks. For a fair comparison, we use the same
set of modules as in DiffStack, but without making the planner and controller differentiable. We
only train the prediction model, using increasingly planning-aware training objectives. Standard
trains the prediction model with only the prediction loss Lpred, unaware of downstream planning.
Next, we re-weight prediction losses (in each batch) based on a handcrafted measure of relevance
for planning. Distance weighted weights losses with the inverse distance between the ego and agent
GT futures. ∇Cost weighted uses the magnitude of the control cost gradient with respect to the
GT future trajectory of the agent, proposed as a planning-aware prediction metric in [17]. Finally,
DiffStack backpropagates gradients of the final loss to the prediction module. DiffStack (no Lpred)
uses L=Lplan + Lctrl; DiffStack uses L=Lpred + Lplan + Lctrl.

Implementation details. We implement DiffStack in PyTorch [35] and build on the open-source
code of Trajectron++ [40] and Differentiable MPC [1]. We use TH =4s, T =3s, and ∆t=0.5s. We
train all models for 20 epochs using 4 NVIDIA Tesla V100 GPUs, taking 10–20 hours. Additional
details are in the Appendix. Code is available at https://sites.google.com/view/diffstack.

4.2 Open-loop results

End-to-end training is useful. Our main results are summarized in Table 1. The key observation is
that DiffStack improves the effectiveness of predictions on ego planning by up to 15.5% compared
to standard training (Lctrl =−1.86 vs. −1.61); and reduces the gap to the cost attainable with a

6

https://sites.google.com/view/diffstack


Table 2: System integration results. DiffStack compensates for errors in module integration. Even
if GT prediction targets are erroneously offset by 1m, training with downstream losses corrects the
prediction model’s bias and improves overall system performance.

Method Pred. End ADE (m) ↓ NLL (nats) ↓ Planning Loss ↓ Hindsight Cost ↓
Obj. Obj. ± Std. Err. ± Std. Err. ×10−2,± Std. Err. ×10−2,± Std. Err.

No prediction – – 0.00± 0.00 0.00± 0.00

Standard-biased X-biased 3.64± 0.34 8.43± 0.72 16.22± 2.73 3.13± 0.40
DiffStack-biased X-biased X 2.01± 0.08 4.20± 0.09 −3.58± 0.96 −1.61± 0.12

GT prediction – – −7.56± 0.00 −2.25± 0.00

GT-informed oracle by 39.1% (−1.86 + 2.25 vs. −1.68 + 2.25). DiffStack also improves planning
without significantly impacting raw prediction accuracy (ADE=1.27 vs. 1.32, within standard error).
Alternative methods that re-weight the prediction loss in a planning-aware manner (rows 2 and 3) also
help, but less than DiffStack. Surprisingly, we can even recover comparable prediction performance in
terms of ADE when training solely for planning and control objectives (row 4). The poor distribution
fit (high NLL) is due to our control cost being agnostic to the variance of the predicted GMMs.

DiffStack makes fewer prediction errors that affect planning. Qualitatively analysing predictions
and plans shows that the main source of improvement from end-to-end training is the reduction of
spurious and/or unrealistic predictions that lead to plans with large (unnecessary) deviations from the
lane center or the goal position. Fig. 3 shows two particular examples. In both cases, DiffStack’s
predictions are more realistic and accurate, yielding much more reasonable downstream plans.

DiffStack can compensate for system integration errors. Integrating independently developed
modules into an AV stack can be challenging due to, e.g., misaligned module interfaces. Table 2
shows results for an experiment that explores this issue. We introduce an artificial interface mismatch
between prediction and planning by adding a fixed 1m offset to all GT prediction targets. As a
result, the standard model yields very poor plans (note the positive value in row 1, indicating worse
performance than baseline planning). However, DiffStack can compensate for interface mismatch and
substantially improves the overall plans, suggesting that it can learn to correct erroneous predictions
that affect planning. More broadly, these results demonstrate the potential for differentiable AV stacks
to reduce various development/engineering costs associated with developing AVs, e.g., by replacing
tedious manual parameter tuning with end-to-end data-driven optimization. We further explore this
topic in the cost tuning experiments below.

DiffStack can imitate humans better. Imitation learning results are summarized in Table 4. The
overall performance of the stack is now measured by Lctrl = LMSE, the MSE between planned and
human expert trajectories relative to the MSE for the baseline planner (without predictions). We
observe a similar trend as before; however, the results also reveal some limitations. The standard
stack performs worse in terms of MSE than the baseline stack which neglects predictions entirely
(note the positive sign for relative LMSE in row 1). While DiffStack improves MSE significantly, the
absolute difference is small. We hypothesize this is caused by our cost function not being rich enough
to fully capture human driving behavior; and because agent-agent interactions that affect planning are
rare in nominal driving data (comprised mainly of lane- and speed-keeping). These limitations could
be addressed by a richer cost function and alternative goal definitions, which we leave to future work.

Table 3: DiffStack learns a better control cost.
Method Planning Loss ↓ MSE (m2) ↓
Hand-tuned 2.67± 0.00 0.38± 0.00
Learned 2.41± 0.01 0.32± 0.00

DiffStack can learn a better control cost. While
our main use case in this paper is to learn planning-
aware prediction, DiffStack opens up various other
opportunities for data-driven optimization of various
components of the AV stack. For example, an impor-
tant challenge in practice is to design a cost function
for planning and control. In this experiment, we explore DiffStack’s potential to learn interpretable
control costs that optimize the quality of output plans from data. Table 3 reports results in the imitation
learning setting, where we first train a prediction module (as before), then we train for an additional
20 epochs allowing DiffStack to update the weights wi of the control cost (3) by backpropagating
gradients from the final control loss Lctrl. Compared to the default hand-tuned weights (row 1),
DiffStack significantly decreases plan MSEs (row 2). The resulting learned weights wi are lower for
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Table 4: Imitation learning results. DiffStack’s plans better match the GT ego trajectories from data.

Method Pred. End ADE (m) ↓ NLL (nats) ↓ Planning Loss ↓ MSE (m2) ↓
Obj. Obj. ± Std. Err. ± Std. Err. ×10−3,± Std. Err. ×10−2,± Std. Err.

No prediction – – 0.00± 0.00 0.00± 0.00

Standard X 1.25± 0.02 0.53± 0.23 −0.50± 0.05 0.60± 0.15
DiffStack X X 1.43± 0.14 0.30± 0.23 −0.80± 0.04 −1.80± 0.16

GT prediction – – −1.10± 0.00 −2.80± 0.00

the control effort term, and higher for the goal and lane keeping terms (see Appendix A). To ensure
safety, we fix the weights for collision avoidance. We leave comparison with alternative techniques
for learning control costs to future work. We expect DiffStack to be more effective compared to, e.g.,
Bayesian optimization, where the number of learned parameters is large.

Ablations. Results of an ablation study can be found in Appendix A. In short, improvements from
DiffStack are consistent with our observations when training for L=Lpred+Lplan; L=Lpred+Lctrl;
when changing the relative scale of loss components; with higher time resolution ∆t=0.1 for planning
and control; and when only using one of the planning or control modules.

4.3 Closed-loop evaluation

Simulation. We perform closed-loop simulation using a simple log-replay setup, where ego states
are unrolled based on the planned control outputs and known dynamics, while non-ego agents follow
their fixed trajectories recorded in the dataset. The evaluation scenarios are Tsim = 10s long. The goal
and lane inputs for planning are updated in each simulation step based on the logged ego trajectory.
We compute the following metrics. Trajectory Cost captures closed-loop performance: it evaluates
the cost function C on unrolled simulation trajectories, 1/Tsim

∑
t=1:Tsim

C(s
(t)
sim, u

(t)
sim; sgt,t

a∈A,m
(t)),

where ssim and usim are the unrolled ego state and control. We exclude the goal cost term because
the goal is updated in each simulation step. Open-loop Cost is the average of hindsight costs
calculated open-loop at each simulation step, LHC =C(sctrl, uctrl; s

gt
a∈A, g,m). Collision Cost is

the collision term in the trajectory cost, w1Ccoll(s
(t)
sim, s

gt,(t)
a∈A ). Lane Cost is the sum of lane keeping

terms, w3C`⊥ + w4C`]. Control Effort is the control effort term, w5Cu. Deviation is the average
distance between unrolled and logged ego trajectories from the data, ||s(t)sim − sgt,(t)||.
Results. Simulation results are in Table 5. Most importantly, we observe similar relative improvement
for DiffStack in terms of closed loop trajectory cost as in terms of open-loop cost. DiffStack performs
substantially better that the no prediction baseline, but somewhat surprisingly the standard stack
performs worse, both in terms of closed-loop trajectory cost and open-loop cost. Analysing the cost
components sheds light on possible reasons. As expected, incorporating predictions into planning
results in lower collision costs, but higher lane keeping costs. The contribution of these two terms
to the average cost depends on the data distribution, e.g., the frequency of close interactions where
predictions are useful. As we saw earlier in Fig. 3, poor predictions in the standard stack frequently
lead to unnecessary lane deviations in the planner. This is reflected in the substantially higher lane
cost and control effort cost for the standard stack compared to DiffStack in Table 5.

5 Limitations & Conclusions

Limitations. One limitation of our work is the open-loop training and log-replay based simulation
setup. In lieu of a real-world AV or a simulator with strong behavioral realism, this is standard practice;
however, recent efforts on accurate behavior simulation could be leveraged in the future [4; 42; 7;
37; 50]. Our implementation of DiffStack also has limitations. First, it is not differentiable wrt. all
possible parameters, e.g., no gradients flow from the control loss to the planner’s trajectory candidate
generator. Future work may develop more sophisticated differentiable algorithms and explore ideas
for gradient approximation for non-differentiable components [46]. Second, individual modules
could be improved, e.g., by adding a more sophisticated prediction model, improving candidate
sampling in the planner, and adding trust-region constraints to the controller. Finally, even though
hand-engineered components, modularity, and intermediate training objectives in differentiable stacks
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Table 5: Closed-loop results. DiffStack outperforms the standard stack similarly to open-loop results.

Method Trajectory Cost Open-loop Cost Collision Cost Lane Keep Cost Control Effort Deviation (m)
×10−2 ↓ ×10−2 ↓ ×10−2 ↓ ×10−2 ↓ ×10−2 ↓ ×10−2 ↓

No prediction 0.00 0.00 0.00 0.00 0.00 0.00

Standard 0.87 0.33 −8.21 8.91 0.18 1.05
DiffStack −4.37 −2.40 −8.20 4.84 −0.99 0.98

GT prediction −6.30 −2.58 −8.54 3.34 −1.08 0.70

remedy challenges of learning AV policies end-to-end, other challenges naturally remain. For instance,
designing an overall performance metric, or reducing the scarcity of and cost to obtain (interesting)
driving data remain open problems, each of which are impactful areas of future work.

Conclusions. In this paper we take a step towards fully-differentiable and modular AV stacks by
introducing key differentiable components for prediction, planning, and control. Our experimental
results show the potential benefits of jointly training modules of AV stacks for downstream per-
formance. For motion prediction in particular, our results indicate that there is value in moving
from purely prediction-oriented evaluation metrics towards downstream task-oriented metrics, in
line with arguments in recent work [8; 17; 31]. While our experiments focused on learning planning-
aware predictions, DiffStack opens up various exciting opportunities for task-oriented learning in
modular stacks. For example, we may learn a rich neural network as part of the control cost to
capture hard-to-engineer concepts, e.g., reasoning with occlusions or accounting for uncertainties.
Eventually, we envision having differentiable modules for the entire AV stack, allowing any subset of
modules to be learned and optimized for a downstream task. Overall, this would relax information
bottlenecks and enable uncertainty to more easily propagate through the stack without needing to
forgo interpretability, modularity, and verifiabilty of the various components.

Acknowledgements. We thank Yuxiao Chen and Edward Schmerling for generous help with our planner im-
plementation and closed-loop evaluation experiment; Christopher Maes for fruitful discussions on differentiable
MPC and cost learning experiments; and Nikolai Smolyanskiy for valuable high-level feedback.
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A Additional results

A.1 Ablation study

Table 6: Ablation study results.

Method Lpred Lplan Lctrl ADE (m) ↓ NLL (nats) ↓ Planning Loss ↓ Hindsight Cost ↓
×100 ×102 ×103 ± Std. Err. ±Std.Err. ×10−2,±Std.Err. ×10−2,±Std.Err.

No prediction – – 0.00± 0.00 0.00± 0.00

Standard 1 0 0 1.32± 0.06 0.42± 0.04 −3.76± 0.23 −1.61± 0.05
DiffStack (default) 1 1 1 1.27± 0.07 0.38± 0.05 −5.13± 0.18 −1.86± 0.04

DiffStack (no Lplan) 1 0 1 1.33± 0.08 0.48± 0.16 −4.98± 0.11 −1.86± 0.04
DiffStack (no Lctrl) 1 1 0 1.48± 0.21 0.55± 0.15 −5.24± 0.10 −1.85± 0.06

DiffStack 1 5 5 1.64± 0.17 0.85± 0.08 −5.53± 0.07 −1.89± 0.03
DiffStack 1 0.2 0.2 1.28± 0.04 0.66± 0.19 −4.79± 0.18 −1.81± 0.02

GT prediction – – −7.56± 0.00 −2.25± 0.00

No pred. (no plan.) – – – 0.0± 0.00

Standard (no plan.) 1 – 0 1.27± 0.06 0.31± 0.19 – −1.8± 0.23
DiffStack (no plan.) 1 – 1 1.40± 0.15 0.19± 0.40 – −2.0± 0.23

GT pred. (no plan.) – – – −2.6± 0.00

No pred. (no contr.) – – 0.00± 0.00 0.0± 0.00

Standard (no contr.) 1 0 – 1.23± 0.02 0.56± 0.22 −4.08± 0.27 −1.1± 0.03
DiffStack (no contr.) 1 1 – 1.46± 0.18 0.53± 0.13 −5.29± 0.10 −1.2± 0.01

GT pred. (no contr.) – – −7.56± 0.00 −1.5± 0.00

No pred. (∆t=0.1) – – 0.00± 0.00 0.0± 0.00

Standard (∆t=0.1) 1 0 – 1.23± 0.02 0.56± 0.22 −5.65± 1.67 −2.1± 0.06
DiffStack (∆t=0.1) 1 1 – 1.49± 0.12 0.88± 0.27 −14.01± 0.63 −2.4± 0.05

GT pred. (∆t=0.1) – – −25.11± 0.00 −2.9± 0.00

We present results for an ablation study in Table 6. The table is divided into sections in which decision
making metrics are comparable. Decision making metrics are not comparable across sections because
of the different configuration of the stack and a different criteria for rejecting samples from the
validation set. Each section reports planning loss and hindsight cost relative to a No prediction
baseline, and we report relative results for a GT prediction oracle, same as before. In rows of the
table we train stacks with different weighted sum of losses, L=α1Lpred + α2Lplan + α3Lctrl. The
second to fourth columns indicate the αi parameters.

In the first section of Table 6 we compare DiffStack trained with different weighted combination
of losses. We observe similar improvements when using only the control loss or only the planning
loss. The relative weight of the prediction loss vs. the downstream decision making losses behave as
expected: the higher/lower the weight for the downstream planning and control losses the more/less
planning and control metrics improve at the expense of slightly worse/better raw prediction metrics.

In the second section we remove the planner module, and initialize the control algorithm with a zero
control sequence. In the third section we remove the control module and use the output of the planner
as the final ego trajectory. In the last section we change the planning and control time resolution from
∆t=0.5s to ∆t=0.1s. We observe similar trends in terms of improvement from DiffStack in all
cases. In terms of absolute metrics we observe a benefit for using both the planning and the control
modules (not shown in Table 6).
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A.2 Learned control cost experiment

Table 7: Detailed results for the control cost learning experiment.

Cost weights w′1 (Ccoll) w′2 (Cg) w′3 (C`⊥) w′4 (C`]) w′5 (Cu) α Planning Loss ↓ MSE (m2) ↓
Hand-tuned 5.00 0.50 0.30 0.30 1.00 1.00 2.67 0.38
Learned 5.00 0.68 0.36 0.43 0.63 1.10 2.41 0.32

We report detailed results for the control cost learning experiment in Table 7. Values are averages
over 5 training seeds. All standard errors are ≤0.01 (omitted).

We first train a prediction module (as before), then we train for an additional 20 epochs allowing
DiffStack to update the weights wi of the control cost (3) by backpropagating gradients from the
final control loss Lctrl =LMSE. We do not use a planning loss Lplan. For practical reasons we
reparameterize the cost function such that the weights always sum to a fixed constant, and the
total cost is multiplied with a scaler α. Specifically, the cost weights are given by wi=αw′i, and
w′i=c exp (θi)/

∑
j∈1:5 exp (θj). Here α and θi for i∈2:5 are trainable parameters, c is a constant.

To ensure safety we fix θ1, the weight parameter for the collision term Ccoll. We initialize all
parameters, θi, α, c such that the default hand-tuned weights (shown in row 1) are recovered.
Compared to the default hand-tuned weights (row 1), DiffStack significantly decreases plan MSEs
(row 2). The resulting learned weights are lower for the control effort term, and higher for the goal
and lane keeping terms. We observed similar results when freezing the prediction module while
learning the cost weights.
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B Motivation for planning-aware prediction models

1

ST
O

P

STO
P Harmless

Dangerous
Ground Truth
Ego-Vehicle
Human Driver
Resulting Ego-
Motion Plan

b

ST
O

P

STO
P

Ego-Vehicle
Human Driver

Pedestrian

a

Figure 4: Not all predictions are equally important. (a) The motion of a jaywalker in front of the
ego-vehicle is more important than a far-away vehicle. (b) Metrically-equal prediction errors can
have severe consequences; incorrectly predicting that a vehicle will not stop at an intersection may
trigger a dangerous evasive maneuver in the planner. The visualization was inspired by [17] and the
figures include similar graphical elements.
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C DiffStack implementation details

C.1 Planning module details

The planner generates trajectory candidates by first sampling a set of lane-centric terminal states. We
consider all lanes that are within 4.5m from the ego goal g, and the heading difference between the lane
and ego goal state is less than 90◦. For all lanes we generate a set of terminal states based on distance
traveled along the lane for a set of fixed acceleration values a ∈ {−3,−2,−1,−0.5, 0, 0.5, 1, 2}m/s2
and lateral lane offsets `⊥ in {−0.5, 0, 0.5}m. We then fit a cubic spline from the current state to the
terminal state that minimizes mean control effort, and drop the dynamically infeasible trajectories
given the control limits of the ego vehicle.

C.2 Control module details

The iLQR algorithm iteratively forms and solves a quadratic LQR approximation of the problem
around the current solution s(i), u(i) for iteration i, using a second-order Taylor approximation of the
cost function C, and a first-order Taylor approximation of the dynamics function fd.

In each iLQR iteration we are solving an LQR problem. The solution of the LQR problem is a
control sequence which we use as a candidate for a potential trajectory update. Note that the LQR-
optimal control sequence is only optimal according to the approximated quadratic cost, and does
not necessarily improve the cost for the original non-quadratic problem. Therefore we perform a
line-search for the largest change in control sequence in the direction of the LQR-optimal controls that
results in a reduction in the original cost. We start with a down-scaling factor of 1 for the change in
controls, unroll controls through the dynamics function, and evaluate the original non-quadratic cost
for the resulting trajectory. If this cost is larger than the cost of the unchanged trajectory, we decrease
the down-scaling factor by a factor of 5 and repeat the search process up to 5 times. Otherwise
we update the trajectory and move on to the next iLQR iteration, which makes a new quadratic
approximation around the updated trajectory.

We continue iLQR iterations until convergence or up to 5 iterations. Convergence is defined by a
threshold (0.05) on the change in control vector magnitude between iterations.

C.3 Cost function details

The cost function is a weighted sum of a set of handcrafted cost terms for penalizing collisions,
distance to the goal, lateral lane deviation, lane heading deviation, and control effort:

C = w1Ccoll(s, ŝa∈A) + w2Cg(s, g) + w3C`⊥(s,m) + w4C`](s,m) + w5Cu(u).

The cost function terms are defined as followed:

• Ccoll(s, ŝa∈A) =
∑
a∈A

∑
t∈1:T ϕ

(∑
k∈K πk||s(t) − ŝ

(t)
a,k||2

)
, the collision term, where

ŝa,k is the k-th mode of the predicted trajectory distribution for agent a, πk is the probability
of the k-th mode, ϕ is a Gaussian radial basis function, and || · || is the Euclidean norm. The
collision term encourages keeping distance from other agents in expectation.

• Cg(s, g) = ||s(T ) − g||2, the goal term, that captures the distance to goal at the end of the
planning horizon. We choose the goal g to match the “ground-truth” ego trajectory in the
dataset.

• C`⊥(s,m) =
∑
t∈1:T ||st − s`,⊥||2, the lateral lane deviation term, where s`,⊥ is the

position on the lane closest to the ego position s.
• C`](s,m) =

∑
t∈t:T (hte − h`)2, the lane heading deviation term, where he and h` denote

ego vehicle heading and lane heading, respectively.

• Cu(u) =
∑
t∈t:T

(
(u

(t)
steer)

2 + (u
(t)
acc)2

)
, the control effort term, where usteer denotes the

steering control and uacc the acceleration control.

The default weight terms are chosen manually as follows: w1=5.0; w2=0.5; w3=0.3; w4=0.3; w5=1.0.
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D Experimental setup details

D.1 Dataset details

We use the nuScenes dataset which contains a large amounts of driving data, 1000 scenes with
annotated states for vehicles and pedestrians, and a map containing lane information. The data
is collected in Boston and Singapore. Scenes are 20s long, and trajectories are recorded at 2Hz
(∆t=0.5s). We process the dataset into train and test scenarios. Each scenario has TH =4s of state
history and T =3s of GT future states for all agents. We choose one vehicle in the scene to act as
the ego vehicle, and one vehicle to perform prediction for, such that ego and the predicted vehicle
are close. For simplicity we use the GT futures for other agents for the purpose of planning. We
train models with 75% of the training split, and use the remaining 15% as a validation set. We skip
data with insufficient annotations to form a scenario, and where our planner has less then 2 trajectory
candidates.

D.2 Training details

We train all models for 20 epochs using the Adam optimizer with gradient clipping, batch size of
256, learning rate of 0.003 by default. We have not performed extensive search over these training
parameters. When training for multiple objectives, L=α1Lpred + α2Lplan + α3Lctrl, we use the
following default loss scaling parameters: α1=1, α2=100, α3=1000 for reinforcement learning
experiments, and α1=1, α2=10, α3=1000 for imitation learning experiments. We choose the default
values such that the average magnitude of the resulting gradients are similar, followed by a simple
hyperparameter search on the validation set with a different, fixed random seed. We explore the effect
of the αi loss scaling parameters in an ablation study presented in Table 6.

D.3 Closed-loop simulation details

In our log-replay simulation setup ego states are unrolled based on the planned control outputs,
while non-ego agents follow their fixed trajectories recorded in the dataset, and replan every 0.5s.
We create Tsim = 10s long evaluation scenarios, one for each scene in our validation set. In each
step of the simulation we run the stack to get control commands, update the ego state based on the
control command and the known dynamics, and update non-ego agent states according to their logged
trajectories in the dataset. The goal and lane inputs for planning are updated in each simulation step
based on the logged ego trajectory. For simplicity in the stack we only perform prediction for the
most relevant non-ego agent, and ignore all other agents during planning and control. We consider all
agents when computing evaluation metrics.
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