
CW-ERM: Improving Autonomous Driving Planning
with Closed-loop Weighted Empirical Risk

Minimization

Eesha Kumar1∗, Yiming Zhang2, Stefano Pini1, Simon Stent1,
Ana Sofia Rufino Ferreira2, Sergey Zagoruyko1, Christian S. Perone1∗

1Woven Planet United Kingdom Limited
2Woven Planet North America, Inc.

{firstname}.{lastname}@woven-planet.global

Abstract

The imitation learning of self-driving vehicle policies through behavioral cloning
is often carried out in an open-loop fashion, ignoring the effect of actions to future
states. Training such policies purely with Empirical Risk Minimization (ERM)
can be detrimental to real-world performance, as it biases policy networks towards
matching only open-loop behavior, showing poor results when evaluated in closed-
loop. In this work, we develop an efficient and simple-to-implement principle called
Closed-loop Weighted Empirical Risk Minimization (CW-ERM), in which a closed-
loop evaluation procedure is first used to identify training data samples that are
important for practical driving performance and then these are upsampled to help
debias the policy network. We evaluate CW-ERM in a challenging urban driving
dataset and show that this procedure yields a significant reduction in collisions as
well as other non-differentiable closed-loop metrics.

1 Introduction

Learning effective planning policies for self-driving vehicles (SDVs) from data such as human
demonstrations remains one of the major challenges in robotics and machine learning. Since early
works such as ALVINN Pomerleau (1989), Imitation Learning has seen major recent developments
using modern Deep Neural Networks (DNNs) Bansal et al. (2019); Xu et al. (2017); Bojarski et al.
(2016); Codevilla et al. (2018); Kuefler et al. (2017); Vitelli et al. (2022). Imitation Learning (IL),
and especially Behavioral Cloning (BC), however, still face fundamental challenges Codevilla et al.
(2019), including causal confusion de Haan et al. (2019) (later identified as a feedback-driven
covariate shiftSpencer et al. (2021)) and dataset biases Codevilla et al. (2019), to name a few.

There is one particular limitation of IL policies trained with BC that is, however, often overlooked:
the mismatch between training and inference-time execution of the policy actions. Most of the time,
BC policies are trained in an open-loop fashion, predicting the next action given the immediate
previous action and optionally conditioned on recent past actions Bansal et al. (2019); Xu et al.
(2017); Bojarski et al. (2016); Codevilla et al. (2018); Vitelli et al. (2022). These policies, however,
when executed in real-world, impact the future states. Small prediction errors can drive covariate
shift and make the network predict in an out-of-distribution regime.

In this work, we address the mismatch between training and inference through the development of a
simple training principle. Using a closed-loop simulator, we first identify and then reweight samples

∗Equal contribution

Machine Learning for Autonomous Driving Workshop at the 36th Conference on Neural Information Processing
Systems (NeurIPS 2022), New Orleans, USA.

that are important for the closed-loop performance of the planner. We call this approach CW-ERM
(Closed-loop Weighted Empirical Risk Minimization), since we use Weighted ERM Shimodaira
(2000) to correct the training distribution in favour of closed-loop performance. We extensively
evaluate this principle on real-world urban driving data and show that it can achieve significant
improvements on planner metrics that matter for real-world performance (e.g. collisions).

Our contributions are therefore the following:

• We motivate and propose Closed-loop Weighted Empirical Risk Minimization (CW-ERM),
a technique that leverages closed-loop evaluation metrics acquired from policy rollouts in a
simulator to debias the policy network and reduce the distributional differences between
training (open-loop) and inference time (closed-loop);

• we evaluate CW-ERM experimentally on a challenging urban driving dataset in a closed-
loop fashion to show that our method, although simple to implement, yields significant
improvements in closed-loop performance without requiring complex and computationally
expensive closed-loop training methods;

• we also show an important connection of our method to a family of methods that addresses
covariate shift through density ratio estimation.

In Section 2, we detail the proposed CW-ERM and in Section 4 we show the CW-ERM experiments
and compare them against ERM.

2 Methodology

Training
Scenes

Upsampled
Training Scenes

Identification
Policy

Final
Policy

Traditional open-loop ERM training Closed-loop Weighted Empirical Risk Minimization (CW-ERM)

Closed-loop
Simulation

Error set
construction1

2

3

4 5

5

6

Figure 1: High-level overview of our proposed Closed-loop Weighted Empirical Risk Minimization
(CW-ERM) method. In steps (1-2) we train an identification policy π̂ERM using traditional ERM Vap-
nik (1991) on a set of training data samples or driving "scenes". In step (3), we perform closed-loop
simulation of the policy π̂ERM and collect metrics to construct the error set in step (4). With the error
set in hand, we upsample scenes in the training set as shown in step (5). We train the final policy
π̂CW-ERM using CW-ERM as shown in step (6) with the upsampled Dup set.

2.1 Problem Setup

The traditional formulation of supervised learning for imitation learning, also called behavioral
cloning (BC), can be formulated as finding the policy π̂BC :

π̂BC = argmin
π∈Π

Es∼dπ∗ ,a∼π∗(s)[ℓ(s, a, π)] (1)

where the state s is sampled from the expert state distribution dπ∗ induced when following the expert
policy π∗. Actions a are sampled from the expert policy π∗(s). The loss ℓ is also known as the
surrogate loss that will find the policy π̂BC that best mimics the unknown expert policy π∗(s). In
practice, we only observe a finite set of state-action pairs (si, a

∗
i)

m
i=1, so the optimization is only

approximate and we then follow the Empirical Risk Minimization (ERM) principle to find the policy
π from the policy class Π.

2

If we let Es∼dπ∗ ,a∼π∗(s)[ℓ(s, a, π)] = ϵ, then it follows that J(π) ≤ J(π∗) + T 2ϵ as shown by the
proof in Ross and Bagnell (2010), where J is the total cost and T is the task horizon. As we can see,
the total cost can grow quadratically in T .

When the policy π̂BC is deployed in the real-world, it will eventually make mistakes and then induce
a state distribution dπ̂BC

different than the one it was trained on (dπ∗). During closed-loop evaluation
of driving policies, non-imitative metrics such as collisions and comfort are also evaluated. However,
they are often ignored in the surrogate loss or only implicitly learned by imitating the expert due to
the difficulty of overcoming differentiability requirements, as smooth approximations of these metrics
are still different than the non-differentiable counterparts often used. These policies can often show
good results in open-loop training, but perform poorly in closed-loop evaluation or when deployed in
a real SDV due to the differences between dπ̂BC

and dπ∗ , where the estimator is no longer consistent.

2.2 Closed-loop Weighted Empirical Risk Minimization

In our method, called “Closed-loop Weighted Empirical Risk Minimization” (CW-ERM), we seek to
debias a policy network from the open-loop performance towards closed-loop performance, making
the model rely on features that are robust to closed-loop evaluation. Our method consists of three
stages: the training of an identification policy, the use of that policy in closed-loop simulation to
identify samples, and the training of a final policy network on a reweighted data distribution. More
explicitly:

Stage 1 (identification policy): train a traditional BC policy network in open-loop using ERM, to
yield π̂ERM.

Stage 2 (closed-loop simulation): perform rollouts of the π̂ERM policy in a closed-loop simulator,
collect closed-loop metrics and then identify the error set below:

Eπ̂ERM = {(si, ai) s.t. C(si, ai) > 0}, (2)

where si is a training data sample, or “scene” with a fixed number of timesteps from the training set,
ai is the action performed during the rollout and C(·) is a cost such as the number of collisions found
during closed-loop rollouts.

Stage 3 (final policy): train a new policy using weighted ERM where the scenes belonging to the
error set Eπ̂ERM are upweighted by a factor w(·), yielding the policy π̂CW-ERM:

argmin
π∈Π

Es∼dπ∗ ,a∼π∗(s)[w(Eπ̂ERM , s)ℓ(s, a, π)] (3)

As we can see, the CW-ERM policy in Equation 3 is very similar to the original BC policy trained
with ERM in Equation 1, with the key difference of a weighting term based on the error set from
closed-loop simulation in Stage 2. In practice, although statistically equivalent, we upsample scenes
by a fixed factor rather than reweighting, as it is known to be more stable and robust An et al. (2021).

By training a policy using CW-ERM, we expect it to upsample scenes that perform poorly in closed-
loop evaluation, making the policy network robust to the covariate shift seen during inference time
while unrolling the policy.

We describe the complete CW-ERM training procedure in Algorithm 1 and in Figure 1 we show a
high-level overview of our method.

2.3 Relationship to covariate shift adaptation with density ratio estimation

One important connection of our method is with covariate shift correction using density ratio
estimation Shimodaira (2000). To correct for the covariate shift, the negative log-likelihood is often
weighted by the density ratio r(s):

argmin
π∈Π

Es∼dπ∗ ,a∼π∗(s)[r(s)ℓ(s, a, π)] (4)

where r(s) is defined as the density ratio between test and training distributions:

3

Algorithm 1 CW-ERM training procedure
Input: Training set D and hyperparameters K (number of epochs) and w (upsampling factor).

Stage 1: Identification policy
1. Train π̂ERM on D using ERM for K epochs (Equation 1).
Stage 2: Closed-loop simulation
2. Perform closed-loop simulation of the policy π̂ERM in training scenes;
3. Compute closed-loop evaluation metrics;
4. Build the error set Eπ̂ERM of training scenes from closed-loop metrics (Equation 2).
Stage 3: Final policy
5. Construct upsampled dataset Dup by upsampling the error set Eπ̂ERM by w times;
6. Train final model π̂CW-ERM on Dup via CW-ERM (Equation 3).

r(s) =
ptest(s)

ptrain(s)
(5)

In practice, r(s) is difficult to compute and is thus estimated. The density ratio will be higher when
the sample is more important for the test distribution. In our method (CW-ERM), instead of using the
density ratio to weight training samples, we resample the training set based on an estimate of each
data point’s importance towards good closed-loop behaviours. Like the density ratio, the weighting
in our case will also be higher for when the sample is important for the test distribution.

One key characteristic of the importance weighted estimator is that it can be consistent even under
covariate shift. We leave, however, the analysis of theoretical properties of our approximation for
future work.

3 Related Work

Closely related to our work is the “Learning from Failure” method Nam et al. (2020) (also known as
LfF), where the authors train two models at the same time with a similar purpose of mitigating bias.
The difference is that in CW-ERM we train models sequentially and we use closed-loop evaluation
metrics instead of the loss to upsample, which permits the use of non-differentiable metrics. We also
do not use GCE (generalized cross-entropy) to bias the identification model. Our method is simple
from a training perspective, but unlike LfF, it does assume the availability of a simulator.

A similar approach that has been successfully applied to computer vision and natural language
processing is the Just Train Twice (JTT) algorithm Liu et al. (2021). JTT similarly first trains
an identification model, then trains another model which upweights samples misclassified by the
identification model. Although similar in the sense that two models are trained sequentially, in JTT
the goal is to deal with worst-group accuracy and not to improve robustness to closed-loop behaviors
of a planning model, as in our case.

Several works have attempted to address the covariate shift problem in imitation learning. Chauf-
feurNet Bansal et al. (2019) and SafetyNet Vitelli et al. (2022) add state perturbation to the training
data for improved generalization. Similarly, DAVE-2 Bojarski et al. (2016) used video captured from
three different cameras as well as perturbation on the captured images. Another common approach is
to supplement training with on-policy data Ross et al. (2011); Pan et al. (2020); Prakash et al. (2020),
however, in practice, collecting on-policy data for use during training can be extremely expensive
and time-consuming.

Similar to our work, Urban Driver Scheel et al. (2022) also utilizes a closed-loop simulator, but the
simulator is used directly during training to generate unrolls while using BPTT (backpropagation
through time). Urban Driver needs a differentiable simulator and does not scale well due to the
need for rollouts during training and the memory requirements of BPTT. In contrast, our work takes
a much simpler approach where the closed-loop simulator is only used to identify which samples
to up-weight and does not require a differentiable simulator, while being able to directly identify
scenes that are important for closed-loop evaluation without having to change the training loss to add
differentiable collision losses as in Urban Driver Scheel et al. (2022). In our work, any closed-loop
metric can be used, with no requirements for differentiability.

4

4 Experimental Evaluation

4.1 Policy network architecture

Our method is agnostic to model architecture choices. To evaluate our CW-ERM approach, we adopt
the recent network architecture of Vitelli et al. (2022) to represent a strong baseline performance
for SDV planning. This model uses a transformer-based Vaswani et al. (2017) architecture with a
vectorial input representation Gao et al. (2020) to create features for each element into vector sets. It
consists of a PointNet-based Qi et al. (2017) module for local processing of vectorized inputs and
a global graph using a Transformer encoder for reasoning about interactions with agents and map
features. Differently from Vitelli et al. (2022), we don’t use a safety layer, as we want to evaluate the
planner performance without external trajectory fallbacks. For further details, please refer to Vitelli
et al. (2022).

4.2 Training

During training, we found that stopping training of the identification policy before convergence,
similar to what was done in JTT Liu et al. (2021) and LfF Nam et al. (2020), also yielded better
results. We limited the capacity of the identification policy by training it until K epochs. The insight
is that important biases are learned in early training phases Nam et al. (2020) and limiting model
capacity can avoid overfitting and avoid depletion Liu et al. (2021) of the error set used for the
training of the final policy. We train the final policy for 40 epochs.

For the ERM baseline, we compare our method against two different experiments where we have the
traditional BC trained with ERM with and without perturbations (details can be found in Appendix
A).

4.3 Datasets

We train and test CW-ERM on a proprietary dataset. Our SDV data is collected in challenging urban
missions on San Francisco and Palo Alto roads. This dataset is a collection of driving trajectories
from our SDV and surrounding agents, along with recorded HD Maps. Various types of behavioral
scenarios in urban driving such as stopping behind a lead vehicle, stopping at intersections, and
driving among dense cars, pedestrians, cyclists etc. are captured. The majority of scenes in our dataset
are between 11-13 seconds long, with the longest lasting up to 30 seconds. The total data used during
training is 180 hours and we validate and test on 60 hours of driving data each.

4.4 Evaluation framework

We compute the closed-loop evaluation metrics by doing rollouts of the policy in the log-replayed
scenes on a simulator 2 During the unroll, trajectories are recorded. An evaluation plan composed
of a set of metrics and constraints is executed over the recorded trajectories. We count every scene
that violated a constraint (e.g., a collision) and then compute the confidence intervals (CIs) for each
metric using a Binomial exact posterior estimation with a flat prior, which gives similar results (up to
rounding errors) to bootstrapping as recommended in Agarwal et al. (2021).

5 10 15 20

Baseline (ERM w/ perturbation)
Front Collisions (CW-ERM)
Side Collisions (CW-ERM)

Dist. to ref. traj. (CW-ERM)
Front + Side Collisions (CW-ERM)

Front + Side + Rear Collisions (CW-ERM)
Front + Side + Dist. to ref. traj. (CW-ERM)

Front Collisions

40 50 60 70

Side Collisions

20 30 40 50

Rear Collisions

20 30 40 50

Dist. to ref. traj.

Figure 2: Visual representation of the experimental results from closed-loop evaluation in simulation
shown in Table 1. Confidence intervals (CIs) were calculated using .95 interval from an exact
Binomial posterior with a flat prior. In this plot we only compare against the best baseline (ERM
with perturbation).

2We will open-source the simulator and metrics used in this work after the review period.

5

Table 1: Experimental results from closed-loop evaluation in simulation. In this table we show a
baseline method of behavioral cloning (ERM) with and without perturbations (details can be found
in Appendix A) together with the results from single and multi-metric experiments. p95 confidence
interval bounds are provided in brackets. Lower is better for all metrics.

Method Upsampled metric Perturbation Front Collisions Side Collisions Rear Collisions Dist. to ref. traj.

ERM (baseline) (not applicable) 67 (52.8, 85.0) 97 (79.6, 118.2) 114 (94.9, 136.8) 75 (59.9, 93.9)
ERM (baseline) (not applicable) ✓ 14 (8.4, 23.5) 55 (42.3, 71.6) 34 (24.4, 47.5) 35 (25.2, 48.6)

CW-ERM (ours) Front Collisions ✓ 9 (4.8, 17.1) 52 (39.7, 68.1) 38 (27.7, 52.1) 39 (28.6, 53.2)
CW-ERM (ours) Side Collisions ✓ 11 (6.2, 19.7) 47 (35.4, 62.5) 31 (21.9, 44.0) 35 (25.2, 48.6)
CW-ERM (ours) Dist. to Reference Trajectory ✓ 10 (5.5, 18.4) 50 (37.9, 65.8) 40 (29.4, 54.4) 28 (19.4, 40.4)

CW-ERM (ours) Front + Side Collisions ✓ 9 (4.8, 17.1) 55 (42.3, 71.6) 39 (28.5, 53.2) 35 (25.2, 48.6)
CW-ERM (ours) Front + Side + Rear Collisions ✓ 11 (6.2, 19.7) 50 (37.9, 65.8) 28 (19.4, 40.4) 37 (26.9, 51.0)
CW-ERM (ours) Front + Side + Dist. to ref. traj. ✓ 10 (5.5, 18.4) 46 (34.5, 61.3) 40 (29.4, 54.4) 31 (21.9, 44.0)

4.5 Metrics

Metrics computed in the closed-loop simulator are used to construct the error set (Equation 2). In our
evaluation we consider certain important metrics: the number of front collisions, side collisions, rear
collisions, and distance from reference trajectory. The distance from reference trajectory considers
the entire target trajectory for the current simulated point. A failed scene with respect to this metric is
one where the distance of the simulated center of the SDV to the closest point in the target trajectory
is farther than four meters.

In our evaluation, we perform two sets of experiments: single metric and multi metric. In single
metric experiments we construct the error set using only a single metric, while for multi metric we
use scenes from multiple metrics together.

4.6 Results

4.6.1 Single Metric

We show the results from single metric experiments in Table 1. We can see that the number of
collisions significantly reduced for both side and front collision experiments. We found improvements
in the range of ∼35% on the test set for some metrics when compared to the baseline.

We also found that the largest margin of improvements targeting single metrics in isolation were
seen when using single metric based error set, while a balance was achieved when targeting multiple
metrics, which suggests a Pareto front of solutions when targeting multiple objectives.

Variance is also lower in some cases when compared to the baseline. We note that while upsampling
a certain metric, it shows noticeable improvements in other related metrics. For example, in our
single metric experiments, we see that improving side collisions also improve rear collisions. This is
evidence that the model is not only getting better at side collisions but also becoming less passive
(as indicated by reduction in rear collisions, due to log-replayed agents in simulation that are non-
reactive).

Qualitative results during closed-loop unroll are shown in Figures 4 and 5. Here, we show improved
behavior when the scene is upsampled in CW-ERM - once for front collisions Figure 4 and another
for side collisions Figure 5. Here, we see a better response in the CW-ERM model which avoids
collisions by waiting at intersection and slowing down next to a lead vehicle.

4.6.2 Multi Metric

In our multi-metric experiments, we combine two or more metrics - namely m1,m2..mN - into a
single upsampling experiment. The metrics are equally weighted and hence scenes that fail due to any
mi will be added to the error set. While improvements are noticeable upon combining Front and Side
collisions or Front, Side and Distance to the reference trajectory in Table 1, considerable regression
is observed when adding rear collisions. As we can see from the experiments, this is clearly related
to the amount of false-positives (FPs) in rear collisions due to the lack of agent reactivity during log
playback in the simulator.

6

25 50 75 100 125 150 175 200
Upsampling Factor (w)

80

100

120

140

160

S
id

e
C

ol
lis

io
ns

 (#
)

Num. Side Collisions vs. Upsampling Factor

Figure 3: A sample plot showing the effect of upsampling factor on the performance based on single
cost upsampling. Here, the scenes are upsampled based on side collisions by factor w along X-axis.
The resulting side collisions obtained while evaluating on the validation dataset is obtained on the
Y-axis. It is evident from the plot that the performance improves until an upsampling factor of w = 50
after which number of side collisions begin to increase.

4.7 Hyper-parameter Tuning / Upsampling Experiments

We evaluate the performance of the upsampled training set using various identification models
K ∈ {10, 20} with various upsampling factors w ∈ {10, 20, 30, 50} on the validation dataset. Single
metric upsampling experiments responded better to error set extracted from the training where
K = 10, while using K = 20 performed better for multi-metric experiments. We find that the size of
the resulting upsampled error set influences performance. As seen from Table 1 and Figure 3, there
exists a limit beyond which performance does not improve during the upsampling experiments. A
similar observation was noted in JTT Liu et al. (2021), where they also found an upsampling factor
for which beyond it, worst-group accuracy could not be improved.

5 Limitations

Although our method is efficient, easy to implement and showed significant improvements, it also
comes with limitations that are important to highlight. In this work, we use a proprietary dataset
for evaluation, primarily due to the current lack of available closed-loop evaluation benchmarks.
Most public datasets available today are focused on agent prediction tasks and on open-loop metrics
(e.g. Chang et al. (2019); Ettinger et al. (2021)). Recently, the closed-loop planning benchmark
nuPlan H. Caesar (2021) was released, but is still under active development and requires a special
license for industrial labs to use.

Our method also introduces two new hyper-parameters: K (number of epochs for the identification
model) and w (upsampling factor), however, we found the improvement to be robust to different
parameterizations of these parameters, similar to past observations Liu et al. (2021).

We performed log-replay of agents in simulation, which can produce false positives for the rear
collision metric. We leave further analysis and the usage of a reactive simulator as future direction.

We have not yet deployed our policy in a real-world SDV, however, we evaluated it on a closed-
loop evaluation framework that is known to be closely representative of real-world performance.
Deployment and testing of a policy in a real-world SDV on public roads requires further safety
evaluations that we leave as future work.

6 Discussion

Most recent improvements in imitation learning are based on improving the asymptotic performance
of algorithms. In this work we showed a different direction that tackles the problem by directly
addressing the mismatch between training and inference without requiring an extra human oracle
or adding extra complexity during training. Our method is as simple as upsampling scenes by
leveraging any existing simulator and training two models, yet it showed that there is still room

7

Time

B
as
el
in
e

C
W
-E
R
M

Figure 4: A scene from the test dataset showing the behavior of ego in Baseline (ERM) (with
perturbation) and CW-ERM front collisions upsampled. The blue dots are the target trajectory and
the yellow dots are the predicted trajectory. The ego is the box in pink and blue-green boxes are other
agents. Here, we see that the baseline moves ahead at intersection ignoring the car from the right
resulting in a front collision. In contrast, for the CW-ERM policy, it waits at the intersection.

for significant improvements without having to deal with human-in-the-loop, training rollouts or
impacting the policy inference latency. We also described an important potential connection of our
method with density ratio estimation for covariate shift correction Shimodaira (2000), which we
believe is an exciting future research direction that could provide better theoretical understanding of
the improvements seen in our experiments.

8

Time

B
as
el
in
e

C
W
-E
R
M

Figure 5: A scene from the test dataset showing the behavior of ego in Baseline (ERM) (with
perturbation) and CW-ERM side collisions upsampled. The blue dots are the target trajectory and the
yellow dots are the predicted trajectory. The ego is the box in pink and blue-green boxes are other
agents. Here, we see that the baseline deviates from target trajectory and collides with the bus ahead.
The CW-ERM policy slows down behind the bus and prevents a collision.

References
R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare. Deep reinforcement

learning at the edge of the statistical precipice. Advances in Neural Information Processing Systems,
34, 2021.

J. An, L. Ying, and Y. Zhu. Why resampling outperforms reweighting for correcting sampling bias
with stochastic gradients. In 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to drive by imitating the best
and synthesizing the worst. In Proceedings of Robotics: Science and Systems, June 2019. doi:
10.15607/RSS.2019.XV.031.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,
U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learning for self-driving cars,
2016.

9

M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey,
D. Ramanan, and J. Hays. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via conditional
imitation learning. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 4693–4700, 2018. doi: 10.1109/ICRA.2018.8460487.

F. Codevilla, E. Santana, A. M. López, and A. Gaidon. Exploring the limitations of behavior cloning
for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9329–9338, 2019.

P. de Haan, D. Jayaraman, and S. Levine. Causal confusion in imitation learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. R. Qi, Y. Zhou,
Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens, and D. Anguelov.
Large scale interactive motion forecasting for autonomous driving: The waymo open motion
dataset. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 9710–9719, October 2021.

J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. Vectornet: Encoding hd maps
and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11525–11533, 2020.

K. T. e. a. H. Caesar, J. Kabzan. Nuplan: A closed-loop ml-based planning benchmark for autonomous
vehicles. In CVPR ADP3 workshop, 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer. Imitating driver behavior with generative
adversarial networks. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 204–211, 2017.
doi: 10.1109/IVS.2017.7995721.

E. Z. Liu, B. Haghgoo, A. S. Chen, A. Raghunathan, P. W. Koh, S. Sagawa, P. Liang, and C. Finn.
Just train twice: Improving group robustness without training group information. In International
Conference on Machine Learning, pages 6781–6792. PMLR, 2021.

J. Nam, H. Cha, S. Ahn, J. Lee, and J. Shin. Learning from failure: De-biasing classifier from biased
classifier. Advances in Neural Information Processing Systems, 33:20673–20684, 2020.

Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou, and B. Boots. Imitation learning
for agile autonomous driving. The International Journal of Robotics Research, 39(2-3):286–302,
2020. doi: 10.1177/0278364919880273.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in Neural
Information Processing Systems, volume 1, 1989.

A. Prakash, A. Behl, E. Ohn-Bar, K. Chitta, and A. Geiger. Exploring data aggregation in policy
learning for vision-based urban autonomous driving. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11763–11773, 2020.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, 2017.

10

S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Y. W. Teh and M. Titterington,
editors, Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, volume 9 of Proceedings of Machine Learning Research, pages 661–668, Chia Laguna
Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings, 2011.

O. Scheel, L. Bergamini, M. Wolczyk, B. Osiński, and P. Ondruska. Urban driver: Learning to drive
from real-world demonstrations using policy gradients. In Conference on Robot Learning, pages
718–728. PMLR, 2022.

H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference, 90(2):227–244, 2000. ISSN 0378-3758.
doi: https://doi.org/10.1016/S0378-3758(00)00115-4.

J. C. Spencer, S. Choudhury, A. Venkatraman, B. D. Ziebart, and J. A. Bagnell. Feedback in imitation
learning: The three regimes of covariate shift. CoRR, abs/2102.02872, 2021.

V. Vapnik. Principles of risk minimization for learning theory. In Advances in Neural Information
Processing Systems, 1991.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-
sukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

M. Vitelli, Y. Chang, Y. Ye, A. Ferreira, M. Wołczyk, B. Osiński, M. Niendorf, H. Grimmett,
Q. Huang, A. Jain, et al. Safetynet: Safe planning for real-world self-driving vehicles using
machine-learned policies. In 2022 International Conference on Robotics and Automation (ICRA),
pages 897–904. IEEE, 2022.

H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning of driving models from large-scale video
datasets. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
3530–3538, 2017. doi: 10.1109/CVPR.2017.376.

11

Appendix for CW-ERM: Improving Autonomous
Driving Planning with Closed-loop Weighted

Empirical Risk Minimization

A Perturbation

In our experiments, we employed similar perturbation techniques as in Vitelli et al. (2022). We
randomly perturb the ego’s current state to shift from the current trajectory in some of the training
examples. To put it more concretely, for the perturbed states, we add a zero-mean Gaussian noise
to the ego’s current position and heading. We perturb the ego’s speed by av + |b| where v is the
current speed, a and b are speed multiplier and bias terms generated by a zero-mean Gaussian
distribution. Taking the absolute value of the bias term is to ensure that the perturbed speed is always
non-negative. Additionally, we perform collision checks for every perturbed state and we do not
include any perturbed states which includes collisions.

A.1 Policy network hyper-parameters

To train the baselines and our policy we employ a distributed training with a local batch size of 64 for
each replica (with an effective batch size of 4096 when using 64 GPU replicas). We use a learning
rate of 0.001 that is annealed with cosine schedule during training for 40 epochs (except for the
identification models as described in the Section 4). We also used MAE (mean absolute error) loss
and the Adam Kingma and Ba (2015) optimizer with default PyTorch Paszke et al. (2019) parameters
for β1 and β2.

B Scene distribution

We select training, validation and test data subsets to be balanced. The scenarios selected for the
datasets are diverse, and a variety of complex urban scenarios have been curated such that it is
possible to evaluate closed-loop performance, even on minority scenario groups. In Figure 6, a
detailed split of the various scenarios is provided.

12

Figure 6: Scenario distribution of the training dataset. Scenes can be of single or multiple scenarios -
in the case of multiple scenario tags, the scenario names are comma separated.

13

	Introduction
	Methodology
	Problem Setup
	Closed-loop Weighted Empirical Risk Minimization
	Relationship to covariate shift adaptation with density ratio estimation

	Related Work
	Experimental Evaluation
	Policy network architecture
	Training
	Datasets
	Evaluation framework
	Metrics
	Results
	Single Metric
	Multi Metric

	Hyper-parameter Tuning / Upsampling Experiments

	Limitations
	Discussion
	Perturbation
	Policy network hyper-parameters

	Scene distribution

