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Abstract

Cost-maps are used by robotic vehicles to plan collision-free paths. The cost
associated with each cell in the map represents the sensed environment information
which is often determined manually after several trial-and-error efforts. In off-road
environments, due to the presence of several types of features, it is challenging
to handcraft the cost values associated with each feature. Moreover, different
handcrafted cost values can lead to different paths for the same environment which
is not desirable. In this paper, we address the problem of learning the cost-map
values from the sensed environment for robust vehicle path planning. We propose
a novel framework called as CAMEL using deep learning approach that learns the
parameters through demonstrations yielding an adaptive and robust cost-map for
path planning. CAMEL has been trained on multi-modal datasets such as RELLIS-3D.
The evaluation of CAMEL is carried out on an off-road scene simulator (MAVS) and
on field data from IISER-B campus. We also perform real-world implementation
of CAMEL on a ground rover. The results shows flexible and robust motion of the
vehicle without collisions in unstructured terrains.

1 Introduction

Unmanned ground vehicles (UGV) are used in several terrains and off-road conditions for appli-
cations such as search and rescue, surveillance, inspection, exploration etc. In these unstructured
environments with varying texture and slopes, achieving autonomous capability through planning is
more difficult than structured urban environments. For autonomous traversal, cost function and maps
are used to encapsulate the terrain features from the perception module(1). Many planning systems
employ manually designed cost-maps and cost-functions (2) with successful demonstrations at the
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Figure 1: (a) Trajectories generated while navigating in a simulated off-road environment. Trajectory
generated by CAMEL; Trajectory generated from a finely handcrafted cost-map; Trajectory generated
from coarsely designed cost-map. (b) UGV used for real-world experiments.

DARPA Grand Challenge (3). Generally, these cost functions have obstacles inflated with respect
to the vehicle size. The general weighting of costs to different perception sensors are handcrafted
through numerous trials which is a laborious, time consuming and relies on detailed domain knowl-
edge. Moreover, with different weighting can lead to the generation of different paths which is not
desired.

Consider a surveillance application where a robot needs to navigate in a forest area (as shown in
Figure 1a), the cost-map needs to estimate traversable regions coping with obstacles, trees, bushes,
marshy area, puddle and irregular elevations. These scenarios introduce new challenges to the
planning module and determining an optimal cost-map parameters through handcrafting would prove
to be an inefficient strategy. In Figure 1a, we can see that the paths for the handcrafted costs is not
optimal. This issue, motivates us to ask the question: Can we learn a cost-map taking the camera
and LiDAR information directly such that the cost-map represents information similar to the expert
human demonstration?

In this paper, we present an approach called CAMEL 1 that uses fully convolutional networks (FCN)
to fit the multi-modal data and generate cost-maps through expert demonstrations. Deep Learning
architecture enables learning high versatile, highly non-linear models necessary for complex and
dynamic environments. Although, learning cost maps has been a topic of interest in the robotics
community, however there are very few articles in this topic. In (4) and (5), deep reinforcement
learning and deep inverse reinforcement learning techniques respectively are used to learn the cost-
maps. However, in these approaches, initially a pre-trained CNN model trained on manually designed
cost-map is used. The cost-map is further refined by the RL framework. This approach confines
the model to the manually designed scene conditions. Due to the varying off-road scene conditions,
this approach requires extensive amount of demonstration data to capture the complexity of off-road
environment. In CAMEL, we bypass a pretrained model by directly learning to process the visual
(camera) and point cloud (LiDAR) data from the perception module to generate trajectories that
mimic human driving.

While traversing in off-road terrains, the vehicle stability and safety is essential and hence the visual
and geometric features of the terrain such as vegetation, slope, soil stability need to be considered to
plan robust and adaptive paths for the vehicle. These features are obtained by the sensors like camera,
LiDAR and radar. Multi-modal datasets (6) (7) (8) provides reliable images and point cloud data of
diverse scenes to develop algorithms for the outdoor domain. The CAMEL framework uses semantic
projections, height map, slope and LiDAR reflectance intensity to generate a cost-map yielding the
trajectories which is then compared to the actions of a human driver.

The main contributions of this paper are:

• A FCN based Deep Learning framework CAMEL able to predict 2D navigation cost-map for
off-road terrains.

1As camels can walk in different terrains, our proposed framework is applicable to different types of terrains
and hence we named our architecture CAMEL.
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Figure 2: Figure shows the data generated from a single instance in simulation. (a), (b) and (c) are the
images from left, forward and right camera respectively. (d) The three images projected to point cloud
data. (e) The map of projected semantic segmentation on point cloud. The colours range indicates
class hierarchy where blue represents traversable region and dark blue to obstacles. (f) The average
height map extracted from the point cloud data. (g) The estimated slope map indicating the elevation
of the terrain. (h) The LiDAR reflectance intensity map.

• A navigation stack module optimized to the generated cost-maps with the ability to handle
intricate and dynamic topography. CAMEL being learned through human demonstrations,
alongside the navigation stack generate trajectories that mimic human driving.

• Demonstration of the framework’s scalability from simulation training to real-world imple-
mentation (Sim2Real) with very few tuning parameters.

• Demonstration of the framework’s robustness in handling sensor miscalibration and system
biases in the real-world experiments.

• We compare the predicted cost-map against a carefully handcrafted cost-map to show the
efficacy of CAMEL.

2 CAMEL Methodology and Architecture

The CAMEL methodology consists of three stages: input data generation, model training and a
navigation stack as shown in Figure 3a.

2.1 Input data generation

The input to the model consists of 4 different information coming from 3 cameras and a LiDAR
as shown in Figure 2(a)-(d). These are (i) semantic projection (ii) average height map (iii) slope
estimation and (iv) LiDAR reflectance intensity. We fuse all these four geometric and semantic
information into a grid map of prescribed size and grid resolution. The dimensions and resolution
of the grid map is decided based on the sensor ranges and the vehicle dimension. Assume the cost
map size is ℓ × w, where ℓ is the length of the map and w is the width of the map and the map is
discretized with resolution ∆. Each cell in the map is represented as γ. The vehicle’s position on the
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Figure 3: (a) The complete system framework consisting of data input, CAMEL, and the navigation
stack (b) The kernel spaces used to find the local goal.

map is considered as the origin. The visual data and LiDAR data are fused to each of the cells in the
grid. We now describe the generation of different inputs.

2.1.1 Semantic projection

For semantic segmentation we use Offseg(9) a semantic segmentation framework for unstructured
terrains which generates a 2D mask for each pixels in the input RGB image classifying into different
classes. The index of the classes is assigned based on an ascending risk factor (i.e, traversable to
obstacle). The mask is then projected to the corresponding timestamped point cloud using calibration
matrices for respective cameras. The projected points are then mapped onto the grid where for each
cell value, the highest class index encompassed within the cell is assigned. Figure 2(e) is the resultant
output using the camera input from Figure 2(a)-(c) and lidar input from Figure 2(d).

2.1.2 Geometric Characteristics

The LiDAR data provides spatial information as a point cloud. The sensor emits laser pulses which
reflects off a surfaces of vegetation, buildings etc. The reflections are captured and in turn processed
to provide the position of the surface in coordinate space. We compute different morphological and
geometrical information of voxels generated from the point cloud.

Average Height map The information on the height profile of a terrain is necessary to safely
navigate through the environment. This is extracted from the point cloud data. If the value of the cell
is high implies there is an obstacle in the cell and if the value is low then is implies that its a safe cell
to navigate as there is no obstacle in the cell.

To generate the height map, the average height of each cell Hγ is computed using voxels. Assuming
n number of voxels in γ, Hγ is computed as the average height value of the voxels corresponding to
cell γ. It is computes as

Hγ =
1

n

n∑
ν=1

Hν (1)

Figure 2(f) shows the average height maps for an instance based on the informaion from Figure 2(d).

Slope Estimation By generating voxels, we take the neighbouring points in a cubic volume and do
an averaging thereby giving us better estimates. Slope λ of a voxel is the angle between its surface
normal η and the z-axis of world coordinate. It is computed by taking the cosine inverse of surface
normal component to the z-axis of world coordinate. The slopes of the voxels are then averaged
corresponding to their grid cells as

λγ =
1

n

n∑
ν=1

arcos(ηzν). (2)
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Input Block c k s Output
40× 28× 4 Conv2D 64 5 1 40× 28× 64

output1 Conv2D 32 3 1 40× 28× 32
feature output2 MaxPool2D 32 - - 20× 14× 32

extraction output3 Conv2D 32 3 1 20× 14× 32
output4 Conv2D 32 1 1 20× 14× 32
output5 Conv2D 16 1 1 20× 14× 16
output6 Upsample 32 - - 40× 28× 16

feature output2 Conv2D 32 3 1 40× 28× 32
fusion output7 Conv2D 32 1 1 40× 28× 32

output8+output6 Concatenate 64 - - 40× 28× 48
output8 Conv2D 1 1 1 40× 28× 1

Table 1: CAMEL uses standard convolutions (Conv2D) with two branches, a feature extractor and a
feature fusion. The parameters c, k, s represents number of output channels, kernel size and stride
parameters.

For better slope estimates k-dimensional tree (k − d tree) is used to search the nearest neighbours.
The radius for k-d tree is two times the voxel size with a maximum of 10 neighbours for better
estimates. Figure 2(g) shows the slope map for the input given in Figure 2(d).

LiDAR reflectance intensity LiDAR intensity ι can be used to classify terrains and vegetation (10).
The intensity by which the laser pulses are reflected depends on different morphological properties
such as moisture content, roughness, range and surface composition. These characteristics could
provide distinctive features on classes such as puddle, grass, asphalt apart from semantic segmentation.
For each grid cell we compute the average intensity of the voxels as

ιγ =
1

n

n∑
ν=1

ιν . (3)

Figure 2(h) shows the slope map for the input given in Figure 2(d).

2.2 CAMEL Architecture

Input@40x28x4 Output@40x28x1

Feature fusion

Feature extrac�onFeature extrac�on

32 28

32 14 32 14 1614

16 28

+

32 28 32 28

48 28

Figure 4: The proposed CAMEL architecture with feature extraction and feature fusion branches.

We develop a novel architecture based on Fully Convolutional Network called CAMEL to generate
cost-map through demonstrations based on the perceived data from sensors. This could be considered
as an imitation learning approach wherein a model tries to imitate decisions taken by human experts
at a given instance. Inspired from Multi-Scale Fully Convolutional Networks(5), the architecture
consists of three segments: a feature extraction, a feature fusion as shown in Figure 4 along with a
navigation module to extract the steering values from the output cost-map.

For the feature extraction module, we employ four layers of convolutions and a pooling layer as
listed in Table 1 to ensure the low-level feature sharing is valid. All convolutional layers are standard
Conv2D with max-pooling layer. The convolutional layers employ a single stride, replicate padding
followed by leaky-ReLU activation(11). The first layer has spatial kernel size of 5 × 5 and the other
three with 3 × 3 kernel size.

A skip connection is introduced which takes the output of the second Conv2D layer before max-
pooling and computes two convolutions with kernel seizes 3 × 3 and 1 × 1 following leaky-ReLU
activation. This enables the model to preserve translational variant and invariant features. The output
from feature extraction module is then upsampled by a factor of 2 which is concatenated with the
skip connection. This enables the model to treat feature channels separately. A final convolution is
applied on the concatenated output yielding the cost-map.
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Using steering value yϵ[−1, 1] as the ground truth, a path from start to a desired goal is generated
from the output cost-map yielding steering value ŷ which is used to compute the training loss.
Mean squared error (MSE) loss function gives the loss between the target and predicted steering
values backpropagated for weight updation. Adam optimizer(12) along with weight decay (L2
regularization) to avoid the exploding gradient of weights. The extraction of steering value from
cost-map is discussed broadly in the next section.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (4)

2.3 Navigation Stack

Along with the cost-map predictor we propose a navigation module compatible and optimized for
the generated cost-map consisting of few parameters. The input data IϵR4×l×w is passed to the
model giving an output cost-map. The cost-map C is then normalized to 1 i.e, Cϵ[0, 1] for easier
parametrization.

For navigation a path needs to be generated in C that has the least cost. This task is achieved by using
a path planning algorithm like A∗(13) or Dijkstra(14) for a given start and goal. The start location
is the current position of vehicle, however we need to provide a goal in C. Here we introduce a
framework for selecting a favourable goal for local path planning from C. To compute the local
goal, a kernel space of one sixteenth the map dimension is considered at different locations in C as
shown in Figure 3b. For all the kernels, the mean and the least cost cell value within the kernel is
computed and summed giving a traversability coefficient T as given in equation (5). Now based on
the current orientation of the vehicle towards goal g in the global frame, a finely tuned weight is
generated for each kernel where the kernel k oriented in the direction of g has least weight. Weights
are then distributed across other kernels based on the euclidean distance from k. These weights are
then multiplied with T to give the final kernel risk coefficients V .

Tk =
1

m

m∑
i=1

xi +min(x1, x2, ....xm) (5)

where m is the number of cells in kernel k.

Considering the distance between two adjacent kernels as unit measure. Weights for kernel i can be
calculated from:

Wi = Wk × dist(k, i) (6)
where Wk is the tuned weight of the kernel oriented towards g. The risk coefficients V are generated
by multiplying traversability scores with the corresponding weights and the kernel. The kernel with
least V is selected as the goal kernel k with the cell having least cost in the kernel as local goal point.

Vi = Wi × Ti (7)

for kernel ki and
k = argmin(V ) (8)

where kernel k is the local goal kernel. Now with the start and goal we compute a path planning
algorithm to find least cost path for traversing. From this path a series of steering and throttle values
are generated for the vehicle to reach the goal. By employing the navigation stack, an optimal goal
in the cost-map is found considering the occupancy of neighbouring cells, cost value of the goal,
orientation with respect to the global goal thereby generating a low risk, least cost path. Further
discussion regarding different parameters, kernel sizes, weights are described in the next section.

3 Experiments

The CAMEL framework is trained and tested on both simulation and real world scenarios. The
simulations are done on Mississippi State University Autonomous Vehicle Simulator (MAVS) (15)
for different scenes while for real world, we trained the algorithm on RELLIS-3D(6) dataset and
tested on data collected in the IISERB-campus. Further, we have CAMEL implemented on a real robot.
This section includes the experiments performed in the simulation framework followed by real-world
implementation.
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Figure 5: Training curves on simulation data. Loss over epochs for training and validation datasets
are shown. The least validation loss of 0.0256 is achieved at the 217th epoch.

3.0.1 Simulation

Initial testing of the framework was performed on simulation which includes data collection of scenes,
parameter tuning and navigation testing. The vehicle used is an inbuilt skid-steer model of Clearpath
Robotics Warthog UGV with sensors mounted and integrated to ROS. In this section we will discuss
on sensor setup, data collection, model training and navigation.

Sensor setup: We use three cameras with similar intrinsic parameters and a Velodyne HDL-64E
LiDAR where the three cameras are positioned and oriented to give a 180◦ overlap field of view as
given in Figures 2. The vehicle has a GPS, an imu sensor and an odometry sensor which provides
position and orientation of the vehicle in world frame.

Data collection: For training CAMEL, we collect the sensor data while the vehicle is driven by a human
expert. The driver inputs throttleϵ[0, 1] and steering valueϵ[−1, 1] which is updated to the vehicles
controls through teleoperation. The data was collected for three different scenes then processed to
remove desynchronized data and outliers from the pool. This throttle and steering value is used as
ground truth to train the model.

We constructed a grid of dimension 40× 28 with the grid resolution being 0.3m× 0.3m. The grid
resolution is taken approximately one third the vehicle width for a stable navigation. With these
parameters we cover an area of 112.8 m2 in front of the vehicle. The point cloud belonging to this
region is extracted and converted to voxels with voxel size of 0.15m (half of grid resolution). This
gives a good estimate for point localization and surface normal estimates. These voxels are used to
extract the geometric data grids such as average height map, slope estimation, LiDAR reflectance
intensity map.

The semantic segmentation masks for the three cameras were generated through Offseg pretrained
on RELLIS-3D dataset and the indices arranged in a risk based ascending order. Offseg gives an
average mIoU of 78% on the three scenes which ensures the segmentation data used for semantic
mapping on LiDAR points are true. Offseg gives predictions in four classes namely sky, traversable,
non-traversable, obstacle. These masks are then projected to the LiDAR voxels for generating the
semantic grid map. The approaches (4) and (16) uses the semantic information only to coarsely
differentiate the grid cells between traversable and non-traversable. Here we provide a grouping
of grid cells based on semantics and hierarchy of classes (dependent on traversability) along with
geometric information to yield better cost estimates by CAMEL.

These four grid maps of an instance is appended together to create a R40×28×4 input data for the
model to train. A total of 4000 data instances from the simulation were generated which was shuffled
and divided between train, validation and test dataset in the ratio 7 : 2 : 1. For grid cells encompassing
zero voxels, we perform a neighbourhood interpolation. This is because nan values in the data leads
to huge loss of information while training CAMEL.

Model training: We conducted experiments of CAMEL on PyTorch framework using Python. The
workstation used has a configuration of Nvidia RTX 3060 with CUDA 11.1 and CuDNN v8.1. We
used 100 instances to report the average frames per second (fps) measurement.

ADAM optimizer with a learning rate of 10−4 and sequentially increasing weight decay is used
to train the model for 300 epochs. Here the output of the model being a cost-map of dimension
40 × 28 × 1 and the ground truth being a steering value, we need to extract a steering value from
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the cost-map to compute the loss. We employ the navigation stack on tensors in order to maintain
the gradients and extract the steering value. The MSE loss is then computed between the target and
predicted steering values which is backpropagated to the model for weights updation.

The training and validation loss are shown in figure 5 where the model attains convergence with the
least loss of 0.0256 on validation dataset whereas the test dataset gave a loss of 0.0213. The best
model is then used to test on real time simulation where the vehicle explored the environment without
collisions.

Navigation: The best epoch from training is used to test CAMEL in the simulation. For every instance
the data was processed and used to predict the cost-map for the vehicle to navigate. This cost-map
is then processed by the navigation stack which extracts the throttle and steering commands. For a
smooth and jerk free motion of the robot, throttle and steering values are limited at 0.7 and [-0.4,
0.4] respectively. Parameters such as weights for goal kernel and threshold for obstacle kernel were
tuned through trials to get a robust motion of the vehicle. The threshold for obstacle kernel was found
optimal at 0.625 for simulations.

While training we considered the costs of three adjacent grid cells to compute the least cost-map
using Dijkstra thereby incorporating the size of the vehicle for steering clear from obstacle at safe
distances. Figure1a shows trajectories generated from CAMEL and handcrafted cost-maps. While
testing we observed that the path generated by Dijkstra considering single grid cell cost is identical to
the one generated by considering costs from three grid cells. This suggests that the vehicle specific
characteristics also influences CAMEL in learning the cost-map.

(a) (b)

Figure 6: GPS tracks of the vehicle while traversing autonomously in IISER-B campus during testing
at two different regions. The terrain included steep climbs, puddles, dynamic obstacles where the
vehicle performed robust planning. Blue circle → starting location, blue star→ mission end. The
vehicle traversed a total distance of 450 meters in the two tracks.

3.0.2 Real World scenarios

The models trained on simulation is used for testing at various locations of IISER-B campus. We use
a skid-steer vehicle with comparable dimensions to the Clearpath Robotics Jackal UGV mounted
with calibrated sensors and Jetson AGX Xavier platform for on-board computations.

Sensor setup: We use two Teledyne Flir Firefly S mounted at specific angles giving a 180◦ field of
view overlap along with Velodyne VLP-16 LiDAR both calibrated. The vehicle uses PixCube Orange
for flight controls consisting of GPS, compass and IMU sensor giving us the position and orientation
of the vehicle.

Navigation: The best CAMEL model obtained from simulation was used for navigation in real-world.
Offseg pre-trained on RUGD dataset(17) generated the semantic segmentation as it is found to
produce acceptable results in IISER-B campus scenes. The computation time taken to process a
single instance on average is 0.95 seconds. The output throttle and steering from the current instance
is executed for 1 second as the maximum velocity of the vehicle is 0.5 m/s where the commands
generated are valid for up to 1 meters in front of the vehicle. The track followed by the vehicle is
shown in Figure 6. In this experiment, we generated only local goals based on the description given
in the Navigtion stack (Section 2.3).
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Moving from simulation to real-world implementation, the vehicle performed robust maneuvers
with modification only for maximum throttle and steering constraints. This showcases the ability of
CAMEL for direct simulation to real world (Sim2Real) application. Figure 7 shows an instance from
the ground testing in Figure 6(b). An imprecise calibration for the yaw angle of camera resulted in a
complete failure of handcrafted cost-map 7(d). However, the learned cost-map as shown in Figure
7(e) is equivalent to the cost-map generated from calibrated data. CAMEL was able to differentiate the
features despite perturbation in the system and predict a close to optimal path.

While navigating we observed at instances where Offseg gives subpar segmentation, the cost-map
generated maintains its prediction quality suggesting well balanced weight distribution to geometric
information from LiDAR during training. During experiments vehicle opted to traverse through grass
patch over puddle indicating in authors view, the involvement of LiDAR intensity for vegetation
prediction but more exhaustive study is required to ascertain the observation.

Unlike HDL-64E LiDAR in the simulation, the VLP-16 gives 4× sparser point cloud. The framework
still generates a cost-map that has acceptable throttle and steering commands. The algorithm could
also classify negative obstacle from a distance assigning high grid costs hence steering away from
the location. The inference speed of the whole framework with two Offseg predictions, a cost-map

(b)

(d) (e)

Start

Goal

(a) (b)

(c)

Figure 7: Real world implementation: (a) and (b) are the images from left and right camera. (c)
Images projected on the VLP-16 point cloud data. (d) and (e) shows a comparison between the path
generated from (d) manually handcrafted cost-map and (e) CAMEL predicted cost-map.
prediction and the navigation stack was tested on Jetson AGX Xavier. The Offseg with BisenetV2(18)
gave an inference speed of 92 ms for each image whereas the FCN model has 4.5 ms inference speed.
The whole data processing and navigation stack took on an average 0.95 seconds to process. This
computation time can be reduced by multi-processing and optimization.

4 Conclusion and Future Work

In this work, we presented CAMEL a FCN based deep learning framework to navigate a UGV reliably
in outdoor environments. Fusing RGB images and point cloud data we learn a cost-map from expert
human demonstrations completely eliminating a handcrafted cost-map. Our approach is validated
in simulation and real-world off-road terrains showcasing highly robust and adaptive motion by the
UGV. The framework exhibited invariancy to perturbations in sensor calibrations and system biases
making manually crafted cost-maps completely obsolete.

Future work will target extensive study of LiDAR intensity and learning vegetation features in
different climatic conditions. Another interesting direction is the effective sensing of negative
obstacles such as steep troughs which is difficult to classify due to low LiDAR reflectance.
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