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Abstract

There is an ever-growing zoo of modern neural network models that can efficiently
learn end-to-end control from visual observations. These advanced deep models,
ranging from convolutional to patch-based networks, have been extensively tested
on offline image classification and regression tasks. In this paper, we study these
vision architectures with respect to the open-loop to closed-loop causality gap,
i.e., offline training followed by an online closed-loop deployment. This causality
gap emerges in end-to-end autonomous driving, where a network is trained to
imitate the control commands of a human. In this setting, two situations arise: 1)
Closed-loop testing in-distribution, where the test environment shares properties
with those of offline training data. 2) Closed-loop testing under distribution shifts
and out-of-distribution. Contrary to recently reported results, we show that under
proper training guidelines, all vision models perform indistinguishably well on
in-distribution deployment, resolving the causality gap. In situation 2, We observe
that the causality gap disrupts performance regardless of the choice of the model
architecture. Our results imply that the causality gap can be solved in situation
one with our proposed training guideline with any modern network architecture,
whereas achieving out-of-distribution generalization (situation two) requires further
investigations, for instance, on data diversity rather than the model architecture.

1 Introduction

A tremendous number of advanced deep learning models have been proposed to perform competitively
in end-to-end perception-to-control autonomous driving tasks. For example, patch-based vision
architectures such as Vision Transformer (ViT) [12] have shown to be competitive with models
based on convolutional neural networks (CNNs) [15, 33] in computer vision applications for which
CNNs were the predominant choice. A very recent line of research, namely the MLPMixer [60],
and ConvMixer [61] suggested that the great generalization performance of ViT might be rooted
in the patch structure of the inputs rather than the choice of the architecture. There are also works
suggesting that self-attention is not crucial in vision Transformers and simply a gating projection in
multi-layer perceptrons (MLPs) [37] or replacing self-attention sublayer with an unparameterized
Fourier Transform [34] can outperform ViT.

These proposals are largely tested in offline settings where the output decisions of the net-
work do not change the next incoming inputs. In other words, patch-based and mixer mod-
els trained offline have not yet been evaluated in a closed-loop with an environment where
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Figure 2: Visualization of sample observations used in our end-to-end AD experiment, spanning
across various seasons and times of the day.

network actions affect next input observations, such as in imitation learning tasks. Im-
itation learning agents typically suffer from a causality gap arising from the transfer of
models from open-loop training to closed-loop testing. In this paper, we focus on in-
vestigating this gap for end-to-end autonomous steering of a vehicle in a systematic way.
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ported results [47, 43, 6], we show that no new architecture is needed to bridge the causality gap
between offline training and online testing in-distribution, as our controlled training pipeline enables
all models to perform remarkably well on the given tasks. Moreover, for achieving out-of-distribution
generalization, we observe that the causality gap certainly affects the performance of models, again,
almost regardless of the choice of their architecture. These findings suggest the rethinking of the
emphasis on the choice of popular models such as Transformers over CNNSs, as other factors such
as proper training setup, augmentation strategies, and data diversity play a more important role in
generalization in and out of distribution.

2 Methodology

In this section, we first describe our recipe for how to systematically train end-to-end imitation
learning agents offline via a fair hyperparameter tuning pipeline. We then narrate our experimental
setup, followed by the method we use for systematic online testing in and out of distribution.

Fair Training Setup

End-to-end deep learning models are typically benchmarked against each other, where one model
showed to be outperforming the other. But is it truly the case? Here, we set out to design a controlled
offline training to an online testing setup to fairly investigate how advanced vision baselines compare
with each other. The training recipe is as follows:

1. We conduct a systematic hyperparameter tuning process (described in detail in the next
subsection) for each of the 21 tested advanced deep models individually. In particular, We
ran a grid search over the two most influential hyperparameters, the learning rate (LR) and
the weight decay rate.



2. We do not perform any early stopping but train a substantial number of optimization
steps, which has been shown to be vital for generalization, especially on smaller datasets
[48, 20, 64].

3. We deploy a custom staircase LR decay schedule that decreases the LR over the training
process by dividing the learning rate by four at 60%, 80%, and 93% of the training epochs.

4. We warm up the training by running the first epochs with 1/10th of the initial learning
rate in order to have the moments’ estimates in Adam [29], Batch-Normalization [25], and
Layer-Normalization [5] modules initialized properly.

5. We replace the standard Adam optimizer with AdamW [40], which decouples the weight
decay rate from the loss function, thus avoiding biasing the moments’ estimators of Adam.

6. We apply a rich set of data augmentation techniques, including random brightness, contrast,
and saturation modifications, guided policy learning [35].

We compare a total of 21 different advanced models, including nine modern convolutional networks
and 12 modern patch-based architectures. A full description of the architectures and baseline CNN
network can be found in Appendix A.

Hyperparameter tuning
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set of hyperparameters. Moreover, the individual best scores of

the models are all in a relatively small range, i.e., between 0.2 and 0.3, demonstrating the necessity of
a proper hyperparameter tuning process.

3 Experimental Results

Our experiment concerns learning the end-to-end control of an autonomous vehicle. We collect data
on a full-scale autonomous vehicle with a 30Hz BFS-PGE-23S3C-CS RGB Camera with resolution
960 x 600 and 130°. Each image is temporally synchronized with the steering angle estimated by
a differential GPS and an IMU to construct a training pair. The dataset consists of roughly 5-hour
driving data collected in different times of the day, different road types, and different seasons, e.g.,
see Figure 2. Among all variations, we use summer and winter data for training set with a fraction
put aside for (in-distribution) testing and leave fall, spring, and night data for (out-of-distribution)
evaluation. For image preprocessing, we perform center cropping as we focus on lane tracking in this
work, and we adopt data augmentation, including randomization in brightness, saturation, hue, and
gamma, finally followed by per-image normalization. To improve over compounding error generated
by imitation learning, we use Guided Policy Learning (GPL) [35] to generate off-orientation training
data and teach the policy how to recover from such scenarios [3]. To test our model in a closed-loop



Table 1: End-to-end autonomous driving. Numbers show the number of experiment runs that crashed
before successful termination. The number in parentheses shows the percentage. The experiments for
each model in each column are repeated 200 times. The total number of experiments=21000 (1000
inference experiments for each model in 5 different environments).

Model | Number of crashes

Condition: Summer ~Winter | Fall Spring Night | All
Seen in training: (in-distribution) (out-of-distribution)

CNN baseline 000%) 0(0%) | 13(7%) 24(12%) 108 (54%) | 145 (15%)
MobileNetV2 0(0%) 0(0%) | 28 (15%) 48 (24%) 83 (42%) 159 (16%)
ResNetl8 0(0%) 0(0%) | 64(32%) 57(29%) 118 (59%) | 239 (24%)
ResNet34 0(0%) 0(0%) | 59 (30%) 46 (23%) 115 (58%) | 220 (22%)
EfficientNet 0(0%) 0(0%) | 33(17%) 4523%) 105 (53%) | 183 (19%)
EfficientNet-v2 | 0(0%) 0(0%) | 23 (12%) 39 (20%) 99 (50%) | 161 (17%)
RegNet-y004 0(0%) 0(0%) | 18 (9%) 44 (22%) 80 (40%) 142 (15%)
RegNet-y016 0(0%) 0(0%) | 12 (6%) 48 (24%) 96 (48%) 156 (16%)
ConvNext 000%) 0(0%) | 16(8%) 49 (25%) 75 (38%) | 140 (15%)
ConvMixer-Tiny | 0(0%) 0(0%) | 30 (15%) 58 (29%) 110 (56%) | 198 (20%)
ConvMixer-S 0(0%) 0(0%) | 25(13%) 63 (32%) 111 (56%) | 199 (20%)
VIT-S 000%) 0(0%) | 21 (11%) 40 (20%) 70 (35%) | 131 (14%)
ViT-Tiny 000%) 0(0%) | 22(11%) 67 (34%) 118 (59%) | 207 (21%)
Swin-S 0(0%) 0(0%) | 13 (7%) 55 (28%) 65 (33%) 133 (14%)
Swin-Tiny 0(0%) 0(@0%) | 23(12%) 65 (33%) 99 (50%) 187 (19%)
MLP-Mixer-S 0(0%) 0(0%) | 24 (12%) 58 (29%) 48 (24%) | 130 (13%)
MLP-Tiny-S 00%) 00%) | 11%) 63 (32%) 110 (56%) | 174 (18%)
gMLP-Tiny 00%) 00%) | 9(5%) 48 (24%) 123 (62%) | 180 (18%)
sMLP-S 0(0%) 0(0%) | 0(0%)  57(29%) 31(16%) | 88 (9%)
FNet-S 0(0%) 0(0%) | 48 (24%) 71 (36%) 54 (27%) | 173 (18%)
FNet-Tiny 000%) 0(0%) | 29 (15%) 63 (32%) 133 (67%) | 225 (23%)
Bold threshold | | <5% < 20% <30% |

setting, we leverage a high-fidelity data-driven simulator [3] that can be built upon the collected
dataset. Trained agents are placed within these simulated environments and are capable of perceiving
novel viewpoints in the scene as they execute their policies. The resolution of the input images is
48-by-160 pixels, and all models are trained for 600k steps with a batch size of 64.

For each model and data condition pair (summer, winter, fall, spring, and night), we run a total of 200
evaluations. An evaluation consists of the model controlling the vehicle’s steering with a constant
velocity until the vehicle either crashes (i.e., leaves the road) or a certain distance has been driven.
We report the number of evaluations that terminated with a crash as our performance metric, with an
optimal model counting zero crashes.

The result in Table 1 shows the number of crashes for the five different environmental conditions and
the aggregated counts over all 1000 evaluation runs. The first two columns show that no crash was
observed for any model in the summer and winter conditions. Note that data used for the summer
and winter simulation does not overlap with the training data, they only share the season of their
data collection process. In the out-of-distribution environment conditions, no model was able to
maneuver the vehicle across all 600 runs successfully. The best performing model, the gMLP-S had
no crash when simulated in fall, but a significant crash rate of 29% and 16% in the spring and night
conditions, respectively. Figure 1 contrasts the offline performance measured by the validation loss on
the x-axis with the online performance measured by crash likelihood on the y-axis. When comparing
the convolutional network with the patch-based architectures, no significant discrepancy is observed.

4 Conclusion

We studied the open-loop to closed-loop causality gap in autonomous driving, where a neural network
is trained offline on labeled image data but deployed in a closed-loop system. Specifically, we
compared convolutional neural networks with recently proposed patch-based architectures. Our
results showed that if properly trained, any architecture can handle the open-loop to closed-loop
causality gap, connecting to the observation made in the literature that patch-based architectures are
not necessarily more robust than convolutional architectures [14]. We also showed that a change in
the data distribution can have catastrophic consequences on the closed-loop generalization.
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A Background and Related Works

In this section, we first discuss the image processing architectures studied in this work. Moreover, we
recapitulate related works on the understanding of how patch-based CV models process information
differently than convolutional architectures. Finally, we discuss existing works on bridging the gap
between offline training - online generalization.

Patch-based vision architectures. Motivated by the success of Transformers [63] on natural language
processing (NLP) datasets, [12] introduced the Vision Transformer (ViT) by adapting the architecture
for computer vision tasks. As transformers operate on a 1-dimensional sequence of vectors, [12]
proposed to convert an image into a sequence by tiling it into patches. Each patch is then flattened
into a vector by concatenating all pixel values. Researchers have analyzed the difference between how
CNNs and ViTs process images [50]. Moreover, it has been claimed that vision transforms are much
more robust to image perturbations and occlusions [43], as well as be able to handle distribution-
shifts [6] better than CNNs. However, more recent works have refuted the robustness claims of
vision transformers [14] by showing that ViTs can be less robust than convolutional networks when
considering carefully crafted adversarial attacks.

Swin Transformer [38] modifies the vision transformer by adding a hierarchical structure to the
feature sequence of patches. The Swin Transformer applies its attention mechanism not to the full
sequence but to a window that is shifted over the entire sequence. By increasing network depth,
neighboring windows are merged and pooled into large, less fine-grained windows. This hierarchical
processing allows it to use smaller patches without exploding the compute and memory footprint of
the model.

MLP-Mixer [60] adapts the idea of vision transformers to map an image to a sequence of patches.
This sequence is then processed by alternating plain multi-layer perceptrons (MLP) over the feature
and the sequence dimension, i.e., mixing features and mixing spatial information.

gMLP [37] is another MLP-only vision architecture that differs from the MLP-Mixer by introducing
multiplicative spatial gating units between the alternating spatial and feature MLPs. Empirical results
[37] show that the gMLP has a better accuracy-parameter ratio than the MLP-Mixer.

FNet [34] replaces the learnable spatial mixing MLP of the MLP-Mixer architecture by a fixed mixing
step. In particular, a parameter-free 2-dimensional Fourier transform is applied over the sequence and
features dimensions of the input. Although the authors [34] did not evaluate the model for vision
tasks, FNet’s similarity to patch-based MLP architectures makes it a natural candidate for vision
tasks.

ConvMixer [61] replace the MLPs of the MLP-mixer architecture by alternating depth-wise and
point-wise 1D convolutions. While an MLP mixes all entries of the spatial and feature dimension, the
convolutions of the ConvMixer mix only local information, e.g., kernel size was set to 9 in [61]. The
authors claim a large part of the performance of MLP and vision transformers can be attributed to the
patch-based processing instead of the type of mixing representation [61].

Advanced convolutional architectures. Here, we briefly discuss modern variants of CNN architec-
tures.

ResNet [21] add skip connections that bypass the convolutional layers. This simple modification
allows training much deeper networks than a pure sequential composition of layers. Consequently,
skips connections can be found in any modern neural network architecture, including patch-based
and advanced convolutional models.

MobileNetV2 [54] replace the standard convolution operations by depth-wise separable convolutions
that process the spatial and channel dimension separately. The resulting network requires fewer
floating-point operations to compute, which is beneficial for mobile and embedded applications.



EfficientNet [59] is an efficient convolutional neural network architecture derived from an automated
neural architecture search. The objective of the search is to find a network topology that achieves
high performance while simultaneously running efficiently on CPU devices.

EfficientNet-v2 fixes the issue of EfficientNets that despite their efficiency on CPU inference, they
can be slower than existing architecture types on GPUs at training and inference.

RegNet [49] is a neural network family that systematically explores the design space of previously
proposed advances in neural network design. The RegNet-Y subfamily specifically scales the width
of the network linearly with depth and comprises squeeze-and-excitation blocks.

ConvNext [39] is a network that subsumes many recent advances in the design of vision architectures,
including better activation functions, replacing batch-norm by layer-normalization, and a larger kernel
size into standard ResNets.

Baseline CNN We compare the advanced network architectures described above with a vanilla CNN
baseline that comprises seven convolutional layers, each followed by a batch-normalization layer
and a ReL.U activation function. The first convolution applies a 5-by-5 kernel with 64 filters. The
following convolution layers all apply a 3-by-3 kernel with 128, 128, 256, 256, 512, and 512 filters,
respectively. A global average pooling layer is applied to feature maps of the final convolution to a
single vector.

Imitation learning (IL). IL describes learning an agent by expert demonstrations consist of
observation-action pairs [55], directly via behavior cloning [23], or indirectly via inverse rein-
forcement learning [44]. When IL agents are deployed online, they most often deviate from the
expert demonstrations leading to compounding errors and incorrect inference. Numerous works have
tried to address this problem by adding augmentation techniques that collect data from the cloned
model in closed-loop settings. This includes methods such as DAgger [52, 53], state-aware imitation
[56, 32, 11], pre-trained policies through meta-learning [13, 69], min-max optimization schemes
[23, 7, 67, 58], and using insights from causal inference [46, 26].

OOD generalization. It is fundamentally challenging for statistical models to tackle OOD problems
[1, 36, 22], such as domain adaptation [8, 42, 16, 18, 62], debiasing [24, 17, 65, 27, 10], and even
practically more challenging settings where OOD semantics are unlabeled [4, 51, 66, 31]. A large
body of recently proposed solutions to OOD generalization, explored causal inference such as causal
interventions [66, 46], designing counterfactual schemes [45, 70], and using attention-based models
[28, 41, 19, 9, 26, 68]. Here, our study aims to explore how advanced vision networks compare in
terms of OOD generalization in online closed-loop with their environments, when trained offline.
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