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Abstract
Heated debates continue over the best solution for autonomous driving. The classic
modular pipeline is widely adopted in the industry owing to its great interpretability
and stability, whereas the fully end-to-end paradigm has demonstrated consider-
able simplicity and learnability along with the rise of deep learning. As a way of
marrying the advantages of both approaches, learning a semantically meaningful
representation and then using it in the downstream driving policy learning tasks
provides a viable and attractive solution. However, several key challenges remain
to be addressed, including identifying the most effective representation, alleviating
the sim-to-real generalization issue as well as balancing model training cost. In
this study, we propose a versatile and efficient reinforcement learning approach
and build a fully functional autonomous vehicle for real-world validation. Consid-
ering visual, dynamics and scenario gaps that hinder the sim-to-real transfer, we
first standardize NoGap Benchmark in CARLA simulator for preliminary valida-
tion. In various complicated real-world scenarios, our method also shows great
generalizability and superior training efficiency against the competing baselines.

1 Introduction
The past decade has witnessed a surge of research interests in end-to-end autonomous driving
systems [Tampuu et al., 2020] driven by imitation learning (IL) [Bojarski et al., 2016; Anderson
et al., 2018; Müller et al., 2018; Hecker et al., 2020; Huang et al., 2021; Wang et al., 2021] or
reinforcement learning (RL) [Kiran et al., 2021]. Despite its appealing simplicity and learnability
endowed with neural networks, most attempts have shown performance or adaptability issues in real-
world scenarios due to large visual and dynamics gaps [Rao et al., 2020; Peng et al., 2018] between
simulation and real-world environments. These unsolvable issues remind us of the conventional
modular pipeline [Levinson et al., 2011] that divides the system into modules for error-tracking and
enables vehicles to behave predictably. However, this approach lacks flexibility and leads to tedious
human engineering in devising complicated rules and model fine-tuning.

The corresponding characteristics naturally inspire studies to investigate the marriage between end-to-
end driving and modular pipeline, such as uncovering a series of intermediate representations as inputs
for the driving decision-making model. Affordance learning [Chen et al., 2015; Sun et al., 2019;
Sauer et al., 2018] predicts a heavily compressing representation for driving decision-making, e.g.
comprising the distances to surrounding vehicles, heading angles, etc. The substantially low dimen-
sionality hinders the downstream controller with brittleness and sensitivity, since little prediction error
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on the representation induces large deviation on the decision output. The image-to-image translation
is to transform the simulated images into photo-realistic ones by domain adaptation techniques like
CycleGAN [Bewley et al., 2019]. Although this alleviates the sim-to-real generalization issues in IL
or RL-based autonomous driving approaches, it does not extract an effective representation to reduce
the complexity of the downstream decision-making task. We highlight the necessity of learning a
suitable representation with both efficient features and sufficient information. Contrary to the trend of
pursuing complex and heavy-weighted solutions, we opt for a simple yet effective approach that offers
competitive real-world adaptability, i.e. mapping sensor inputs into an appropriately low-dimensional
and semantic-meaningful representation [Huang et al.; Müller et al., 2018], which can greatly ease
the burden of learning complex driving policies with methods like RL [Lesort et al., 2018].

In this paper, we present a deployed versatile and efficient autonomous driving approach, which
contains two steps: 1) Semantic Perception copes with the raw input from camera images and
uses advanced scene understanding models [Cordts et al., 2016] to perform drivable space and lane
boundary identification, which empowers the system with versatility and adaptability since inputs
from different domains would be mapped into a canonical representation space. In parallel, the
lower-dimensional post-perception outputs reduce the load and fully unleash the potential of the
follow-up RL policy training; 2) Distributed RL learns driving policies from the scene understanding
outputs via a carefully designed RL model with a distributed acceleration training scheme (OneRL4),
which enjoys highly efficient off-policy RL training. Given actions from the learned RL policy,
mature PID controllers are used to regulate and control the low-level driving commands.

We evaluate our method against multiple baselines in CARLA simulator [Dosovitskiy et al., 2017] on
our proposed NoGap benchmark5 with intentionally introduced visual, dynamics and scenario gaps
to demonstrate real-world adaptability. Meanwhile, it is notable that our solution reduces the training
time consumption by a fair margin. To underpin real-world validation, this study also makes a major
contribution by building a real autonomous vehicle to deploy the proposed method. In the subsequent
real-world experiments, our system proves to be capable of generalizing to diverse complicated
scenarios with varying road topology and lighting conditions, as well as the presence of obstacles.

2 Related Work
2.1 Modular VS End-to-End Autonomous Driving
Currently, mainstream architectures for autonomous driving stem from either a modular or an
end-to-end way. The conventional modular pipeline comprises a multitude of sub-systems, such
as perception, localization, prediction, planning, and control [Levinson et al., 2011; Yurtsever
et al., 2020]. In order to handle as many real-world scenarios as possible, the interoperation of
these highly functional modules relies on human-engineered deterministic rules. The first in-depth
discussions and analyses of the low-level software that encapsulates these rules are in the famous
DARPA Challenge [Thrun et al., 2006; Montemerlo et al., 2008], paving the way for many later
studies [Levinson et al., 2011]. The modular pipeline is widely adopted in the industry due to its
remarkable interpretability. It endows the overall system with the ability to track down and locate sub-
system malfunctions. Nevertheless, modular formalism bears several major drawbacks [Tampuu et al.,
2020]. Large amounts of human engineering are involved to fine-tune individual and cross-module
configurations. The framework also suffers from severe compounding errors when decomposing the
whole system into lots of smaller-scale but interpretable modules, as the perception uncertainty and
modeling errors would snowball through the pipeline.

Alternatively, end-to-end autonomous driving has been increasingly acknowledged. It is widely
accepted that human driving is a behavior reflex task [Tampuu et al., 2020] that requires little high-
level reasoning and conscious attention, which harbors the same view with the end-to-end architecture.
As a deep learning-based solution, the task-specific end-to-end learning ability brings a great reduction
of human engineering efforts. However, many studies [Zablocki et al., 2021; Müller et al., 2018;
Xiao et al., 2020] recognize the drawback of lack of interpretability in the development of end-to-end
systems due to its black-box learning scheme. To alleviate this limitation, Chen et al. [Chen et
al., 2021] combine the probabilistic graphical modeling with RL to improve the interpretability for
autonomous driving in simulation scenarios. Despite these efforts, weak interpretability remains a
fatal disadvantage of the end-to-end approaches against the modular architecture [Xiao et al., 2020].

4OneRL Library: https://github.com/imoneoi/onerl
5NoGap Benchmark: https://github.com/imoneoi/carla_env
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Figure 1: The Overall Architecture

Based on the above comparisons, there is a growing consensus among researchers that combining the
merits of both modular and end-to-end formalism could be a promising solution. The raw perceptual
inputs are processed through semantic segmentation methods [Cordts et al., 2016], image-translation
networks [Bewley et al., 2019], top-down 2D view synthesizing [Bansal et al., 2018], vectorized
representation [Scheel et al., 2022], or online mapping and dynamic state representation [Casas et al.,
2021]. The intermediate outputs are then used for waypoints planning [Müller et al., 2018] or control
decision learning [Behl et al., 2020] in an end-to-end manner. Despite following the philosophy
of this combined architecture that alleviates the drawbacks of both approaches to offer enhanced
learnability, robustness, and even transferability, we intend to find a minimalist solution instead of
persuing complex ones like other works.

2.2 Imitation Learning VS Reinforcement Learning

In end-to-end paradigm, IL [Bojarski et al., 2016; Anderson et al., 2018; Müller et al., 2018; Hecker
et al., 2020; Huang et al., 2021; Wang et al., 2021] has been identified as a practical paradigm
for autonomous driving. It uses a supervised learning scheme that imitates the human experts’
demonstrations using algorithms like behavior cloning (BC) [Behl et al., 2020; Prakash et al., 2020;
Chen et al., 2020]. IL is known to have several major disadvantages [Tampuu et al., 2020]. First,
since most IL algorithms perform supervised learning on offline training datasets, when facing unseen
scenarios during closed-loop testing, serious distribution shift problems [Ross et al., 2011] take place
and the agent has no idea what to do. Second, data bias [Codevilla et al., 2019] deeply hurts the
generalizability of IL policy, as the training process pays little attention to rare and risky scenarios,
namely the long-tailed problem in self-driving [Mao et al., 2021]. Finally, causal confusion [Haan et
al., 2019] is another problem that occurs in IL, as it performs pure data fitting and handles spurious
correlations in data badly. Due to the above limitations, typical IL models can succeed in simple tasks
like lane following but underperform in more complicated and rare traffic events. To improve the
performance in harder scenarios, conditional imitation learning (CIL) [Codevilla et al., 2018; Xiao et
al., 2020; Hawke et al., 2020] introduces a latent state to fully explain the data, thus resulting in a
better model expressiveness. However, due to the lack of the ability to perform long-term predictive
“reasoning", it still has some safety issues during closed-loop testing [Hawke et al., 2020].

Due to the ability to solve complex tasks as well as perform long-term optimization, RL has become
another popular choice for investigating end-to-end autonomous driving [Huang et al., 2020; Kiran et
al., 2021; Osiński et al., 2020; Liang et al., 2018]. RL learns how to map observations to optimized
actions by maximizing expected cumulative reward [Sutton et al., 1998], and can obtain strong policies
in simulators without real-world labels [Pan et al., 2017]. Although RL has lower data efficiency
than IL, it could be easily implemented in some high-fidelity simulators, e.g. CARLA [Dosovitskiy
et al., 2017], where agents can explore in more diverse scenarios. This interactive learning ability
resolves the distribution shift, data bias, and causal confusion issues in IL. However, RL is also much
harder to train with high-dimensional states. An approach with a dedicated state representation can
effectively ease the burden of RL, and also lead to more stable policies. Furthermore, due to the
interactive learning nature of RL and its reliance on a simulator, considerable efforts need to be taken
to properly address the sim-to-real issue in a deployable autonomous driving system.
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3 Methodology
The overall architecture is depicted in Figure 1, decoupling the end-to-end RL paradigm into semantic
perception, RL-based decision making, and an additional controller for real-world deployment: (1)
Semantic Perception: we perform drivable space and lane boundary estimation efficiently based on
the input image x from the monocular camera, as supervised input state-encoder. (2) Distributed
RL-based Decision Making: using the learned representation z, it learns the optimized high-level
vehicle control actions a, consisting of throttle τ and steering angle θ, with a carefully designed
fully distributed RL infrastructure, boosting data and computation efficiency. Moreover, domain
generalization methods are applied to improve sim-to-real transfer performance. Finally, the controller
maps high-level actions a to low-level vehicle control commands according to the vehicle physical
properties using PID controllers.

3.1 Semantic Perception
We choose the results of drivable area segmentation and lane boundary identification [Yu et al.,
2020] as the intermediate representation z, as it is an effective way to represent road situations
from monocular RGB images and is widely used in autonomous driving systems. It labels every
pixel as drivable (lane or area currently occupied by ego-vehicle), alternatively drivable (requires a
lane-change), or non-drivable (blocked by obstacles) space.

Crucially, this procedure acts as a powerful supervised state-encoder that maps camera-captured RGB
images from simulation xsim or real world xreal to a domain-agnostic representation z, effectively
bridging the sim-to-real visual gap. Compared to unsupervised state-encoders like image translation
networks adopted by [Bewley et al., 2019], semantic segmentation yields low-dimensional and human-
readable intermediate representations, containing not only efficient but also sufficient information
needed for RL. Notably, this disentanglement of redundant features substantially permits versatility
and interpretability that facilitate downstream policy training and transfer.

Our semantic segmentation model utilizes atrous convolution [Chen et al., 2017] to identify road
objects with different scales, along with encoder-decoder architecture [Chen et al., 2018] to capture
fine-grained details like lane lines. We introduce the light-weighted EfficientNet [Tan and Le, 2019]
backbone network to replace the large ResNet101 backbone in previous methods [Ronneberger et al.,
2015; Chen et al., 2018], to achieve better real-time performance on onboard computer (see Table 1
for details). Various data augmentation methods (cropping, random noise, perspective transformation,
etc.) are used to further improve robustness to different environments and lighting conditions.

3.2 Distributed Reinforcement Learning
Our decision making model is an RL agent trained in the CARLA simulator [Dosovitskiy et al., 2017]
using the representation obtained through semantic segmentation as inputs. In complex RL tasks
like autonomous driving, shrinking the extensive amount of computation time with limited resources
is a crying demand. To this end, we tailor a fully distributed scheme (illustrated in Figure 1) for
sample efficient off-policy RL training, with domain generalization and specially designed network
architecture, to efficiently exploit system resources and improve final performance.

3.2.1 Problem Formulation
We formulate the driving decision-making problem as a Markov Decision Process (MDP) defined
by a tuple (S,A, r, T, ρ, γ), where T (s′|s, a) denotes the transition dynamics, ρ is the initial state
distribution and γ ∈ (0, 1) is the discount factor. In our problem, S, A and r are defined as follows:
(1) States S: we use the drivable area segmentation z from semantic perception, concatenated with
the vehicle speed v as the state. (2) Actions A: We consider the steering angle θ and throttle τ
of vehicle as actions a = [θ, τ ], where θ, τ ∈ [−1, 1]. (3) Reward function r: The design of our
reward function, detailed in Appendix A, involves concerns about four aspects: speed control rspeed,
lane center keeping rcenter, heading direction alignment rheading as well as collision and undesired
lane crossing penalty rpenalty. We solve the MDP problem using RL, which aims at learning a
parameterized policy πϕ to maximize following expected cumulative discounted reward:

Es0∼ρ,at∼πϕ(s),st+1∼T (st+1|st,at)[

∞∑
t=0

γtrt] (1)

In the commonly used actor-critic RL paradigm, one optimizes the policy πϕ by alternatively
maximizing a value function Qψ(s, a) to approximate the cumulative return, which is learned by
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Figure 2: Distributed pipeline execution

minimizing the squared Bellman error:

JQ(ψ) = Es,a,s′,a′∼πϕ(s)

[
Qπψ(s, a)− (r + γQπψ′(s′, a′))

]2
(2)

where Qπψ′(s, a) is target Q-function, typically served as a delayed copy of current Q-function.

3.2.2 Distributed Off-policy RL Architecture
Learning a driving policy using RL can be rather costly, we develop a fully distributed event-driven
actor-critic RL Library OneRL, which leverages multiple simulation environments, actor policies and
optimizer nodes to maximally accelerate RL training.

Specifically, we use N1 training environments and N2 actor policies (Figure 1(1, 5)) for parallel data
collection, all of which are implemented as independent nodes. An event scheduler (Figure 1(4))
is used to pipeline the execution of these environments and actors, making full use of computing
resources. The generated trajectories are then collected asynchronously by the replay buffer to be
consumed by the off-policy RL algorithm to enhance data efficiency.

For the learning process, K optimizer nodes (Figure 1(6)) are instantiated to asynchronously update
all the actor policies and Q networks. Each optimizer node holds the same copy of all the N2 policies,
and also contains M Q-networks (contain both current and multiple target Q-networks), leading to a
total of K×M Q-networks in our training process. The optimizers compute gradients of policies and
Q-networks using batches of transitions asynchronously sampled from the replay buffer. Distributed
all-reduce is used to synchronize gradient shards for optimization. The final step towards completing
the training loop is to asynchronously update the policies (Figure 1(5)) with the snapshots of the
policy network weights in optimizers.

Contrary to conventional distributed architecture like IMPALA [Espeholt et al., 2018] and Ape-
X [Horgan et al., 2018], which maintains the environment and actor in the same node, we devise a
scheduler to separate all the components (environment, actor, replay buffer and optimizer), making
our architecture fully distributed. In addition, these architectures only access to CPU for single-step
environment simulation and actor network inference. Our distributed scheduler batches states for
GPU pipelined inference (see Figure 2) to minimize latency. This also enables the flexibility to
operate actors and environments on different devices (like CPU for physics simulation, or GPU
for scene rendering). Our architecture also supports centralized inference on policies [Espeholt
et al., 2019], by simply adjusting the scheduling policy. Moreover, shared memory and lock-free
data structures are used whenever possible, to minimize overhead and save bandwidth. With our
distributed RL acceleration techniques, we can successfully train the whole system in less than one
day on a single workstation.

3.2.3 RL Agent Design
Complex image-based reinforcement learning is prone to overfitting. A properly designed network
architecture for the RL agent is a crucial part of generalization [Cobbe et al., 2019] and computational
performance. We design a light-weighted network architecture for both policy and Q-networks (see
Figure 1(6)). It consists of residual convolution layers and is shared between actor policies and
Q-networks to reduce the total amount of learnable parameters.

In the optimizer node of our distributed RL architecture, we implement both the clipped double
Q-learning technique in TD3 [Fujimoto et al., 2018] to reduce the overestimation in off-policy
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learning, as well as the maximum entropy RL objective in soft actor-critic (SAC) [Haarnoja et al.,
2018] to encourage exploration for improved performance. Specifically, the target Q-value in the
Bellman error computation (Eq. (2)) is evaluated using multiple target Q-functions as follows:

y = r + γ min
i=1,2

Qπψ′
i
(s′, πϕ(s

′))

And the policy learning objective is revised to maximize both Q-function and entropy of the policy:

Jπ(ϕ) = EsEa∼πϕ
[Qπψ(s, a)− λ log πϕ(s)]

3.2.4 Sim-to-Real Generalization
As the RL policy learned in a simulator needs to be deployed to unseen real-world scenarios, which
induces a large domain transfer gap, we focus on improving the model generalizability by introducing
a domain generalization scheme during training, incorporating domain randomization and data
augmentation.

Domain randomization [Tobin et al., 2017] is a high-level data manipulation technique with special
regard to the internal physical mechanisms from the perspective of generating images. In this
perspective, we randomize the configurations in the simulation environment every epoch, forcing
the agent to adapt to environments with diverse properties, and also avoid overfitting on certain
configurations. At the sensor level, camera position is randomly chosen from a pre-specified range,
to reflect sensor installation errors in the real world. Vehicle physical properties (size, mass, etc.) are
also randomly chosen from a pre-determined set to reduce the sensitivity to vehicle dynamics.

It has been shown in past literature [Laskin et al., 2020] that applying data augmentation in RL
can greatly improved model transfer performance. We apply data augmentation to agent’s visual
observations, such as rotating and cropping the observed images, which contributes a lot to improve
the data efficiency and model generalization during RL training.

4 Evaluation
In this section, we present the baselines, evaluation metrics information and detailed experiment
results quantitatively.

4.1 Baselines
We incorporate five baselines in this study: end-to-end IL [Bojarski et al., 2016], end-to-end
RL [Kendall et al., 2019], CycleGAN + IL [Bewley et al., 2019], CycleGAN + RL and the IL
variant of our approach (replace the RL policy to the behavior cloning policy). Since CycleGAN
is implemented only in testing phase to perform real-to-sim image translation, evaluation results in
training phase would keep consistent with fully end-to-end baselines. We re-implement the IL and
RL modules of these baselines in our approach for a thorough comparison.

For the training of all IL-based baselines, we follow the treatment described in [Müller et al., 2018].
We collect 1M frames of driving data using a privileged modular pipeline as expert (has access to
ground-truth map and obstacle information) provided by CARLA [Dosovitskiy et al., 2017], and add
noise to 20% of the expert control outputs to improve the robustness of the learned policy [Codevilla
et al., 2018]. For RL-based baselines, all environment and agent configurations are set the same as
our proposed approach, and rollout data quantity is set aligned with IL methods for fair comparison.

4.2 Evaluation Metrics
For performance evaluation, we use the following metrics:

• MPI (m): meters per intervention, indicating the level of autonomy of the vehicle, which is widely
adopted in real-world autonomous vehicle testing. Interventions are performed when collisions
happen or the vehicle doesn’t move in more than one minute.

• SR (%): success rate, referring to the proportion of travelled distance from the start to the first
intervention with respect to the whole journey in one trial.

• Std[θ] (◦): standard deviation of steering angle, reflecting the lateral smoothness of the trajectory.

• Std[v] (m/s): standard deviation of velocity, revealing the longitudinal smoothness of the trajectory.
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(a) Training (b) Testing

Figure 3: Examples from the NoGap benchmark. Training scenarios use game-like low-quality coarse
rendering, while testing scenarios are photo-realistic.

4.3 Evaluation on Semantic Perception Model
The representation model in 3.1 achieves superior accuracy (mIoU) over many popular segmentation
models on the BDD100k dataset [Yu et al., 2020], as shown in the results of Table 1. Our model
also enjoys greater inference efficiency for more reliable real-time response, capable of running at 31
frames per second on the onboard computer.

Table 1: Perception Model Comparison
Method Backbone mIoU (validation)/% Inference time (ms)

UNet [Ronneberger et al., 2015] ResNet101 87.2 64
DeepLabv3+ [Chen et al., 2018] ResNet101 92.5 50

Ours EfficientNet-B0 93.4 32

4.4 Comparison on Simulation Benchmark
The main challenge of deploying a simulator-trained system to real world is the visual, vehicle
dynamics and scenario gap. Previous simulation-based autonomous driving benchmarks, such as
NoCrash [Codevilla et al., 2019] and CARLA benchmark [Dosovitskiy et al., 2017], do not reflect
such challenges effectively. For example, the training and test scenarios are visually similar, and not
suited well for comprehensive real-world deployment validation.

To this end, we propose a new NoGap benchmark to measure the sim-to-real gaps explicitly and
provide better real-world generalization evaluations. In NoGap benchmark, the autonomous driving
system is trained in “simulator" and then tested in “real-world" (simulator with different configura-
tions). The evaluation settings are described as follows:

• Visual Gap: We use different simulator rendering modes to create intentionally introduced visual
gaps. During training, low-quality coarse rendering is used, producing game-like images. While
in testing, the simulator is switched to photo-realistic rendering, producing images that look like
real-world. Please refer to Figure 3 for examples.

• Dynamics Gap: Vehicle physical properties are randomly chosen at the beginning of every testing
episode, to validate generalization between different vehicle dynamics.

• Scenario Gap: 7 CARLA maps are used for training, and 1 reserved for testing, to reflect scenario
differences.

We use the MPI metric in simulation evaluations. Inspired by [Codevilla et al., 2019], the environment
is reset to move the vehicle to a safe state after an intervention for precise intervention counting.
Moreover, background vehicles controlled by built-in modular pipeline in CARLA are generated to
emulate real-world traffic and dynamic obstacles.

As shown in Table 2, fully end-to-end solutions fail to generalize from training to testing scenarios
due to large visual gaps in RGB inputs. Image-to-image translation method (CycleGAN) can improve
testing performance effectively. Furthermore, baselines of training RL with RGB images manifest
poorer performance against their IL counterparts by a wide margin, due to the high-dimensional input,
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Table 2: Performance validation in simulation, metrics are averaged over 50 runs.

Solutions Representation Decision Making MPI (m)

Train Test

Fully End-to-end IL [Bojarski et al., 2016] RGB IL 134.6 16.2
Fully End-to-end RL [Kendall et al., 2019] RGB RL 24.9 0.4

End-to-end IL + CycleGAN [Bewley et al., 2019] Real-to-sim Translation IL 134.6 46.7
End-to-end RL + CycleGAN [Bewley et al., 2019] Real-to-sim Translation RL 24.9 5.3

Ours (IL) Semantic Representation IL 306.6 180.9
Ours Semantic Representation RL 449.4 332.6

Table 3: Real world evaluation (> means no intervention over the whole trajectory with specified
total length.)

Real World Task Solution

Road Obstacle Lighting Ours (IL) Ours
Topology Setup Condition MPI (m) SR (%) Std[θ] (◦) Std[v] (m/s) MPI (m) SR (%) Std[θ] (◦) Std[v] (m/s)

Straight
✗ Day 92.1 48.9 1.30 0.30 >1163.5 100.0 1.72 0.19
✗ Night 187.1 49.0 1.67 0.18 >1304.5 100.0 1.89 0.20
✓ Day 4.1 16.7 1.25 0.37 34.5 75.0 2.59 0.30

Turn ✗ Day 7.2 53.2 3.03 0.32 >214.9 100.0 3.81 0.23

while the situation comes to the opposite when training on our segmentation outputs. Thanks to the
efficient yet informative representation that eases the burden of RL, our method outperforms all the
competing baselines with high generalizability to different maps and manufactured visual gaps.

4.5 Real World Validation
To evaluate the autonomous driving approaches on our test vehicle described in Section B, we
categorize the real world tasks based on different attributes: road topology (straight and turn),
obstacles setup (with obstacle ahead), and lighting condition (day-time and night-time). We test our
approach with the most competitive baseline standing out from simulation evaluation in Section 4.4,
the IL version of ours, under the same set of tasks.

To assess the lane-keeping ability on straight and turning roads, we run the vehicle five trials per
method for each non-obstacle task, during each of which we set the vehicle to a collision-free position
as close as possible to the place where the intervention takes place. The obstacle setup is implemented
as the vehicle accelerates from 0m/s and tries to circumvent the obstacle 5m ahead. If the vehicle

Figure 4: The bird’s eye views, actual scenarios, raw inputs, and semantic segmentation results (from
left to right) for the tasks in Table 3 respectively.
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successfully bypasses the obstacle, we record it as a successful trial and reset the vehicle to the initial
location for the next trial. Otherwise, it commits a failed trial and counts one more intervention.
Table 3 presents the comparisons of real world generalizability between the IL and RL version of our
approach on tasks with different attribute settings.

Several observations can be drawn from these experimental results. Our approach achieves much
higher MPI and SR on every task, superior to IL version in terms of autonomy and safety. Ours is also
generalizable to different lighting conditions, whereas surprisingly, IL version at night-time visibly
outperforms itself at day-time. Ours also has smaller velocity std in most of the tasks, while the more
conservative IL version has more hold-backs during the real-world tests. Finally, it is observed that
ours has better ability to bypass obstacles. This results in larger standard deviation of steering angle
of ours than the more conservative IL version, as IL version directly bumps into obstacles and scrapes
the curb at turns more often. Abundant qualitative real-world evaluation is performed in Appendix C.

4.6 Computation Performance
Table 4 reports the computational performance of our distributed RL architecture. Due to limited
computational resources (a single workstation with 2 RTX3090 GPUs), we use K = 1 for all
experiments. Compared to non-distributed version which completes the training process in 87.2
hours, our distributed training style ends up with only 12.6 hours, yielding a salient training speedup.
With our flexible scheduling scheme, scaling up number of environmentsN1 and actorsN2 also yields
a consistent speed up. Our semantic perception model is also more light-weighted and effective than
CycleGAN, which takes 1/5 computation time to train and also achieves better overall performance.

Table 4: Ablations on Training Efficiency (Unit: hours)
Training Scheme Representation RL @2.5M steps Total

Non-distributed version 5.1 87.2 92.3
CycleGAN, N1 = 4, N2 = 2 26.9 12.0 38.9

Ours, N1 = 4, N2 = 2 5.1 12.6 17.7
Ours, N1 = 4, N2 = 1 5.1 13.6 18.7
Ours, N1 = 2, N2 = 1 5.1 18.7 23.8

5 Conclusion
In this paper, we propose a versatile and efficient RL approach for autonomous driving. By decoupling
semantic-meaningful state representation from RL, we alleviate the challenging sim-to-real gap,
enhance perception performance, and improve RL decision making abilities. Besides, we tailor a
event-driven fully distributed training framework (OneRL) for off-policy RL, making it possible to
train the whole system in less than one day on a single workstation. We validate the performance and
generalization of our approach on a new simulation benchmark (NoGap) with intentionally introduced
visual,dynamics and scenario gaps. Finally, we build an autonomous vehicle to deploy our approach
for real-world evaluation. Our approach could generalize to diverse and unseen complex real-world
scenarios and also achieve superior performance compared with various IL and RL baselines.
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Appendix

A Reward Designing
In this section, we elaborate on how reward functions are designed addressing all the aspects denoted
in Section 3.2.1. For simplicity, we omit the state-action inputs (s, a) in the reward function and
describe each part as follows:

• Speed control: Instruct the vehicle with current speed v to drive in the desired speed range
[vmin, vtarget], where vmin < vtarget < vmax always holds. It decays linearly when driving too
slow or over-speed. vmin and vmax indicate minimum and maximum possible speed, and vtarget
denotes the expected velocity that addresses both safety concerns and travelling efficiency. We
choose vmin = 5m/s, vtarget = 6m/s, vmax = 7m/s in the course of training.

rspeed = min{v/vmin, (vmax − v)/(vmax − vtarget), 1} (3)

• Lane center keeping: Instruct the vehicle to drive in the center of a lane. d is the current distance
from vehicle to lane center and dmax is the maximum in-lane distance. We select dmax to be 3m in
the training proces.

rcenter = CLIP (1− d/dmax, 0, 1) (4)

• Heading direction: Instruct the vehicle to drive aligned with a lane. α is the heading angle
difference between the vehicle and the lane, with the maximum angle αmax that We set it to 30◦.

rheading = CLIP (1− α/αmax, 0, 1) (5)

• Collision and undesired lane crossing penalty: Finally, we define the collision and undesired lane
crossing penalty rpenalty as follows, where I(·) is the incident indicator:

rpenalty = 25× I(collision) + 12× I(cross solid line) + 15× I(cross double solid line) (6)

The total reward at timestep t is the product of rspeed, rcenter, rheading minus rpenalty, enforcing a
soft binary AND logic, expecting the agent to pursue all these goals:

r = rspeed · rcenter · rheading − rpenalty

B Hardware Setup

Figure 5: The overall physical system

Our autonomous vehicle is built upon an Agile.X HUNTER Unmanned Ground Vehicle (UGV)
with an onboard computer (i7-9700 CPU, 32GB RAM, GeForce RTX 3060 GPU) and a front RGB
camera, as shown in Figure 5. The onboard computer runs all the system modules based on Robot
Operating System [Stanford Artificial Intelligence Laboratory et al.] and records trajectory statistics
by Controller Area Network (CAN) in the real-world validation 4.5. It first applies a low-pass filter
on high-level control actions θ, τ from the learned actor network to smooth out noisy signals. These
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stable actions are then mapped to the wheel speed ω1 and steering servo angle ω2 based on the UGV
physical properties. Thereafter, these low-level control commands are delivered to UGV hardware
and followed by two PID controllers. To meet the real-time requirement, we utilize quantization
and computational graph optimization techniques [developers, 2021] to cut down whole inference
duration into 40ms latency, with 100ms control interval.

C Qualitative Real-world experiment
We additionally perform qualitative real-world evaluation on complex, diverse and even unseen
scenarios (setup as Figure 6a and 6b), such as being exposed to head-on high beams, traveling on
sidewalks, through dense crowds, and even in a garage. Our method can handle lane-following,
turning and dynamic obstacle avoidance smoothly, revealing good generalization performance. Please
refer to supplementary video for details6.

(a) Obstacle Avoidance: barrier, bicycle, motorcycle, dummy, person, and chair-like robot (from left to right)

(b) Test in unseen and complex scenarios: high beam, sidewalk, crowds, and garage scenarios (from left to right)

Figure 6: Qualitative real-world experiments

6https://www.youtube.com/watch?v=ku8WHoKLwYM
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D Hyperparameter Setup
Table 5 lists all the hyperparameters used in the course of training, including both semantic perception
and reinforcement learning stages.

Table 5: Hyperparameters in Semantic Perception
Parameter Value

Semantic Perception
model DeepLabv3+

backbone EfficientNet-B0
optimizer Adam

learning rate 10−3

batch size 80
loss Dice loss

training epochs 45

Reinforcement Learning
algorithm Soft Actor-Critic

learning rate 3 ∗ 10−4

batch size 256
discount (γ) 0.99

target entropy −2
replay buffer size 106

target smoothing factor (τ ) 0.02
update to data ratio 0.5
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