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Abstract

For human drivers, an important aspect of learning to drive is knowing how to pay
attention to areas of the roadway that are critical for decision-making while simul-
taneously ignoring distractions. Similarly, the choice of roadway representation is
critical for good performance of an autonomous driving system. An effective rep-
resentation should be compact and permutation-invariant, while still representing
complex vehicle interactions that govern driving decisions. This paper introduces
the Graph Representation for Autonomous Driving (GRAD); GRAD generates
a global scene representation using a space-time graph which incorporates the
estimated future trajectories of other vehicles. We demonstrate that GRAD outper-
forms the best performing social attention representation on a simulated highway
driving task in high traffic densities and also has a low computational complexity
in both single and multi-agent settings.

1 Introduction

Attention is governed by both endogenous (top-down) and exogenous (stimulus-driven) cognitive
processes that empower human drivers to selectively scrutinize the regions of the roadway most
relevant to their planned trajectory [1]. In higher density traffic, stimulus-driven control becomes
harder since there are more potential distractions on the road; thus the internal representation used
by the agent must scale to larger numbers of objects by selectively focusing on the objects most
likely to affect the driver’s decision-making. One way that this can be achieved is by employing an
egocentric foveal representation; however, this does not scale well to cooperative multi-agent driving
systems. This paper introduces a new representation, GRAD (Graph Representation for Autonomous
Driving) that possesses several key desiderata: 1) it is global, enabling a single representation to be
shared across multiple agents; 2) it incorporates the future location of neighboring vehicles into the
decision-making process; 3) it is more computationally efficient than attention mechanisms; 4) the
same representation is applicable to both driving and trajectory prediction tasks.

Leurent and Mercat [2] identify roadway representation as a key problem for autonomous driving
and note that most behavioral planning systems either employ a list of features for every vehicle or
a spatial occupancy grid to represent traffic on the road. They propose a social attention model [2]
which represents egocentric dependencies between the driver and surrounding vehicles; it handles
varying length inputs and is permutation invariant. Their social attention technique uses a multi-
headed attention model that focuses on vehicles that can potentially interfere with the planned route.
This paper compares our proposed GRAD feature representation vs. social attention as an input to
an RL agent that learns a highway driving policy for dense traffic scenarios using Proximal Policy
Optimization (PPO) [3].

Our paper makes the following contributions:
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1. We introduce GRAD (Graph Representation for Autonomous Driving): a global, general
representation that can be shared across multiple agents and used for both driving and
prediction tasks.

2. We demonstrate that GRAD outperforms the social attention model which is a top performer
at driving in the highway-env simulation environment and possesses a comparable number
of trainable parameters.

3. We present an analysis how modifying the space-time graph used by GRAD affects driving
performance.

2 Related Work

Schwarting et al. [4] provide a comprehensive related work overview on autonomous driving that
includes research on the myriad systems required to deploy an intelligent driving robot including
integrated perception and planning, vehicle dynamics and control, autonomy, and safety verifica-
tion; however our work is mainly relevant for learning systems that require a bird’s-eye roadway
representation.

Learning to Drive. Neural network architectures for highway driving have improved substantially
since the initial deployment of ALVINN (Autonomous Land Vehicle In a Neural Network) on CMU’s
Navlab vehicle [5]. Many of the systems have leveraged demonstrations from human drivers using
techniques such as behavioral cloning [6] and inverse reinforcement learning [7]. We demonstrate
the usage of our representation as a feature extractor for a discrete control system using Proximal
Policy Optimization. Saxena et al. [8] learn a continuous controller with PPO for driving in dense
traffic; they use an occupancy grid representation parameterized by longitudinal field of view. In
flavor their representation is very similar to the grid occupancy representation used by Leurent and
Mercat [2] as a benchmark for their social attention model. Leurent and Mercat demonstrate that
their social attention representation outperforms both a vanilla PPO implementation and a spatial grid
plus convolutional neural network.

Motion Prediction. A key innovation of GRAD is the usage of a space-time graph that incorporates
future estimations of neighboring vehicle positions or trajectories into the roadway representation.
There are several competitions that explicitly test the problem of driving trajectory prediction, which
requires modeling both the intent of the drivers (what they intend to do) and control uncertainty (how
they intend to do it). The MultiPath [9] technique does this by factoring intent uncertainty into a
distribution over trajectory anchors with normally distributed control uncertainty. MultiPath++ [10]
(the leader in the Waymo Open Dataset Motion Prediction Challenge) improves on MultiPath by
modifying the state representation in several ways including incorporating context awareness to
represent relationships between vehicles. Similar to our work, LaneGCN [11] uses a graph to
represent vehicle interactions for motion prediction on the Argoverse motion prediction benchmark;
however much of their graph is devoted to lane interactions which are not used in our model.

3 Graph Representation for Autonomous Driving

3.1 Graph Transformer

As graphs are a flexible and powerful representation for numerous real-world datasets, including
social networks, citation data, and biological structures, there have been significant research efforts
dedicated to incorporating graph representations into neural networks [12, 13, 14, 15]. This paper is
an attempt to apply graph neural networks to the autonomous driving domain.

In our proposed architecture, edge attributes play an important role in encoding the locality, which
requires the graph neural network to be capable of exploiting edge attributes. Shi et al. [15] introduce
a graph transformer operator where the edge attributes are utilized for both attention computation and
feature aggregation; Fey and Lenssen [16] provide a neat implementation of the operator. Given a
graph (X, E) where X contains node features and E denotes edge features, the i-th node is updated
as follows [16]

x′
i = W1xi +

∑
j∈N (i)

αi,j(W2xj +W3ei,j) (1)
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Figure 1: Global Graph Representation

where the attention coefficient αi,j is

αi,j = softmax
(
(W4xi)(W5xj +W6ei,j)√

d

)
(2)

d (feature dimension) is used to rescale attention appropriately.

3.2 Global Graph Representation

The architecture of GRAD is depicted in Figure 1. A graph representation is well suited for selectively
limiting attention since each agent perceives the interacting objects accurately via agent-centric
attributes through direct links and the farther ones via the information flow over graph convolutional
operators.

Given a road scene, an observation is a collection of road objects (i.e. vehicles if modeling vehicle
interactions only), X ∈ RN×dx where N is the number of objects and dx is the dimensions of
features. It contains the localization information for each of the objects, including coordinates,
velocity, and acceleration. By applying a distance metric (as described in Section 3.3) on the
localization information, a directed graph (X,L) is constructed with objects as nodes, and links
limited by either a maximum number of nearest neighbors or a fixed distance to connecting nodes.
For each link connecting node i and node j, the edge attributes Ei,j are populated with relative
information between the pair, including relative position, velocity, and acceleration. Note that objects
are linked by a pair of directional links with different edge attributes. Therefore, from the viewpoint
of object i, Ei,j∈Li

contains the agent-centric information of a small surrounding sub-region.

Depending on whether the history is used, either MLP or sequence-based neural networks are applied
to each node Xi and each edge Ei,j respectively. Then the encoded graph (X ′,L, E ′) is passed
through multiple blocks of graph transformer operators [15] which are capable of utilizing the edge
attributes as shown in Section 3.1. While the operators commonly update only the nodes, the edge
features are updated using a separate MLP within each block. The details of the block are shown in
the yellow box in Figure 1. The output retains the original graph structure.

It worth noting that the architecture in Figure 1 is an "overkill" version which can be plugged into
multi-agent settings or used directly as global scene representation. For the single agent configuration
described in this paper, the computation can be reduced to be within the scope of the single target
node (driving agent), which can be visualized as a pyramid over multiple graph convolutional layers.
This only requires updating the target node representing the driving agent by making queries on the
nodes directly linked to it in the last graph convolutional layer.

3.3 Space-Time Graph

In the first step of vanilla GRAD, a graph is built by linking the neighboring nodes based on their
distance measurements, i.e. Euclidean distance on synchronous positions in the past and current time
steps. To further concentrate direct attention on the objects that are highly likely to be involved in



Algorithm 1 Space-Time Graph

Require: coordinates x, velocities v, accelerations a, horizon T , discount γ

1: function WAYPOINT(x1,v1,a1,x2,v2,a2, T, γ)
2: for t = 0...T do
3: x1

t = x1 + v1 · t+ a1 · t2/2
4: x2

t = x2 + v2 · t+ a2 · t2/2
5: dt = ∥x1 − x2∥ · γt

6: end for
7: d = min1≤t≤T dt

8: return d
9: end function

10: function TRAJECTORY(x1,v1,a1,x2,v2,a2, T, γ)
11: for t = 0...T do
12: x1

t = x1 + v1 · t+ a1 · t2/2
13: x2

t = x2 + v2 · t+ a2 · t2/2
14: end for
15: for t = 1...T do
16: l1

t = (x1
t−1,x1

t)
17: l2

t = (x2
t−1,x2

t)
18: end for
19: for s = 1...T do
20: for t = 1...T do
21: ▷ Euclidean distance between line segments
22: ds,t = ∥l1s, l2t∥l
23: end for
24: end for
25: d = min1≤s,t≤T ds,t · γ|s−t|

26: return d
27: end function

future interactions, we propose a Space-Time Graph which builds the graph not merely on the current
localization but also the estimated future positions or trajectories.

In the simplest form, given the current localization (xi,vi,ai) of node i, the future position at time
step t is estimated with the motion equation

xt
i = xi + vi · t+ ai · t2/2 (3)

and the estimated trajectory T = (x0
i ,x

1
i , ...,x

T
i ) where T is the time horizon.

When working with positions, as shown as WAYPOINT function in Algorithm 1, the distance is the
minimum measurement between a pair of coordinates sampled synchronously, that is

dti,j = ∥xt
i − xt

j∥ (4)

di,j = min
0≤t≤T

dti,j · γt (5)

where γ ≥ 1 is a discount factor to reflect the higher importance of the nearer future. While being
vulnerable to the change of motion status, it performs reasonably well with a limited time horizon.
The position estimations can be further improved with more sophisticated prediction methods; for
instance, the graph can be constructed cyclically and incrementally along with predictions for behavior
prediction tasks.

Even without more accurate estimations, the robustness can be improved by measuring the distance
between trajectories instead of positions, shown as the TRAJECTORY function in Algorithm 1.
Given the trajectory T = (x0

i ,x
1
i , ...,x

T
i ), its representation is translated to line segments T =

(l1i , l
2
i , ..., l

T
i ) where lti = (xt−1

i ,xt
i). The distance is the minimum measurement among pairwise



(a) Simulated driving scene in highway-env [17] (b) Realistic driving scene in NGSIM dataset [18]

Figure 2: Comparison of simulated and realistic driving scene on highway.

line segments between the trajectories of a connecting pair of nodes, that is

ds,ti,j = ∥lis, ljt∥l, s = 1...T, t = 1...T (6)

di,j = min
0≤s,t≤T

ds,ti,j · γ
|s−t| (7)

where γ ≥ 1 is a discount factor to penalize the pairs of line segments which are expected to occur
during more distant time frames. The hyperparameters used with GRAD are shown in Table 3.

4 Experiments

4.1 Task

We validate the proposed graph representation within a reinforcement learning framework performing
a simulated highway driving task. GRAD is plugged into Proximal Policy Optimization (PPO) [3]
as the feature extractor shared by both policy and value networks. Because of the plug-and-play
property of GRAD, it can easily be paired up with other RL algorithms and other tasks such as
behavior prediction. We have tested with DQN as well and observed consistent results to those shown
in Section 4.3 for PPO. Our PPO implementation is described in Table 4.

Highway-env [17] is a simulated environment of highway driving scenarios for behavioral decision-
making tasks. We use it to create new highway driving scenarios, but it is also possible to replay data
from existing datasets such as NGSIM [18]. In sparse scenes with few vehicles, many algorithms
perform comparably well, and both multi-headed attention and the GRAD representation degenerate
to simply focusing attention on the few cars. Therefore, we conduct the experiments on a highway
scenario where the agent drives forward on an one-way multi-lane road with heavy traffic density. The
parameters for our highway-env experiments are given in Table 2, and Figure 2 shows the simulator.

The environment is configured to receive inputs at 2 frames per second within a maximum of 30
seconds, unless the agent crashes, which terminates the episode immediately. Therefore, the episode
length is 60 at maximum. The scene is configured to contain 6 lanes of the same heading direction
and 100 vehicles on road.

Observation The observations are the kinematics status of the agent and the surrounding vehicles,
i.e. {coordinates, velocity, heading}. The maximum number of observed surrounding vehicles is 32,
and their speed ranges from {15, 25}.

Action The action space is a discrete set {OneLaneLeft, Idle, OneLaneRight, SpeedLevelUp,
SpeedLevelDown}, in which the speed levels are {20, 25, 30, 35, 40}. The actions are executed by
a layer of speed and steering controller which is included in highway-env on top of the continuous
low-level control.

Reward The reward consists of 1) a reward of 0.2 for surviving each time step, 2) a reward linearly
mapped from the driving speed of (20, 40) to (0, 0.8). Therefore, the maximum reward is 1.0 per
action step and is 60.0 per episode given that the maximum episode length is 60.

Each model is trained for 500k action steps, and evaluated for 24 episodes with deterministic policies
every 10k training steps.

4.2 Baseline

The social attention (SA) technique [2] models agent interactions using a multi-headed attention
mechanism. By default it uses the agent-centric coordinate system for surrounding vehicles, while



Table 1: Model Characteristics
Architecture Social Attention Graph Representation

Layer sizes

Encoder: [192, 192, 192]
Attention: [192]
Heads: 2
Decoder: [256, 256]

Encoder: [128, 128]
Attention: [128, 128]
Heads: 2
Decoder: [256, 256]

Number of parameters ∼770k ∼720k
Queries per node All nodes Linked nodes
Permutation invariant Yes Yes
Coordinate system Agent-centric Global

22 23 24 25

Number of links per node

30

35

40

45

50

55

ep
iso

de
 re

wa
rd

GRAD
GRAD-waypoint
GRAD-trajectory
SA-agent-centric
SA-global

20 40 60 80 100 120
Radius of link range

30

35

40

45

50

55

ep
iso

de
 re

wa
rd

GRAD
GRAD-waypoint
GRAD-trajectory
SA-agent-centric
SA-global

Figure 3: Episode rewards of best policy with limited number of links per node (left) or limited link
range (right). Each data point is an average of 5 independent runs, and the shadows show the standard
deviations. All versions of GRAD with a sufficient number of links outperform both types of social
attention (SA), marked by the dotted lines.

representing the agent itself in global coordinates. Therefore, it has separate encoders for the agent
and the other vehicles, and applies cross attention to allow the agent make queries on the surrounding
vehicles.

As our method works directly in the global coordinate system, which is easier to extend to multi-
agent tasks without excessive additional computations, we compare GRAD to both the original SA
(SA-agent-centric) and SA with the global coordinate system (SA-global).

To make a fair comparison, the neural networks in both our method and the baseline have the same
number of layers and a similar number of parameters. The characteristics of the models are shown in
Table 1.

4.3 Results

A multi-head attention mechanism can be viewed as equivalent to a version of the full graph GRAD
without edge attributes where each of the nodes is allowed to make queries on all other nodes.
However, we show that GRAD can achieve comparable performance with a sparser graph. Our
experiments demonstrate that it outperforms SA consistently with sufficient links. GRAD has two
advantages: 1) it utilizes a mixture of global and agent-centric coordinate systems, 2) it has two
attention layers while SA has only one.

Sparse graph To demonstrate that the accurate agent-centric information of farther objects is
unnecessary, we experiment over different levels of graph sparsity by limiting either the maximum
number of links per node or the maximum distance of connecting nodes. As shown in Figure 3,
GRAD achieves considerable performance with merely 8 links per node at maximum, or within a
radius of 30 which is approximately the distance the agent travels in one second. Furthermore, GRAD
with Space-Time Graph suffers much less from the harsher limitation on links as it concentrates the
direct attention on most important objects. This difference in performance converges as this limitation
is mitigated.
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Figure 4: Episode rewards in evaluation over training steps. Each data point is an average of 5
independent runs and smoothed within a window size of 9. The shadows are the standard deviations
of the runs.
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Figure 5: Episode rewards of best policy trained and evaluated with various traffic densities. Each
data point is an average of 5 independent runs, and the shadow shows the standard deviations. GRAD
is less affected by denser traffic as shown by its gentle slope compared to SA.

Convergence speed A good representation needs to provide necessary information in a form that
the model can easily use. As shown in Figure 4, GRAD and its variants generally converge in fewer
than 60% training steps compared to SA. We believe that these differences in convergence speed and
sample efficiency might be even more accentuated in prediction tasks.

Traffic density To study the expressive power of crowded scenes, we evaluate our method and the
baseline in various simulated densities of traffic. Higher density traffic both makes the task more
difficult and reduces the amount of episode rewards. For example, the agent has to slow down to
wait for space to overtake in some states, which makes it impossible to reap the full speed reward. In
Figure 5, we observe that GRAD shows greater robustness when faced with denser traffic; it can be
seen that the slopes are much gentler than those of the baselines. This is critical for driving in the
real-world where traffic density can be quite high.

5 Complexity Analysis

As the GRAD architecture operates directly in the global coordinate system, the representation
remains symmetrical for all nodes regardless of the agent or the surrounding vehicles. Thus it’s
straightforward to extend to cooperative multi-agent tasks, such as multi-agent planning or behavior
prediction, without excessive additional computations. GRAD has the exact same complexity for
either single or multi-agent settings. As a comparison, agent-centric based methods [2, 10] must
centralize the coordinates of all objects and execute the neural networks for each agent of interest
individually.



Attention mechanisms [19] update each node using information aggregated across all nodes, which
intrinsically has a computational complexity of O(n2) for an input size of n, unless we merely
allow the target node to make one-time queries in a single layer setting like social attention [2].
The empirical results show that this can only work well in agent-centric coordinate systems, which
increases the complexity to O(n2 ·m) for m agents in multi-agent settings.

As GRAD is capable of generating a global scene representation using efficient implementations
such as k-d [20] or ball trees [21], the graph can be built within O(k · n log n) time where k is the
maximum number of links per node. The Space-Time Graph does not necessarily easily fit into this
framework, but it is still able to retain the same computational complexity by refinements on top
of the Euclidean distance. The graph transformer operations require O(k) per node adding up to
O(k · n) for all nodes. Therefore, GRAD exhibits a computational complexity of O(k · n log n) for
either single or multi-agent settings.

6 Limitations

This work is focused on modeling the interactions among vehicles. Highway-env [17] provides a
relatively simple environment for concept validation that has the following limitations: 1) it includes
no agent types other than vehicles and 2) road information is implicitly embedded in the coordinate
system. However, it’s important to have a comprehensive perception of the environment in the real
world, including more complex roadway structures, traffic signals, and diverse agent types such
as cyclists and pedestrians. It is straightforward to plugin GRAD into a larger architecture like
Multipath++ [10] to model the agent interaction component. However, this obviously does not utilize
the full potential of our graph representation.

Instead, there are two ways to integrate every object on the road into GRAD: 1) mark each category
of object as a type of node and apply heterogeneous graph convolutional operators like [22]; 2) map
various types of objects into the same embedding space.

To further compress the computation to handle a larger number of objects, GRAD can benefit from
dimensionality reduction operators such as pooling. One possible solution is to gradually reduce
the dimensions over graph convolutional layers, and to have area-level representations instead of
node-level ones for the agents to make queries on. Assuming that only the agents are actively in
motion, another possible solution is to apply graph convolutional operators on agents only, which
effectively permits only the agent types to perform queries on all types of objects.

7 Conclusion

This paper introduces the GRAD representation for autonomous driving systems that rely on bird’s-
eye roadway information. GRAD is a global, permutation-invariant representation that retains the
same computation complexity in single or multi-agent settings. A key innovation is GRAD’s usage
of a space-time graph that incorporates estimated future trajectories of neighboring vehicles. Each
output node of GRAD functions as a high-level aggregation of local scene information. Our empirical
results on using GRAD to learn highway driving policies with PPO show that GRAD is both efficient
and robust to crowded traffic conditions.
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A Hyperparameters

Table 2: Highway-env
Parameter Value
Number of visible vehicles 32
See vehicles behind False
Action type Discrete meta ac-

tion
Speed levels {20, 25, 30, 35,

40}
Episode length 60 = 2 fps × 30s
Number of road lanes 6
Number of vehicles 100
Traffic density 1.8
Rewarded speed range [20, 40]
Reward for surviving 0.2
Maximum reward for speed 0.8

Table 3: Graph Representation for Autonomous Driving
Parameter Value
Maximum number of links per node 8
Maximum distance of linked nodes 40
WAYPOINT-time horizon 5 seconds
WAYPOINT-sampling frequency 4 per second
WAYPOINT-γ 2.0
TRAJECTORY-time horizon 1 second
TRAJECTORY-γ 1.0

Table 4: Proximal Policy Optimization
Parameter Value
Number of training steps 500k
Number of environments 12
Number of steps per update 512
Buffer size 6144
Number of epochs 10
Batch size 256
Learning rate 1e-3 → 5e-4 in

40% steps
Dimensions of policy networks [256, 256]
Dimensions of value networks [256, 256]
Discount factor 0.9



B Highway-env

(a) density = 1.0 (b) density = 1.2

(c) density = 1.4 (d) density = 1.6

(e) density = 1.8 (f) density = 2.0

(g) default density = 1.8 (h) realistic density in NGSIM dataset [18]

Figure 6: How the traffic appears under various density levels.
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