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Abstract

Offline reinforcement learning (RL) provides a framework for learning decision-
making from offline data and therefore constitutes a promising approach for real-
world applications as automated driving. Self-driving vehicles (SDV) learn a
policy, which potentially even outperforms the behavior in the sub-optimal data
set. Especially in safety-critical applications as automated driving, explainability
and transferability are key to success. This motivates the use of model-based
offline RL approaches, which leverage planning. However, current state-of-the-
art methods often neglect the influence of aleatoric uncertainty arising from the
stochastic behavior of multi-agent systems. This work proposes a novel approach
for Uncertainty-aware Model-Based Offline REinforcement Learning Leverag-
ing plAnning (UMBRELLA), which solves the prediction, planning, and control
problem of the SDV jointly in an interpretable learning-based fashion. A trained
action-conditioned stochastic dynamics model captures distinctively different fu-
ture evolutions of the traffic scene. The analysis provides empirical evidence for
the effectiveness of our approach in challenging automated driving simulations and
based on a real-world public dataset.

1 Introduction

Safe and interpretable motion prediction, planning, and control are crucial components for automated
driving. Here, current decision-making systems are challenged by modeling multi-agent interactions.
Often engineers manually design driving policies for specific scenarios, which does not scale well
for more complex task. In contrast, RL [Sutton and Barto, 2018] learns a policy with little design
and engineering effort but comes with the downside of trial-and-error learning. Hence, offline RL
[Levine et al., 2020] is a promising research direction as it takes advantage of previously collected
datasets and is applicable in safety-critical systems as robotics or automated driving. Moreover, in
contrast to imitation learning approaches [Ross et al., 2011; Codevilla et al., 2018, 2019], which can
only recover the (sub-optimal) behavior exhibited by the dataset, offline RL methods can leverage
and improve on different types of data quality.

Applying offline RL approaches in real-world domains faces some practical challenges. Model-free
Kumar et al. [2020]; Yin et al. [2021] and model-based policy learning methods [Kidambi et al.,
2020; Yu et al., 2020] have low interpretability, which is important for designing safety layers [Pek
et al., 2020] in automated driving. Moreover, they lack control flexibility. For example, adding new
constraints often requires an expensive retraining of these model.

In contrast, the model-based offline planning (MBOP) [Argenson and Dulac-Arnold, 2021] framework
addresses the above challenges in an comprehensive manner. The algorithm utilizes different offline
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learned models to plan an optimal action using model-predictive control (MPC). It allows for a simple
extension of the reward function and the incorporation of state constraints. Moreover, planning with
the learned dynamics model enhances interpretability, which is crucial for the testing and deployment
of SDV’s. While showing promising results on single-agent control tasks, MBOP only uses a simple
deterministic dynamics model. However, this neglects the stochasticity of the underlying process,
also known as aleatoric uncertainty [Kiureghian and Ditlevsen, 2009] arising from uncertainty about
the behavior of other traffic agents in automated driving. In addition, MBOP operates in a fully
observable setting. However, this assumption does not hold in the real-world driving setting. For
example, the intent of human drivers is not directly observable and can only be estimated indirectly
from observations.

This work tackles the previously described problems and contributes in the following way: First, it
proposes UMBRELLA, a model-based offline planning approach, which learns from offline data and
plans considering both epistemic and aleatoric uncertainty while operating in the partially observable
setting. The proposed method solves the prediction, planning, and control problem of the SDV using
interpretable representations. Second, we introduce an ablation of UMBRELLA, which optimizes for
the worst-case model. Third, we demonstrate that our approach consistently outperforms behavior
cloning (BC) and the state-of-the-art model-based offline planning algorithm MBOP in urban and
highway automated driving scenarios with dense traffic.

2 Related Work

The proposed approach is situated within the broader literature on model-based offline RL and
interaction-aware motion prediction and planning. This section provides a brief description of the
underlying concepts and how they relate to the work presented here.

Model-based Offline Reinforcement Learning. As in the offline RL setting, the agents do not
interact with the environment during learning, one major challenge arises: the distributional shift
Levine et al. [2020]. Model-based offline RL methods like MOReL and MOPO [Kidambi et al., 2020;
Yu et al., 2020] address this issue by incorporating an epistemic uncertainty estimate of the dynamics
model into the reward function to penalize states which are not covered by the behavior distribution.
[Yu et al., 2021] penalizes the value function on out-of-distribution states, making the challenging
uncertainty estimation of MOReL and MOPO obsolete. MBOP uses planning based on bootstrap
ensembles [Lakshminarayanan et al., 2017] of offline learned models [Argenson and Dulac-Arnold,
2021]. MOPP improves upon MBOP by pruning trajectories to avoid potential out-of-distribution
samples [Zhan et al., 2021]. Kahn et al. [2021] introduce BADGR, a system for self-supervised
robot navigation learned from off-policy data. All these model-based approaches are evaluated in
single-agent environments. Hence, they lack the modeling of aleatoric uncertainty, which is caused by
uncertain human behavior in the interactive automated driving setting. [Henaff et al., 2019] address
this issue by a stochastic dynamics model represented by a conditional variational autoencoder
(CVAE) [Kingma and Welling, 2014]. However, their approach relies on policy learning, which in
contrast to model-based offline planning comes with a reduced interpretability and control flexibility.

Interaction-aware Motion Prediction and Planning. Traditional automated driving pipelines
follow the concept of planning a safe motion based on the prediction of all other agents, which
neglects the interaction between both planning and prediction. Game-theoretic approaches [Cleac’h
et al., 2020, 2021] model the multi-agent dynamics as games but come with the challenge of
computing (Nash) equilibria, and their computation times scale poorly with the number of agents. In
contrast, learning-based approaches as [Liu et al., 2021; Rhinehart et al., 2021] have the potential to
generalize to a higher number of scenarios and learn from high-dimensional sensor data. However,
in these works, epistemic uncertainty is not explicitly considered, which could lead to failure in
out-of-distribution states.

3 The UMBRELLA Framework

The proposed algorithm is a model-based offline RL algorithm which learns from previously recorded
datasets. UMBRELLA learns a stochastic dynamics model, a BC policy, and a truncated value
function as shown in Figure 1 a). UMBRELLA is an extension of the MBOP [Argenson and Dulac-
Arnold, 2021] method and plans for different future evolutions. Each model is a bootstrap ensemble

2



Planning
BC Policy
and Value
Function

Dynamics
Model

Act

Data
(a)

a11

a21

a11

a21

z11

z21

z11

z21

a12

a22

a12
a22

a12
a22

a12
a22

(b)

Figure 1: (a) UMBRELLA’s integration of learning and planning following the general visualization
of Moerland et al. [2021]: Model learning includes the dynamics, BC policy, and value function. The
thick arrows indicate which parts of the planning/learning loop are used here. There is no arrow from
Act to Data due to offline learning. b) One step of the planning procedure. For the sake of clarity, the
number of samples equals N = 2. Actions and latent variables are indexed by time step t and sample
n, resulting in ant and znt , respectively.

[Lakshminarayanan et al., 2017] of K neural networks. The weights of the each ensemble head f i
with i ∈ [1, . . . K] are initialized differently but get trained on the same dataset D.

3.1 Problem Formulation

The RL task is to control a dynamical control, described by a Markov Decision Process (MDP). The
MDP is defined by the tupleM = (S,A, p, r, γ), where S is a set of states s ∈ S and A is a set of
actions a ∈ A. Let r(st, at, st+1) denote the reward, which the agent receives when it takes action at
in state st at timestep t and arrives in state st+1 with a probability described by the transition dynamics
p(st+1 | st, at). The policy π : S → A maps from states to a probability distribution over actions.
The objective is to estimate an optimal policy function π∗ = arg maxa∈A

∑H
t=1 γ

tr(st, at, st+1) that
maximizes the finite-horizon cumulative reward over the horizon H . γ = 1 is the scalar time-wise
discount factor. In the offline setting, the agent does not interact with the environment but rather
learns from a static dataset D generated by a behavior policy πd. When the sampled observations
ot ∈ O do not fully capture the ground truth state, the MDP becomes a partially observable MDP
(POMDP). It is described by the tupleMPO = (S,A,O, p, r, γ). A common method to provide a
solution in the partially observable setting is the nth-order history [Sutton and Barto, 2018] approach.
Here the state estimation is approximated by a sequence of the nc ∈ N+

0 last observations and actions.
The result is a large but finite Markov decision process (MDP) and standard RL approaches can then
be applied.

3.2 General Approach

Forecasting other agent responses to the actions of the SDV vehicle is critical for automated driving,
and faces the challenge of the inherent uncertainty of human behavior. As an example, let us consider
the situation illustrated in Figure 1 b). Here another agent (green) starts to cut in onto the lane of
the SDV (white). The SDV has to estimate the probability of each future outcome (i.e. the other
agent aborts or continues the maneuver) and should plan its action at accordingly. UMBRELLA
models the stochasticity of other agents’ behavior at time t with a continuous latent variable zt ∈ Z .
As enumerating all possible actions of the SDV during planning is intractable, we sample actions
based on a learned BC policy (Section 3.4). That leads to efficient, expert-like rollouts of N ∈ N+

0
potential state-trajectories over a planning horizon H . After trajectory sampling, the approach applies
a return-weighted trajectory optimizer. This work follows the nth-order history approach to account
for states, which are not fully observable (e.g. human drivers intent) and are merely estimated from
the last observations ot−nc:t up to timestep t.
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3.3 Stochastic Dynamics Model

To model different futures, we learn stochastic forward dynamics models fm,θ : S×A×Z → S×R
parameterized by θ based on the work of [Henaff et al., 2019]. As the evolution of the traffic
scene also depends on the action at of the SDV, a dynamics model is action-conditioned and
answers the question: If the SDV takes this action, how will the other agents in the scene respond?
UMBRELLA’s augmented models captures the interaction between prediction and planning in the
context of automated driving. The model, which is a CVAE [Kingma and Welling, 2014], outputs
the prediction for the next state ŝt+1 = fm(st, at, zt)s and the corresponding reward prediction r̂t =
fm(st, at, zt)r. As the model outputs two predictions, we minimize a multi-task mean squared error
loss during training.

The latent variable zt models different future predictions and makes sure the output is non-
deterministic to the input. During training, the latent variable is sampled from the posterior distribution
qφ(z | st, st+1) parameterized by φ. As we can only sample from the prior distribution during infer-
ence, the Kullback-Leibler (KL) divergence between the posterior and the prior distribution p(z) is
also minimized, following the definition of the Evidence Lower BOund (ELBO) objective used when
training VAEs. Using a weighting factor ζ the per-sample loss is then given by

L(θ,φ; st, st+1, at, rt) =||st+1 − fm,θ(st, at, zt)s||22 + ||rt − fm,θ(st, at, zt)r||22+

+ ζDKL(qφ(zt | st, st+1)||p(zt))
(1)

3.4 Behavior Cloned Policy and Truncated Value Function

During inference, the algorithm rolls out potential state trajectories according to the stochastic
forward dynamics model. For this, an action-sampling procedure guided by a BC policy is applied.
UMBRELLA learns a bootstrap ensemble of BC policies fb,ψ : S × Anc → A parameterized by
ψ ∈ R. The model fb(st, a(t−nc):(t−1)) takes the current state and the nc previous actions as input
and outputs the action at. By concatenating the previous actions the learned action at is supposed to
be more smoothly.

Computational resources limit the planning horizon length. Therefore prior works [Lowrey et al.,
2019; Argenson and Dulac-Arnold, 2021; Zhan et al., 2021] successfully propose a value function to
extend the planning horizon. UMBRELLA also learn a truncated value function fR,ξ : S ×Anc → R
parameterized by ξ to estimate the expected return of the next H episodes R̂H when being in state
st and executed a(t−nc):(t−1) as nc previously taken actions. That effectively extends the planning
horizon without increasing the number of rollouts of the dynamics model. Appendix A and B report
additional details of the models’ architecture and training procedure.

3.5 UMBRELLA-Planning

Model Predictive Control Formulation. UMBRELLA uses model-predictive control (MPC)
[Richalet et al., 1978], which has a long history in control and automation, to plan it’s actions.
Hence in every planning step, the algorithm solves a finite-horizon optimal control problem resulting
in an optimal trajectory T of length H . Then the first action of the optimal control sequence is
executed. The repetitive solution of an optimal control problem reduces the influence of modeling
errors.

UMBRELLA Trajectory Optimizer. Next, we will describe the UMBRELLA planning algorithm
1. It is used in every MPC planning cycle to receive an optimal action trajectory. Note that for the
sake of clarity, we omit indexing of the models by the parameters ψ,φ, ξ. The algorithm generates
N trajectories, whereas M ∈ N+

0 trajectories are planned per ensemble head using the sampled latent
variables zm from the prior distribution with m ∈ [1, . . . M ]. As human drivers are assumed to not
switch their driving style erratically, the latent variable is fixed across the entire trajectory indexed
by n ∈ [1, . . . , N ] (Line 6), which results in a consistent prediction. Moreover, as [Nagabandi et al.,
2020] and [Argenson and Dulac-Arnold, 2021], the same lth ensemble head of the BC policy f lb and
the dynamics model f lm are employed consistently across the entire trajectory.

The BC policy guides the expansion of the trajectory by sampling an action at from the BC policy
with added Gaussian noise (Line 14). Afterward, the action is averaged together with the trajectory of
the previous time-step (Line 15) using the mixture coefficient β [Argenson and Dulac-Arnold, 2021].
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UMBRELLA then rolls out state-trajectories using the dynamics model f lm (line 16) and calculates
the average reward over all ensemble members (line 17). At the end of the trajectory, it calculates an
average over all ensemble members of the truncated value function. Averaging over all models of the
same ensemble family is inspired by prior work [Nagabandi et al., 2020; Argenson and Dulac-Arnold,
2021].

Last, an optimal action-trajectory is calculated using the model predictive path integral (MPPI)
framework [Williams et al., 2017]. Prior works also employ MPPI in the online and offline planning
setting [Nagabandi et al., 2020; Argenson and Dulac-Arnold, 2021; Kahn et al., 2021]. Let AN,H
denote set the ofN generated action trajectories and RN the corresponding rewards. Then the optimal
trajectory is obtained by re-weighting each action based on the associated reward:

T∗t =

∑N
n=1 e

κRnAn,t+1∑N
n=1 e

κRn

,∀t ∈ [0, . . . ,H − 1] (2)

Algorithm 1 UMBRELLA Planning

1: procedure UMBRELLA-PLANNING(s,T, fm, fb, fR, H,N, σ2, β, κ)
2: Set RN = ~0N ,AN,H = ~0N,H . Returns and actions of N sampled trajectories.
3: M = N/K . Plan M different trajectories per head.
4: for m = 1, . . . ,M do
5: zm ∼ p(z) . Sample latent variable zm from prior p(z).
6: end for
7: for n = 1, . . . , N do . Sample N trajectories over horizon H
8: l = n mod K . Use K different ensemble heads.
9: m = n mod M

10: s1 = s, a0 = T0, R = 0
11: for t = 1, . . . ,H do
12: ε ∼ N (0, σ2)
13: at = f lb(st, a(t−nc):(t−1)) + ε . BC policy prior to guide the action sampling.
14: An,t = (1− β)at + βTi=min(t,H−1) . Beta-mixture with prev. trajectory T.
15: st+1 = f lm(st,An,t, zm)s . Sample next state from stochastic dyn. model.
16: R = R+ 1

K

∑K
i=1 f

i
m(st,An,t, zm)r . Take avg. reward over heads.

17: end for
18: Rn = R+ 1

K

∑K
i=1 f

i
R(sH+1,An,(H−nc+1):(H)) . Append pred. truncated value.

19: end for
20: Compute T∗t according to Eq. (2) . Compute return-weighted trajectory
21: return T∗t
22: end procedure

Pessimistic Trajectory Optimizer. This work also proposes UMBRELLA-P, a pessimistic trajectory
optimizer. UMBRELLA and MBOP [Argenson and Dulac-Arnold, 2021] use all sampled trajectories
for the computation (equation 2) of the weighted trajectory. UMBRELLA-P only aggregates those
trajectories of the ensemble head with the lowest sum over returns. Therefore, the algorithm first
calculates Rk,sum∀k ∈ [1, . . . K], which is the sum over all rewards belonging to the ensemble
indexed by k. Then, it picks the index of the ensemble with the lowest sum over returns by k∗ =
arg mink∈[1,... K] Rk,sum. Lastly, equation 2 is only applied to the trajectories belonging to k∗.
Therefore, UMBRELLA-P optimizes in the face of epistemic uncertainty for the worst-case outcome
and acts pessimistically.

4 Experimental Evaluation

This section evaluates the proposed method in two interactive automated driving environments.
The goal of this section is to answer the following research questions: Q1: Does the modeling of
aleatoric uncertainty enhance the performance of model-based offline planning methods in interactive
automated driving scenarios? Q2: Does the algorithm improve upon simple behavior cloned policies?
Q3: Does the pessimistic variant UMBRELLA-P improve the planning performance? Q4: What are
the limitations of model-based offline planning methods in the context of automated driving?
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Figure 2: (a) Schematic representation of the left turn task. (b) Intersection in CARLA. (c) NGSIM
environment. (d) Context images overlaid with the planned UMBRELLA trajectories in the time
interval t ∈ [0s, 8s] in steps of 2s during a lane change maneuver. The trajectories are colored
concerning their predicted return colors. The background describes the context image: The SDV is
denoted in white, other agents are visualized in green. Black denotes the road and red lane markings.

Environments. NGSIM: The first environment is a challenging multi-agent automated driving
environment from the work of [Henaff et al., 2019] based on the Next Generation Simulation
program’s Interstate 80 (NGSIM I-80) dataset [Halkias and Colyar, 2006]. The goal of the SDV is to
stay in the middle of a lane while avoiding collisions. CARLA: The second environment includes a
urban multi-agent scenario implemented in the CARLA simulator [Dosovitskiy et al., 2017]. The
SDV is supposed to make progress along the route and execute an unprotected left turn at a busy
intersection while avoiding collisions. Figure 2 (a)-(c) illustrates both experiments.

Baselines. This work benchmarks against the following methods: (i) 1-step IL: A learned policy
imitating the expert driver using the BC policy of Section 3.4 (ii) MBOP [Argenson and Dulac-Arnold,
2021]: A current state-of-the-art model-based offline RL method that uses the deterministic dynamics
model of Henaff et al. [2019]. Note, that for a fair comparison all other components of MBOP are
identical to the UMBRELLA approach. In the NGSIM environment we further compare against (iii)
MPUR: [Henaff et al., 2019] A state-of-the-art model-based policy learning method, which accounts
for epistemic and aleatoric uncertainty (iv) Human: The ground truth actions of the human. (v) No
action: A policy that always applies actions of zeros.

Metrics. The comparative analysis uses the following metrics. Success rate (SR): The rate of
collision-free episodes. In the CARLA experiment, also an episode is considered as failure when the
vehicle does not reach the target location within the allocated time. Mean distance (MD): The distance
traveled longitudinal direction along the NGSIM-highway averaged over all episodes. The NGSIM
analysis further evaluated the individual parts of the reward function (i.e. mean proximity reward
r̄prox and mean lane reward r̄lane and the mean final reward r̄. The CARLA experiment determines
the mean successful time (MST): The average time required for successfully navigating through the
intersection averaged over all successful episodes. Appendix C provides further information about
the state, action, and reward representation.

4.1 NGSIM Experiments

The NGSIM I-80 dataset consists of 45 minutes of real-world driving data on a highway with dense
traffic recorded with cameras. The dataset has high environment (or aleatoric) uncertainty as all agents
exhibit different driving maneuvers as lane changes, merges, braking, and acceleration maneuvers.
We follow the preprocessing and experimental setup of Henaff et al. [2019] utilizing the OpenAI
Gym [Brockman et al., 2016]. In each evaluation episode, the SDV is initialized at the beginning of a
random trajectory of the test set. Other agents drive along their fixed trajectories from the dataset.
Fixed trajectories avoid the need of hand-designing (unrealistic) driving policies of neighboring cars.
However, this log-replay comes with the downside that the other agents do not react to the SDV,
which enhances the difficulty of the task as multiple agents can trap the SDV.
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Table 1: Performance of the different evaluated methods on the highway (NGSIM) and urban
(CARLA) control task by diverse metrics. CARLA (ID) denotes evaluation using simulations with
parameters from the same distribution as used during training. CARLA (OOD) defines experiments,
where a distribution shift is simulated. The unit of the metric MD is meter. The values of the MST
metric are denoted in seconds. Bold numbers mark the best result and an underlined number the
second best.

NGSIM CARLA ID CARLA OOD

Method SR MD r̄prox r̄lane r̄ SR MST SR MST

UMBRELLA 0.60 320.06 0.817 0.902 1.718 0.63 11.62 0.43 13.10
UMBRELLA-P 0.53 300.43 0.820 0.904 1.724 0.50 11.97 0.53 13.55

MBOP 0.50 290.62 0.775 0.893 1.669 0.27 11.78 0.20 13.37
1-step IL 0.00 67.65 0.580 0.605 1.185 0.00 - 0.00 -
MPUR 0.70 351.38 0.886 0.896 1.781 - - - -
No action 0.27 225.98 0.665 0.668 1.332 - - - -

Human 1.00 378.04 0.821 0.642 1.463 - - - -

UMBRELLA is compared against the previously described baselines. Table 1 illustrates the results.
In terms of success rate and mean traveled distance, MPUR performs best followed by UMBRELLA.
However, MPUR does not exhibit the control flexibility as UMBRELLA and requires retraining
whenever new parts are added to the reward function. In contrast, model-based offline planning
methods like MBOP and UMBRELLA can easily be modified, which was shown in prior work
[Argenson and Dulac-Arnold, 2021]. Moreover, in contrast to MPUR, these methods do not require a
differentiable reward function.

Regarding questions Q1 and Q2, UMBRELLA outperforms both MBOP and the 1-step IL method.
We can conclude that modeling aleatoric uncertainty is critical when applying model-based offline
RL approaches in automated driving scenarios. Prediction with a deterministic dynamics model leads
to an averaging over multiple futures. Hence, UMBRELLA outperforms MBOP w.r.t the considered
metrics. Interestingly, within the IL approach the SDV fails on every episode. However, UMBRELLA
improves drastically upon this policy. Considering question Q3, UMBRELLA-P is inferior compared
to UMBRELLA on the metrics SR and MD, while achieving slightly higher mean rewards. Our
experiments revealed, that UMBRELLA-P performs fewer lane changes and it gets more frequently
trapped by the non-reactive agents. We hypothesize that this occurs due to the more conservative
planning. As the pessimistic variant plans for the worst-case, it stays on the same lane most of the
time to avoid potential risk of lane changes. As a result, the follower vehicle causes a rear collision,
as its original trajectory is ignorant of the phantom SDV.

Figure 2 (d) provides an exemplary visualization of the planning result in a challenging lane change
scenario with dense traffic. The SDV predicts a safety-critical future evolution of the scenario
(visualized with low return trajectories) as the follower vehicle starts to accelerate and potentially
traps the SDV. However, the SDV reacts accordingly and successfully changes its lane in dense traffic.

4.2 CARLA Experiments

The second experiment describes an unprotected left-turning task at a busy intersection in Town04
of the CARLA simulator (Version 0.9.10) [Dosovitskiy et al., 2017], as visualized in Figures 2
(a) and (b). Six other agents, parameterized with different random driving style, are controlled by
CARLA’s traffic manager and approach the intersection from three directions. The other agents
perform random maneuvers at the intersection. That makes the scenario challenging, as the prediction
of uncertain multi-agent interaction is required to successfully navigate to the goal location. For
training, we generate a dataset using different sub-optimal behavior policies. We construct two
different test settings. In the first one, CARLA in-distribution (ID), the SDV is spawned at the
same locations as during training. In the second setting, CARLA out-of-distribution (OOD), initial
configurations are changed to generate novel unseen situations for decision-making. We evaluate on
30 randomly generated scenarios per test setting, and the results are visualized on the right side of
Table 1. Appendix C provides additional details about the experimental setup and the data generation.
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Regarding question Q1, again UMBRELLA improves the success rate of MBOP by a factor of 2.33
(CARLA ID) and 2.15 (CARLA OOD) while also navigating the intersection faster. Our insight
is that the superior performance can be attributed to the use of a stochastic dynamics model. That
underlines the importance of modeling different future outcomes in the context of model-based offline
RL for automated driving. Appendix D provides further visualizations of the model’s prediction
performance. 1-step IL consistently fails and does not re-accelerate once it stops at the intersection.
This behavior is attributed to the inertia problem [Codevilla, Eder, Lopez, and Gaidon, 2019], a
common problem in behavior cloning due to causal confusion [de Haan et al., 2019]. Interestingly,
while using the 1-step IL as a prior for rolling out state-trajectories, UMBRELLA and MBOP can
overcome this issue, which answers question Q2.

Considering question Q3, UMBRELLA achieves a higher success rate and lower MST than its
ablation in the CARLA ID experiment. However, in the CARLA OOD experiment, the performance of
UMBRELLA drops, whereas the pessimistic variant performs nearly identical. Using UMBRELLA-P,
the SDV plans for the worst-case model, i.e. the model, which predicts that all other agents decline
the right of way to the SDV. The result is a more conservative and reactive behavior in the intersection
causing fewer or no collisions. That is also reflected by the higher MST value.

4.3 Limitations

This section approaches question Q4 and outlines the limitation of current model-based offline
planning methods in the context of automated driving.

Reward Function Mismatch. While UMBRELLA, UMBRELLA-P, MBOP, and MPUR learn to
perform different challenging maneuvers in dense highway traffic, none of these methods reaches
human level performance. To further investigate the cause, let us consider the mean reward r̄ in
Table 1. Notice, that all approaches achieve a higher reward than the human baseline. In the context
of offline RL, the task of the agent it to outperform the dataset policy in terms of the reward. We
conclude that optimizing the reward function proposed by Henaff et al. [2019] does not necessarily
lead to optimization in terms of driving performance. That is caused by the fact that the reward
function does not exactly represent the human driving style. As other agents do not react to the SDV,
the most likely way to get a success rate of 1.00 is to drive exactly like the human in the dataset. One
remedy, is to learn the reward function with inverse RL (IRL) methods [Osa et al., 2018]. However,
this raises the almost philosophical question whether a human-like reward function is the ultimate
goal for automated driving, as humans sometimes also tend to drive in a safety-critical way and
violate traffic rules. In general, reward (mis)design is a common problem in automated driving
contributions [Knox et al., 2021] and needs to be addressed in future work. We hypothesize that this
effect also occurs in our CARLA experiments.

Dependency on BC Policy. While UMBRELLA and MBOP can improve upon a simple BC policy,
we observed that their performance is limited by the unimodal BC policy. That often leads to sampled
trajectories, which correspond to one possible maneuver (see Figure 2 (d)), whereas in reality a
human driver plans, for multiple possible maneuvers. Therefore, future work should investigate the
integration of multi-modal BC policies. In addition, the CARLA dataset contains suboptimal expert
policies, which drive through the intersection aggressively and are mostly non-reactive. We observed
that this driving style is partially also present in MBOP’s and UMBRELLA’s policies, which shows a
downside of both approaches when learning from non-expert-like datasets.

5 Conclusion

This work proposed an approach for model-based offline reinforcement learning, which considers
aleatoric and epistemic uncertainty. Experiments in multiple challenging automated driving scenarios
with dense traffic showed that incorporating aleatoric uncertainty improves the performance of
planning-based approaches. Moreover, the proposed method improves upon the poor performance
of simple BC policies. A pessimistic ablation is inferior in scenarios of the training distribution but
seems to offer advantages in out-of-distribution scenarios. We also showed the limitations of the
proposed approach and current state-of-the-art planning-based offline RL in the context of automated
driving. Future work should focus on improving the BC policy priors, use graph-based representations
instead of images and investigate the use of other optimization techniques.
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A Model Architecture

A.1 Dynamics Model

The dynamics model is inspired by the work of Henaff et al. [2019] and its architecture is visualized
in Figure 3. The network consists of the three main components: the encoder fenc, the posterior
network qφ, and the decoder fdec. For reasons of clarity, we do not include latent dropout (see
Appendix B.1) in the figure. The illustration is further simplified as in reality, the posterior network
outputs the parameters of a Gaussian distribution, which are then used to estimate zt by

(µφ,σφ) = qφ(st, st+1) (3)

ε ∼ N (0, I) (4)

zt = µφ + σφ ∗ ε. (5)

The work of Henaff et al. [2019] gives further information about the layer sizes and different parts of
the model.

A.2 BC Policy and Truncated Value Function

The network architecture of the BC policy and the Truncated Value Function are visualized in Figure
4 and 5. They encode the sequence of images with a 3-layer convolutional neural network with
(64 -128- 256) feature maps. The sequences of measurement vectors ut and actions at are encoded
using a 2-layer fully connected network with 256 units. The addition of all encoding is then further
processed by two 2-layer MLPs. The result is the predicted action ât or return R̂t, respectively.

B Training Details

B.1 Dynamics Model

The signal flow during training and testing is visualized in Figure 6. The network fenc encodes the
current state st and action at. Moreover, a latent variable zt is added. fdec decodes the result leading
to the prediction of the successor state ŝt+1 and reward r̂t+1. During training, the mean squared error
(MSE) between the predicted successor state ŝt+1 and the true successor state st+1 is minimized. The
same holds for the reward. The network further encodes the current state st and the true successor
state st+1 with fenc to the parameterized posterior distribution qφ(z | st, st+1). Besides the MSE
losses, the Kullback-Leibler divergence (DKL) between the posterior and the prior distribution p(z)
is minimized during training. To make the network sensitive to the action input, we apply latent
dropout [Henaff et al., 2019] during training. First, a random variable x is sampled from a Bernoulli
distribution B(px) with probability px. Hence we sample the latent variable during training according
to

zt ∼ (1− x) ∗ qφ(z | st, st+1) + x ∗ p(z) (6)

That forces the model to receive as much information as possible from the current state and action
to predict the successor state. To mitigate aggregated multi-step prediction errors [Moerland et al.,
2021] at test time, we unroll the model for five timesteps and train using the corresponding loss. The
dynamics model is first trained in deterministic mode for 50 000 steps. Deterministic mode denotes
the training configuration, where no latent variable is added. Afterward, the dynamics model is
again trained for 50 000 steps with the added latent variable. We denote this model as the stochastic
dynamics model. The determinstic dynamics model used for MBOP is trained without the latent
variable addition.

B.2 BC Policy and Truncated Value Function

We train the BC policy network by minimizing the loss

L(ψ; st, a(t−nc):(t−1), at) = ||at − fb,ψ(st, a(t−nc):(t−1))||
2

2
, (7)
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Figure 3: Simplified network architecture of the stochastic forward dynamics model during training
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Figure 4: Behavior-cloned policy network architecture.

2-layer MLP
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Figure 5: Truncated value function network architecture.
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Figure 6: Signal flow of the stochastic forward dynamics model (inspired by Henaff et al. [2019]).
Black color denotes the signal flow during training and inference. Grey denotes the signal flow, which
is only used during training.
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whereas parameter vector of one behavior-cloned policy model is denoted by ψ. The parameterized
truncated value function model fR,ξ(st, a(t−nc):(t−1)) is learned by minimizing the following per-
sample loss:

L(ξ;RH , st, a(t−nc):(t−1)) = ||RH − fR,ξ(st, a(t−nc):(t−1))||
2

2
(8)

ξ is the parameter vector. The value function target RH ∈ R is defined as the sum over the next H
rewards:

RH =

t+H−1∑
t=τ

rt (9)

Table 2 lists the hyperparameters for training the stochastic dynamics model, the BC policy model,
and the value function model.

Table 2: Training hyperparameters used for the stochastic forward dynamics model, the BC policy
model, and the value function model. np denotes the number of time steps the model is unrolled
during training. η is the initial learning rate. pdropout describes the dropout probability. px denotes the
latent dropout probability

Model Type nc np Opt. Steps Batchsize η pdropout px

Dynamics stochastic 20 5 Adam 2 ∗ 50000 32 0.0001 0.1 0.5
BC Policy deterministic 20 1 Adam 50000 32 0.0001 0.0 -
Value Func. deterministic 20 30 Adam 50000 32 0.0001 0.1 -

C Experimental Setup

C.1 NGSIM

State Space. The state st at time t is approximated by a set of nc observations ot. One observation
consists of a context image in bird’s-eye-view it ∈ R4×H×W and a measurement vector ut ∈ R4.
The context image has sizes H = 117 pixel and W = 24 pixel and is centered around the SDV. It
contains four channels with information about the SDV’s size, the drivable area, lane markings, and
the surrounding vehicles. The resolution is approximately 0.5 meter per pixel. The measurement
vector contains information about the 2D position pt ∈ R2 and velocity vt ∈ R2 of the SDV.

Action Space. The action at = (∆vt,∆δt) describes a change of velocity ∆vt ∈ R and a change of
steering angle ∆δt ∈ R by

∆vt = ||vt+1||2 − ||vt||2 (10)

∆δt = (vt+1 − vt)T
(vt)⊥
||vt||2

(11)

Reward. The SDV optimizes the following reward function, which was proposed by Henaff et al.
[2019]:

rt = rprox,t + rlane,t (12)

It penalizes small distances to other objects scaled by the SDV’s velocity (proximity reward rprox,t)
and small distances to the lane markings (lane reward rlane,t).

Dataset. A total of 5596 vehicle trajectories sampled at 10Hz are included. Note that one trajectory
corresponds to one episode. We split the trajectories into training (80%), validation (10%) and testing
sets (10%).

C.2 CARLA

State Space. The state space is the same as in the NGSIM experiment besides that H = 126,
W = 74 and it ∈ R3×H×W . In this experiment, we excluded the ego-layer as the SDV always has
the same size during training. Note that this is not the case in the NGSIM experiment due to different
vehicle types and sizes.
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Action Space. The action at = (dt, δt) describes a normalized lateral steering wheel command
δt ∈ [−1, 1] and longitudinal driving command dt ∈ [−1, 1] (acceleration or braking), which is
converted to a throttle and brake command using a low-level PID controller.

Reward. The SDV optimizes the following reward function:

rt = w1 ∗ rprog,t + w2 ∗ rlane,t + w3 ∗ rcoll,t. (13)

rprog,t rewards the SDV’s progress towards its goal while obeying the speed limit. The lane reward
rlane,t penalizes deviations from the reference lane center. rcoll,t is a collision reward encouraging the
agent to avoid collisions. Note that w1, w2, w3 ∈ R are weighting factors. Further, the three reward
terms are defined as:

rprog,t =

{
γt ∗ (et − et−1), if ||vt||22 ≤ vlimit

0, otherwise
(14)

rlane,t = −||pt − pcenter||22 (15)

rcoll,t =

{
−2 + 0.2(tcoll − t), if t ∈ [tcoll − 9, tcoll]

0, otherwise
(16)

et ∈ R it the distance to the target location and γ = 0.99 a discount factor. vlimit ∈ R describes the
speed limit. The lane reward is defined as the negative Euclidean distance to the lane center defines
the lane reward. The global position of the lane center closest to the position of the SDV is given by
pcenter. If a collision occurs in time step t the collision reward also penalizes the prior 9 time steps
according to a linear function. tcoll ∈ R denotes the collision timestamp. That should make the agent
learn dangerous pre-collision states. This work chooses w1 = 1, w2 = 0.1, w3 = 1.

Dataset. The models are trained based on trajectories corresponding to 1200 episodes, which are
recorded by driving the intersection with different policies. We intentionally make the policies
sub-optimal to see how the different algorithms can handle non-expert-like data. This work uses a
total of three different behavior policies because drivers in real-world datasets also follow different
driving styles. The first policy controls the SDV using PID-controllers, which track the path given by
a route planning module. All agents are spawned according to the parameters in Table 3. To generate
a diverse set of scenarios the parameters are randomly drawn. Other agents are controlled using the
autopilot of the CARLA traffic manager. At the intersection they, follow a First-In-First-Out (FIFO)
order. The SDV’s policy can be randomized by three different driving styles: cautions, normal and
aggressive. This behavior affects the maximum speed and maintained safety distance to other agents
on its planned path. The other agent’s behavior is further randomized by changing their traffic sign,
other vehicles, and speed limit ignorance rate. When the SDV reaches the intersection, it waits for a
random amount of time twait ∈ [0s, 15s] before starting the turn. Note, that this often causes collisions,
as the SDV does not react to vehicles that approach from the side. Hence, we filter out collision-prone
episodes during data generation. However, the recorded driving behavior is still sub-optimal as the
SDV assumes it always has the right of way, which results in a safety-critical behavior. The second
policy drives like the first one, but random noise is applied to the controls while maneuvering the
intersection. For this purpose, a random offset is injected for 5 time steps. This work uses both
policies to generate 400 collision-free episodes each. Lastly, another 400 collision-free episodes are
constructed by a human driver, who controls the car with the keyboard. Due to difficult control the
policy is also sub-optimal.

C.3 Planning Hyperparameters

We use the hyperparameter of Table 4 during our experiments, which were found using a grid search.
Note that, Off Policy Evaluation [Nachum et al., 2019] and Offline Hyperparameter Selection [Paine
et al., 2020] are outside the scope of this work. For a fair comparison we performed a search for all
used models during evaluation.

D Additional Experimental Results

D.1 Video Prediction Results

As the work of Henaff et al. [2019] already showed prediction results of a similar dynamics model
in the NGSIM environment, this section only shows video predictions results from the CARLA
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Table 3: Randomized parameters for data generation.
SDV Other agents

Spawn position [m] [25, 45]
first vehicle of each direction: [25, 35],

second vehicle of each direction: [45, 50]

Agent behavior [cautious, normal, aggressive]

safety distance [m]: [0.1, 10]
sign ignorance: [0, 0.2],

vehicle ignorance: [0, 0.2]
speed difference: [−0.3, 0.3]

Waiting time at intersection [s] [0, 15] FIFO

Noise injection offset
throttle: [−0.5, 0.5]
brake: [−0.5, 0.5]

steering: [−0.05, 0.05]
-

Table 4: Used hyperparameters of UMBRELLA for the NGSIM and CARLA experiments.
Environment K H N σ2 β κ

NGSIM 2 30 300 1.2 0.6 0.5
CARLA 2 30 100 1.5 0.9 0.5

experiments in Figure 7. The prediction horizon is 20s. We observe that the stochastic dynamics model
can model different future outcomes over a long time horizon. The predictions of the deterministic
model are more blurred (last column) as it is averaging over multiple futures. Both models have
learned what the road geometry looks like after the intersection. Note that, the prediction results
on NGSIM Henaff et al. [2019] are more blurred as different locations, vehicle types and more
maneuvers occur during training.

D.2 Runtime

This work conducts runtime experiments using an Nvidia Titan X and an Intel i5-3550@3.3 GHz. In
its current version, the implementations of MBOP and UMBRELLA are not real-time capable using
the models described in Appendix A, as shown in Figure 8. However, the runtime could be improved
as the current implementation is not optimized for performance. Moreover, both methods encode and
decode high-dimensional images using CNN’s leading to a high computation cost. Note, that high
computation times also occur when using MBOP with the proposed context image-based network.
Hence, future work should focus on using more efficient networks. For example, the observation
space could be represented by a graph [Gao et al., 2020; Liang et al., 2020] instead of an image.
Then using graph neural networks [Zhou et al., 2020] would lead to a more efficient implementation
regarding computation time and memory consumption.
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(a) Ground truth sequence

(b) Predictions with deterministic model

(c) Predictions with stochastic model, z-sample 1

(d) Predictions with stochastic model, z-sample 2

Figure 7: Video prediction results using the different models. (a) Ground truth sequence of the test
dataset. (b) Predicted sequence made using the deterministic model (c),(d) Predicted sequence using
the stochastic dynamics model. Sampling two different latent variables z from the prior distribution
results in two different predicted sequences.

0 100 200 300 400 500
0
1
2

4

6

8

10

12

N

Ti
m

e
[s

]

K=1
K=2
K=4

Figure 8: Average computation time of UMBRELLA as function of N and K with a horizon of
H = 30.
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Table 5: Performance of UMBRELLA in the NGSIM environment for varying parameter combina-
tions. Only one hyperparameter is changed at a time and the rest of the configuration from Table
4

.

Parameter SR MD

K = 1 0.43 266.71
K = 4 0.43 284.46

H = 25 0.57 240.57
H = 35 0.60 293.37
H = 40 0.50 280.30

N = 10 0.20 221.72
N = 50 0.47 290.65
N = 100 0.50 281.62
N = 200 0.53 297.44
N = 500 0.50 299.71

σ2 = 0.3 0.43 273.21
σ2 = 0.5 0.50 282.07
σ2 = 0.7 0.53 296.21
σ2 = 1.0 0.53 283.80
σ2 = 1.5 0.50 303.52
σ2 = 3.0 0.27 202.44

β = 0.0 0.03 116.06
β = 0.1 0.07 128.12
β = 0.3 0.13 223.59
β = 0.5 0.53 307.63
β = 0.7 0.40 284.99
β = 0.9 0.20 202.57

κ = 0.01 0.10 182.77
κ = 0.1 0.40 272.43
κ = 0.3 0.53 339.97
κ = 0.5 0.60 320.06
κ = 1.0 0.47 292.17
κ = 1.5 0.57 287.37
κ = 3.0 0.20 166.66

D.3 Hyperparameter Sensitivity

Additional experiments to research the sensitivity to hyperparameters are conducted. Table 5 shows
the performance of UMBRELLA in the NGSIM environment for varying individual hyperparameters
based on the configuration from Table 4.

While the most sensitive hyperparameter is β, the algorithm remains stable for different planning
horizons H . β can be interpreted as a way to introduce momentum to the algorithm. A too low value
makes the actions independent of previous actions, leading to behaviors with high jerk. However, a
too high value makes the SDV less reactive. Future, work could also investigate the effect of a context
dependent β value. As the work of Argenson and Dulac-Arnold [2021], UMBRELLA performance
mostly degrades near extreme values. We note that the prior work evaluates the sensitivity based on
rewards. However as discussed in Section 4.3 and the work Knox et al. [2021], this often does not
necessarily correlate with a good driving performance.
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