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Abstract

In the foreseeable future, autonomous vehicles will require human assistance in sit-
uations they can not resolve on their own. In such scenarios, remote assistance from
a human can provide the required input for the vehicle to continue its operation.
Typical sensors used in autonomous vehicles include camera and lidar sensors. Due
to the massive volume of sensor data that must be sent in real-time, highly efficient
data compression is elementary to prevent an overload of network infrastructure.
Sensor data compression using deep generative neural networks has been shown to
outperform traditional compression approaches for both image and lidar data, re-
garding compression rate as well as reconstruction quality. However, there is a lack
of research about the performance of generative-neural-network-based compression
algorithms for remote assistance. In order to gain insights into the feasibility of
deep generative models for usage in remote assistance, we evaluate state-of-the-art
algorithms regarding their applicability and identify potential weaknesses. Further,
we implement an online pipeline for processing sensor data and demonstrate its
performance for remote assistance using the CARLA simulator.

1 Introduction

Motivation. Both SAE International (SAE) level 4 and 5 autonomous vehicles (AV) [12] operate
without relying on a human driver. However, in such complex environments as road traffic, AVs
will not be able to operate without failures in the foreseeable future. Remote assistance [9] allows
remote operators to resolve situations, where AVs face problems they cannot resolve on their own
by granting a remote operator access to the vehicle’s state and sensor data [17]. Depending on the
specific situation and the implementation of the remote assistance, the remote operators can either
provide the vehicle information that enable it to continue the operation, or take over manual control.

Thus, to not overload network infrastructures, the volume of data that is sent must be drastically
reduced. To achieve this, efficient compression of sensor data is elementary. Recent research on deep
generative neural networks has achieved impressive results in image and lidar scan compression [10;
1; 32; 2; 11]. Deep generative models are an attractive choice as they work with diverse sensor data
and can achieve higher compression rates while maintaining a better reconstruction quality than
JPEG and MPEG [2]. Further, such models also work for lidar scans and outperform tree-based and
JPEG-based approaches [47; 10; 48]. Lastly, deep generative models allow combining encoders and
decoders of different depths with each other, making them well suited for applications with differing
hardware capabilities on the AV and the remote operator side [45].
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Gap to related work. Existing research focuses on compressing either image or lidar data [10;
47; 48; 1; 32; 2; 11]. However, there is a lack of studies regarding the choice of compression
approaches for the remote assistance of AVs. Multiple approaches exist that compare generative
models with traditional codecs [29; 14]. Instead of comparing just one generative approach to
traditional engineered algorithms for image compression, we provide a comprehensive comparison in
the field of autonomous driving between multiple generative models and traditional algorithms.

As point cloud and image data are complementary, a single compression approach for processing both
sensor modalities in the application of remote assistance is beneficial but has not been demonstrated
yet in the literature. Further, to the best of our knowledge, there is no study that empirically evaluates
the reduction in volume of data that can be achieved by employing compressing a vehicle’s sensor
data using deep generative models.

Contributions. Therefore, our main motivation is to identify suitable approaches for compressing
sensor data for remote assistance of autonomous vehicles. We thoroughly evaluate two state-of-the-art
image compression approaches regarding their fit for remote assistance, using different datasets from
the autonomous driving domain.

Based on several error metrics for reconstruction, we identify scenarios where generative compression
performs either very good, or very bad. Additionally, we evaluate the reconstruction quality by
performing object detection on the original as well as the reconstructed images.

We demonstrate a distributed online-pipeline for processing simulated image and lidar data, and
evaluate its performance for our use case. Our chosen architecture allows camera and lidar data to be
processed by the same pipeline, rather than having to perform individual compression passes.

We study the performance of the online pipeline with regards to its real-time capabilities, and highlight
critical processing steps that affect performance. By implementing the online processing pipeline
in the Robot Operating System (ROS) [40], we show the applicability of our approach on our test
vehicle [53], that operates on the same framework.

Paper outline. The rest of this paper is structured as follows. Section 2 introduces generative-
model-based approaches for image and lidar compression and applications of compression pipelines.
Section 3 explains our model choice and implementation of the online pipeline. Finally, we evaluate
the image and lidar compression approaches in Section 4, before concluding our work in Section 5.

2 Related Work

2.1 Approaches for Image Compression

Traditional, lossy image compression algorithms, such as JPEG [50], JPEG2000 [43] or HEVC [41]
based BPG [4], are popular and commonly known. Nevertheless, neural networks have also been
used for image compression for more than 20 years [26]. In 2006 Hinton and Salakhutdinov [25]
introduced a deep autoencoder to convert high-dimensional data to low-dimensional codes. One
key problem of the standard autoencoder is that it generates a fixed-length code for images with the
same resolution, independent of the complexity. Toderici et al. [46] introduced a variable-rate image
compression framework where LSTM models are used for both the encoder and the decoder. The
results showed remarkable improvements compared to JPEG on the similarity metric SSIM. In recent
years Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN) have reached a
lot of attention due to their success in the field of image compression. GANs produce high quality,
perceptual reconstructions, but with the danger of mode collapse. The reconstructed images by VAEs
are often more blurry and not necessarily as visually appealing to humans, but due to their setup
mode-collapse is not an issue.

Ballé et al. [2] introduced a VAE for image compression with an hierarchical prior to improve the
entropy model. The data compressed by the prior can be used as side information for the compression
of the latent representation with the entropy model. Thereby, the entropy model can adjust to different
complexities of images. Based on this, Minnen et al. [33] extended the hyperprior to a mean and
scale Gaussian distribution alongside an autoregressive component that predicts latents from their
causal context to get a more accurate entropy model. Cheng et al. [11] further improved the model
using discretized Gaussian Mixture Likelihoods to parameterize the distributions of latent codes.
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GANs [21] have led to impressive results for learning intractable distributions with generative models.
Santurkar et al. [36] show how GANs can be used for lossy image compression by adding an
autoencoder to a GAN architecture.

Adversarial losses are also used in the field of image compression in the rate-distortion objective [31;
5]. Agustsson et al. [1] show impressive, subjective results in their user study with extremely high
compression rates. Mentzer et al. [32] improve the distortion quality by the introduction of the
hyperprior approach on the latents of Ballé et al. [2]. The inherent danger of mode collapse for GANs
is tackled by the additional distortion loss, which optimizes the reconstructions on the pixel level and
thereby penalizes a mode collapse.

2.2 Point Cloud Compression

Several directions for compressing 3D data, including lidar measurements, have been explored.
Ochotta and Saupe [35] propose an approach that decomposes dense 3D surfaces into smaller patches
represented as elevation maps and applies a shape-adaptive wavelet encoder on those patches. For
dense point clouds, tree-based compression approaches have been proposed [37]. Golla and Klein [20]
achieve real-time compression of point clouds by grouping points into larger voxels and applying
compression on each voxel separately. They compute height-, color-, and occupancy-maps and
compress those maps using different standard compression approaches, such as JPEG. However,
lidar-generated point clouds tend to be sparsely populated. Therefore, the aforementioned approaches
are not well-suited for our use case.

Tu et al. [47] suggest representing raw lidar scans as 2D matrices. They propose utilizing the
knowledge that most lidars generate scans by rotating an array of lasers by exactly one revolution.
This means that there is an inherent order to the array raw sensor data that the lidar produces, although
it might differ between manufacturers. Utilizing this order allows the 2D matrix representation to
be created relatively cheaply. To this 2D representation of the raw lidar data Tu et al. subsequently
apply compression approaches, such as JPEG and MPEG [47], an RNN with residual blocks [48],
and U-Net for optical flow interpolation between reference frames [49]. However, the RNN-based
approach performs compression by sending data through the encoder as well as the decoder, making
it not suitable for a distributed use case such as remote assistance.

Another recent line of work explores point cloud compression using deep generative models, such as
VAEs and GANs. After transformation of raw lidar scans into 2D grids, represented as matrices [47],
the encoder of a CNN-based VAE or GAN can compress the matrix analogous to an image. Condi-
tional generation, i.e., reconstruction of a compressed scan, as well as compression rate have been
shown to perform well with a VAE using such an ordered 2D representation [10].

2.3 Generative Data Compression Applications

There exist several publications on generative models for image compression. Regarding comparative
studies Löhdefink et al. [29] implement the GAN approach of [1] and compare it to JPEG2000
with similarity metrics. Dash et al. [14] improve the GAN architecture and compare the results
to traditional compression algorithms. Siam et al. [39] evaluate different approaches for image
compression in the autonomous driving domain on semantically segmented images.

Outside of the autonomous driving community, end-to-end image compression based on genera-
tive models has been applied successfully to various other applications, such as facial images for
surveillance [24] and general video compression [30; 22].

3 Approach

Our work is divided into two parts, an offline and an online segment. In the offline part we select
two state-of-the-art generative models for image and lidar compression to evaluate the compression
and quality of the reconstructions and compare them to traditional approaches. We implement these
approaches in an online AV simulation to evaluate their real-world potential. Code and supplementary
material is available at https://github.com/daniel-bogdoll/deep_generative_models.

Offline Image Compression. For remote assistance of AVs efficient data compression with a high
quality reconstruction is necessary. Therefore, our objective is to evaluate models based on their
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Figure 1: Overview of the online processing pipeline. The pre-processed lidar data passes through
the same encoder and decoder architecture as RGB data.

rate-distortion-perception [6] properties. We include the perception category, since the receiving
remote operator is human, and assess it based on a domain-specific object-detection metric.

To meet these mentioned requirements we select the VAE model of Ballé et al. [2] and the GAN
model by Mentzer et al. [32] as they achieved state-of-the-art results in the rate-distortion for image
compression. Both models take a 256× 256 pixels resize of the original image as an input and have
been validated on various datasets and metrics.

Offline Point Cloud Compression. To use a VAE or GAN for lidar compression, we pre-process
the data according to Caccia et al. [10]. The intuition behind the pre-processing approach is to sort
and down-sample the lidar scans into a tensor representation, so that the resulting structure closely
resembles the structure of an RGB image. We further base our compression of lidar scans on a
2D transformation and use a VAE for compression. We perform compression on diverse lidar data
sources, i.e., KITTI [16], Waymo Open Perception Dataset [42], and CARLA [15].

Online Compression. To evaluate and compare the performance of the aforementioned approaches
with regard to their applicability in remote assistance systems, we design an online sensor data
compression pipeline. We use ROS to interconnect the different sub-systems. Furthermore, we
employ the CARLA Simulator as our sensor data source. CARLA is an open-source simulator
for development, training, and validation of autonomous urban driving systems [15]. A schematic
overview of the system is given in Figure 1. Examples of the CARLA environment and the decoded
camera image are shown in the Appendix, Figure 8.

The AV in the CARLA simulator is equipped with a set of sensors such as a lidar and camera. The
system consists of an encoder node on the AV side and a decoder node on the remote operator side.
In case of compressing lidar data, an additional pre-processing node on the vehicle side is necessary.
The sensor data is sent to the respective encoder node to compress the data. Afterwards, the decoder
receives the data via a network connection and decompresses it.

4 Evaluation

4.1 Image Compression

Training. Models of the methods selected in Section 3 were trained using the KITTI [16] dataset,
which consists of 7,481 RGB training images and 7,518 RGB test images with a resolution of
1242× 375 pixels. During training, fragments with a size of 256× 256 pixels were randomly cut
out of the training images and fed to the corresponding model. Using this input size makes a good
compromise between quality and compression rate. The VAE was trained with a batch size of 32 and
a learning rate of 0.0001 for 100 epochs to achieve good convergence of validation metric values.
The library compressai [3] was used to perform training. Rate-distortion-loss, consisting of MSE
as distortion loss and bit-rate as rate loss, was used as a combined loss function for the VAE. It is
calculated as follows:

LV = DV + λRV = LMSE + λLbpp. (1)

The GAN was trained for 8 epochs using a learning rate of 0.0001 and a batch size of 4. As distortion
loss, learned perceptual image patch similarity (LPIPS) [52] was used additionally. Therefore, the
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Figure 2: Comparison of VAE, GAN and JPEG2000 compression with the metrics MS-SSIM, LPIPS,
MSE and PSNR. The performances are plotted over the bit-rate in bits per pixel.

loss function used is calculated by

LG = DG + λRG = (kmLMSE + kpLLPIPS) + λLbpp (2)

where km = 0.075 · 2−5 and kp = 1 are hyper-parameters chosen as in [32]. Several trainings with
different values of λ ∈ {0.001, 0.0025, 0.05, 0.01, 0.05, 0.1} were performed to achieve different
quality levels in reconstruction and different compression rates. We executed all trainings on an
NVIDIA GeForce GTX 1080 Ti.

Image Reconstruction Quality. We compare the methods at different quality levels and show what
level of compression still provides sufficient quality for the use case of remote assistance. For the
evaluation of the image reconstruction quality, the metrics MSE, LPIPS, peak signal to noise ratio
(PSNR) and multiscale structural similarity index measure (MS-SSIM) [51] are taken into account.
Both VAE and GAN image reconstruction results are evaluated and compared to JPEG2000, see
Section 2.1. Figure 2 presents the metric values over bit-rates from 0 to 1.0 bits per pixel (bpp).

The JPEG compression delivers competitive results, but gets worse at lower bit-rates. This becomes
especially clear at bit-rates below 0.3 bpp, where JPEG fails completely, since compression rates
become unusable. However, we downsize every image to 256 × 256 pixels as done for VAE and
GAN approaches, which negatively influences the reconstruction quality. For structural similarity,
VAE and GAN yield similar trends. For MSE and PSNR, GAN and VAE approaches perform the
same for lower bit-rates.
At higher bit-rates, the curves diverge. For LPIPS the GAN approach performs much better. Never-
theless, it should be noted here that the GAN was trained on LPIPS in addition to MSE in distribution
loss which impacts the evaluation. To demonstrate the differences, multiple examples are presented.

First, Figure 3 displays a standard street scene from the KITTI dataset. It shows the original image, the
JPEG compression and the reconstructions made by VAE and GAN approaches. In order to compare
the results at the same compression rates, a similar target bit-rate was chosen for all compressions
leading to equally large compressed data.

JPEG achieves the worst compression quality at these bit-rates. Details are hard to discern and the
image looks fragmented. With the VAE approach, the reconstruction looks better, but more washed
out. The GAN provides the best reconstruction, also showing details in higher sharpness. This can be
seen with the tree in the background and with the gap between the right car’s trunk and its side parts.

Further, two out-of-domain corner case situations, as described in [8], were used as input for the
KITTI trained models to test the stability of the approaches. The first case is a night scene from the
Nighttime Driving dataset [13] and the second case is a scene from the Fishyscapes benchmark [7]
that has an unconventional object positioned in a street scene. Figure 10 in the appendix presents the
results. Note that the target bit-rate is set lower than the one in Figure 3 to point out the methods’
performances with lower bit-rates. While both generative approaches produce good results, poor
performance can be seen with JPEG compression. At low bit-rates, colors may not be represented
correctly, and there are also large fragments in the image. In contrast, the GAN approach still gives
very good results, even for out-of-domain scenes for which it has not been trained specifically. Based
on this, JPEG2000 was dismissed from further evaluation since GAN and VAE provide high-quality
results with lower bit-rates than JPEG2000 can handle.
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Original Compressed by JPEG (0.788 bpp)

Reconstruction VAE (0.816 bpp) Reconstruction GAN (0.817 bpp)

Figure 3: KITTI street scene with reconstruction comparisons. Target bit-rate is approx. 0.8 bpp.
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Figure 4: Relative error of the number of detected cars in the original image and the reconstructed
image by VAE respectively GAN. The distribution is given over the bit-rate in bpp. Scott’s rule [44]
was used for smoothing with a scaling factor of 0.6. The darker the color in the graph, the higher the
density of the values.

Object Detection Performance in Reconstructions. While the metric evaluation performed in
Section 4.1 assesses the overall quality of reconstructions, the following evaluation refers to the
remote operator’s requirement, which is to understand the scene. Therefore, the extent to which
object recognition is possible on the reconstructed image is investigated. For this purpose, an SSD
[28] model with ResNet50 [23] as feature extractor trained on COCO [27] was used. Object detection
for the class car was performed on both the original and the reconstructed images. For evaluation,
the number of cars detected in the original and the reconstructed image were counted, followed by a
comparison using the following formula for the relative error:

Relative error =
nrecon − norig

norig
× 100 (3)

where nrecon is the number of cars detected in the reconstructed image and norig in the original
image. Figure 4 shows this deviation in percent, i.e., -100% deviation means that out of n cars in
the original image, none were detected in the reconstructed image. Images with norig = 0 were not
considered. The minimum confidence score for the object detection network was chosen as 0.7. It
is noticeable that across all quality levels, the deviations in the negative range are large, especially
for VAE. Also, there is a large number of images where the GAN approach has almost no errors.
Likewise, there are some images reconstructed by both VAE or GAN for which the object detection
algorithm detects more objects as in the original counterparts, with the maximum difference being
100%. Overall, images reconstructed with the GAN allow for better object recognition of cars.
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Original Reconstruction VAE low quality (0.256 bpp)

Reconstruction GAN low quality (0.221 bpp) Reconstruction GAN high quality (0.724 bpp)

Figure 5: Object detection example performed in the original image and several reconstructions made
by GAN and VAE with differing bit-rates.

Figure 6: VAE point cloud reconstruction. Left: Original, transformed point cloud. Right: Recon-
struction with a bit-rate of 1.83 bpp. The scenery is viewed from above.

Figure 5 shows an example of the object detection performance. The VAE compression with low
quality performs inadequately with the pre-trained object detection model. However, at the same
bit-rate the GAN compression results in a better object detection, improving with a higher bit-rate.

Considering that objects in the distance might be of less importance, even lower bit-rates in the range
of 0.2 to 0.3 bpp are possible with the GAN. At such low rates, the VAE compression performs
insufficient. Therefore, using a GAN trained with low λ values is preferable and achieves high-quality
reconstructions with a high compression.

4.2 Point Cloud Compression

Early performance tests, which are further elaborated in Section 4.3, have shown the significantly
higher transmission rates of VAEs. Therefore, we focus on VAEs for point cloud compression. The
combined inference time for both camera and lidar GAN processing would be too high for the targeted
real-world application. The VAE approach introduced in Section 3 was trained and tested on KITTI
lidar data. The same training parameters as in Section 4.1 were used. As input the VAE receives the
preprocessed point clouds with a shape of 512× 64, since a general resizing of the point clouds as it
is done for images is not possible as the channels contain distances and not color value information.
Due to the different information type, the bit-rate increases as well.

Despite using the same VAE architecture as used for image compression, the results in compressing
and reconstructing point clouds are surprisingly good. We measure the point-wise reconstruction
quality with the standard euclidean distance metric. For a target bit-rate of 1.8 bpp, the mean euclidean
distance is between 0.3m and 0.5m, while points close to the center have a smaller distance to their
counterparts than points located further away.

Figure 6 shows that the typical lidar rings are no longer reconstructed, and that there is increased
noise. This can also be seen in the PSNR value, which is about 48.0 at a target bit-rate of 1.8 bpp.
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Still, general distance trends can be identified and certain deflections can be recognized. Therefore,
this approach generates early, but promising results.

4.3 Online Pipeline

In a remote assistance system the transmission of the sensor data is most important for taking
appropriate action. As the sensor data must be encoded and decoded to increase data throughput, the
transmission of the sensor data is prone to latency. Therefore, fast processing times are necessary.
We test the compression approaches introduced in Section 3 regarding their processing times and
throughput on an NVIDIA GeForce GTX 1080 Ti to investigate their suitability for the use case of
remote assistance. We measure the processing time of the nodes over a time span of 300 seconds. The
processing time gives information about the throughput of the pre-processor, encoder and decoder.
To understand the overhead introduced by ROS we also measure the mere inference time for only
encoding and decoding of the images and point clouds. The results are summarized in Figure 7.

For image compression the VAE requires significantly less processing time than the GAN, leading to
a throughput of about 28 FPS. The ROS encoder has a mean processing time of 34.9 ms of which
16.8 ms is the mere inference time for the VAE compression. The ROS decoding node requires
29.1 ms while the mere decompression takes 20.5 ms. The resulting system latency adds up to 57.1 ms
due to the processing times of encoder and decoder in addition to the network latency. The generation
of the ROS message from the latent representation and its publishing is more time consuming than
the image compression itself. The decoder must first reconstruct the latent representation from the
transmitted ROS message which is less time consuming.

In the GAN-based image compression pipeline the processing times of the encoder and decoder
vary significantly. While the ROS encoder has a mean processing time of 102.5 ms, the complete
pipeline can only process 4 FPS, as the decoder requires about 237.7 ms per frame. This results in a
latency of about 340.2 ms. Without the ROS overhead the inference time for the image compression
is about 93.4 ms for the encoder and 230.8 ms for the decoder. Comparing this to the VAE the relative
overhead introduced by ROS is significantly smaller. This can be traced back to a time-consuming
process for the generation of the customized ROS message, representing the VAE’s latent space.

For point cloud compression the pre-processing node in its current implementation is a bottleneck.
It determines the throughput of 6 scans per second of the complete pipeline. The mean processing
time for the pre-processing node is 146.5 ms while the encoder and decoder node reach processing
times of 23.9 ms and 37.7 ms respectively. Investigating the mere inference time without ROS
overhead, the discrepancy between the lidar pre-processing and its compression itself is significant
as well. Pre-processing already takes 114.5 ms per scan while compression only takes 10.4 ms and
decompression 8.9 ms.

While the GAN and the point cloud compression reach impressive compression results, their pro-
cessing times are too high to be currently applied in a remote assistance system. Georg et al. [18]
consider frame rates of about 30 FPS sufficient for remote driving in low speed scenarios while for
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high speed scenarios a frame rate of 55 FPS is needed. For remote driving latency values above 300
ms make the safe operation of the AV almost impossible [34]. While the latency requirements for
remote assistance [38] are less stringent compared to remote driving [19], an operator still requires
real-time knowledge of the state of the vehicle’s environment to make decisions.

5 Conclusion and Outlook

To enable remote assistance for AVs, large amounts of data must be transmitted from the vehicle to a
remote operator. In order to not overload communication infrastructure, improved data compression
is necessary. For this purpose, we implemented and evaluated selected state-of-the-art generative ap-
proaches for image and lidar compression, and compared them with traditional compression methods.
The approaches were trained and tested with the KITTI dataset, embedded into a ROS framework and
simulated within the CARLA environment. We have shown that, taking into account rate-distortion-
perception-latency requirements, a real-world application can currently only be satisfied by VAEs,
while GANs show the more promising results regarding reconstruction quality.

Offline Rate-Distortion-Perception Analysis. Regarding our offline rate-distortion-perception
analysis, the GAN approach yields the best results for image compression and provides good
reconstruction results even at very low bit-rates of 0.2 to 0.3 bpp. The reconstructions were evaluated
with multiple metrics. Moreover, even at these bit-rates, it is still possible to perform object detection
with a sufficient detection rate, demonstrating the perception quality of the data for remote assistance.

As we used insights gained by preliminary results of the latency evaluation during the process, we
only applied a VAE for the lidar data. The reconstructions showed a mean euclidean distance error
between 0.3 m and 0.5 m and especially a loss of the characteristics of lidar point clouds. Since the
similarities between the point clouds are already much lower than in the image domain, we did not
perform a perception analysis.

Online Pipeline with Latency Analysis. Regarding the online latency evaluation, a complete end-
to-end pipeline for image and lidar compression was implemented in ROS. We evaluated computing
times, clearly showing that for image compression the GAN approach is significantly slower than
the VAE and cannot be used for remote assistance in terms of processing speed. Thus, VAE-based
compression shows a promising trade-off between processing time and reconstruction quality. For
lidar compression, the bottleneck is the conversion of the point cloud to the tensor format.

Outlook. To fully represent the domain of autonomous driving, radar data could be considered in the
future. Further, the perception evaluation in the image domain could be extended to other classes
such as trucks, bicycles or pedestrians. While we did perform training for image compression on a
portion of the much larger WAYMO Perception Open Dataset with promising results, a complete
training and evaluation on such a data set is desirable. Finally, generative video compression is a
promising research area for future works.

Regarding the lidar compression, future work needs to re-evaluate the suitability of the utilized
compression approach. While results such as shown in [48] are desirable, it must be investigated if
an adapted version of their concept can be designed for the remote assistance use case.

Regarding the latency, further work will be done to optimize the inference time of the models by
optimizing their structure or using acceleration methods. Since the architecture allows for processing
in a single pass, a combination of camera and lidar data can be considered. Likewise, we suggest
using optimized conversion methods for point clouds and ROS messages. Here, a good compromise
between image quality and pipeline speed must be found. Finally, the implemented ROS framework
will be deployed on our test vehicle for a real-world demonstration.
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Figure 8: CARLA environment (left) and VAE-based decompressed images in RViz (right).
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Figure 9: Sorted and binned 2d representation of the point cloud consisting of h × w bins. The
(x, y, z)-coordinates of each point are calculated as the average of all points of the original point
cloud that belong into that specific bin.

Original lion scene
Compressed by JPEG

(0.304 bpp)
Reconstruction VAE

(0.305 bpp)
Reconstruction GAN

(0.235 bpp)

Original night scene
Compressed by JPEG

(0.237 bpp)
Reconstruction VAE

(0.240 bpp)
Reconstruction GAN

(0.167 bpp)

Figure 10: Out-of-domain testing of VAE trained on KITTI.
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Figure 11: Examples of reconstructions with data from the KITTI dataset.
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