
YOLObile: Real-Time Object Detection on Mobile
Devices via Compression-Compilation Co-Design

Yuxuan Cai ∗
Northeastern University

cai.yuxu@northeastern.edu

Geng Yuan ∗
Northeastern University

yuan.geng@northeastern.edu

Hongjia Li ∗
Northeastern University

li.hongjia@northeastern.edu

Wei Niu
College of William and Mary

wniu@email.wm.edu

Yanyu Li
Northeastern University

li.yanyu@northeastern.edu

Xulong Tang
University of Pittsburgh

tax6@pitt.edu

Bin Ren
College of William and Mary

bren@cs.wm.edu

Yanzhi Wang
Northeastern University

yanz.wang@northeastern.edu

Abstract

The rapid development and wide utilization of object detection techniques have
aroused attention on both accuracy and speed of object detectors. However, the
current state-of-the-art object detection works are either accuracy-oriented using a
large model but leading to high latency or speed-oriented using a lightweight model
but sacrificing accuracy. In this work, we propose YOLObile framework, a real-
time object detection on mobile devices via compression-compilation co-design. A
novel block-punched pruning scheme is proposed for any kernel size. To improve
computational efficiency on mobile devices, a GPU-CPU collaborative scheme is
adopted along with advanced compiler-assisted optimizations. Experimental results
indicate that our pruning scheme achieves 14× compression rate of YOLOv4 with
49.0 mAP. Under our YOLObile framework, we achieve 17 FPS inference speed
using GPU on Samsung Galaxy S20. By incorporating our proposed GPU-CPU
collaborative scheme, the inference speed is increased to 19.1 FPS, and outperforms
the original YOLOv4 by 5× speedup.

1 Introduction

Object detection, one of the major tasks in the computer vision field, has been drawing extensive
research from both academia and industry thanks to the breakthrough of deep neural network (DNN).
Object detection is widely adopted in numerous computer vision tasks, including image annotation,
event detection, object tracking, segmentation, and activity recognition, with a wide range of ap-
plications, such as autonomous driving, UAV obstacle avoidance, robot vision, human-computer
interaction, and augmented reality. Considering these application scenarios, it is equivalently impor-

∗These Authors contributed equally.

Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.



tant to maintain high accuracy and low latency simultaneously when deploy such applications on
resource-limited platforms, especially mobiles and embedded devices.

In the past decades, promising object detection approaches are proposed, which are mainly categorized
into two-stage detectors [10, 9, 37, 14] and one-stage detectors [33, 34, 35, 2, 26, 22]. Compared
with two-stage detectors, one-stage detectors aim to provide an equitable trade-off between accuracy
and speed, and will be mainly discussed in this work. Despite large efforts devoted, representative
works such as You Only Look Once (YOLO) [33, 2], Single Shot Detector (SSD) [26], still require
extensive computation to achieve high mean average precision (mAP), result in the main limitation
for real-time deployment on mobile devices. Apart from large-scale approaches mentioned above,
lightweight object detection architectures targeted for mobile devices are investigated [38, 18, 21].
However, the accomplished efficiency leads to non-negligible accuracy drop.

To address this issue in object detection detectors, model compression techniques have been drawing
attention, especially weight pruning methods, which have been proved as one of the most effective
approaches to reduce extensive computation and memory intensity without sacrificing accuracy
[40, 12, 31, 16, 15]. By reducing the vast redundancy in the number of weights, models with
structural sparsity achieve higher memory and power efficiency and low latency during inference.
Generally, unstructured pruning and structured pruning are the two main trendy schemes of weight
pruning. Unstructured pruning eliminates weights in an irregular manner, which causes the essential
drawback to obstruct hardware accelerations [13, 12, 28]. Structured pruning is observed with
notable accuracy degradation due to the coarse-grained nature in pruning whole filters/channels
[31, 45, 44, 30, 43, 25]. To overcome these shortcomings, pattern-based pruning is proposed
incorporating fine-grained unstructured pruning in a hardware aware fashion [29, 32]. However,
it is only applicable to convolutional (CONV) layers with 3×3 kernels, significantly limiting its
deployment in object detection tasks.

The goal of this paper is to achieve real-time object detection by exploiting the full advantages of
pruning for inference on mobile platforms. Our contributions are summarized as follows:

• We propose block-punched pruning, a novel pruning scheme combines the advantage of
high accuracy and the capability of achieving high hardware-parallelism.

• We propose a GPU-CPU collaborative computation scheme to compute DNN branch struc-
tures in a more efficient fashion, which further improves the inference speed.

• Under our compiler-assisted optimization, with comparable accuracy to state-of-the-art
object detectors, our proposed framework achieves real-time object detection on mobile
devices.

Experimental results indicate that YOLObile delivers 14× compression rate (in weights) of YOLOv4
with 49.0 mAP. It achieves 19.1 frames per second (FPS) inference speed on an off-the-shelf Samsung
Galaxy S20, and is 5× faster than the original YOLOv4.

2 Background

2.1 Preliminaries on Object Detection DNNs

The DNN-based object detectors can be categorized into two mainstreams: (i) two-stage detectors
and (ii) one-stage detectors.

Two-stage detectors divide the detection to two stages: extract region of interest (RoI) and then
do the classification and bounding box regression tasks based on the RoI. A most representative
series of two-stage detectors is R-CNN [10] with its extended generations Fast R-CNN [9] and Faster
R-CNN [37]. R-CNN is the first region-based CNN object detector and it achieves higher object
detection performance compared with previous HOG-like features-based systems [24]. Despite
highest accuracy rates achieved, the major drawback of such two-stage detectors is high computation
and still relatively slower inference speed due to the two-stage detection procedure.

One-stage detectors eliminate the RoI extraction stage and directly classify and regress the candidate
anchor boxes. YOLO [33] adopts a unified architecture that extracts feature maps from input images,
then it regards the whole feature maps as candidate regions to predict bounding boxes and categories.
YOLOv2 [34], YOLOv3 [35] and YOLOv4 [2] are proposed with improved speed and precision.

2



flt 1

Non-structured
pruning

Structured
pruning

Filter
pruning

Channel
pruning

flt 2

flt m

}
2-D Weight Matrix Format4-D Weight Tensor Format

(a)

(b)

n c
ha

nn
els ch 1 ch 2 ch n

flt 1
flt 2

flt m

ch 1 ch 2 ch n

flt 1
flt 2

flt m

ch 1 ch 2 ch n

pruned
weightflt 2 flt m

flt 1

Figure 1: Illustration of (a) unstructured pruning and
(b) coarse-grained structured pruning.

Block

Block Block

DNN Weights

}}
m filters n c

ha
nn
els

Pruned
weightConvolution

kernel

Figure 2: Illustration of block-punched prun-
ing.

One-stage detectors demonstrate an optimized trade-off between accuracy and speed only on high
performance desktop GPUs.

Therefore, lightweight object detectors are proposed for mobile devices where both model size and
speed are limited. SSDLite [39] is a mobile friendly variant of regular SSD utilizing the backbone
of MobileNet. Based on YOLOv2, YOLO-LITE [18] provides a smaller, faster, and more efficient
model increasing the accessibility of real-time object detection to a variety of devices. However, the
accuracy of these works is sacrificed significantly.

2.2 DNN Model Pruning

We now discuss the three most trendy pruning schemes: including fine-grained unstructured pruning,
coarse-grained structured pruning, and pattern-based pruning.

Unstructured pruning allows the weights at arbitrary locations in the weight matrix to be pruned,
which ensures a higher flexibility to search for optimized pruning structure [12, 8, 6], as shown in
Figure 1 (a). Thus, it usually achieves high compression rate with minor accuracy loss. Though it has
the privilege of achieving high compression rate with minor accuracy loss, the irregular sparsity in
the weight matrix requires additional indices to locate the non-zero weights during the computation.
This makes the hardware parallelism provided by the underlying system (e.g., GPUs in mobile
platforms) underutilized. Consequently, the unstructured pruning is not applicable for DNN inference
acceleration, and even a decrease in speed can be observed [40].

Structured pruning prunes the entire channel(s)/filter(s) of DNN weights [40, 17, 15, 41]. As
Figure 1 (b) shows, the filter pruning removes whole row(s) of the weight matrix, where the channel
pruning prunes the consecutive columns of corresponding channel(s) in the weight matrix. Structured
pruning maintains the regular shape of the weight matrix with reduced dimension. Therefore, it is
hardware friendly and can leverage the hardware parallelism to facilitate acceleration. However,
structured pruning suffers from considerable accuracy loss due to its coarse-grained pruning feature.

Pattern-based pruning is considered as a fine-grained structured pruning scheme [32, 29], which
simultaneously preserves the accuracy and the hardware performance. Pattern-based pruning prunes
weights by enforcing the locations of the remaining weights in a 3×3 convolutional kernel to form a
specific kernel pattern. However, kernel patterns are specially designed for 3×3 kernels and are not
applicable to other kernel sizes. This drawback significantly restricts the use of pattern-based pruning
in many scenarios.

2.3 Compiler-assisted DNN Acceleration on Mobile

With the growth of mobile vision application, there is a growing need to break through the current
performance limitation of mobile platforms. TensorFlow-Lite (TFLite) [11], Alibaba Mobile Neural
Network (MNN) [1], and TVM [4] are three representative end-to-end DNN execution frameworks
that support mobile platforms and have high execution efficiency. However, none of those frameworks
provide support for sparse (pruned) DNN models on mobile platforms2. This significantly limits the

2TVM considers sparsity recently for desktop processors.

3



performance of the DNN inference on mobile devices. Thus, a set of compiler-based optimizations
are proposed to support sparse DNN models in PatDNN [32] and PCONV [29]. However, they only
support the pattern-based pruning on 3×3 convolutional (CONV) layers, where the commonly used
layers such as FC layers and 1×1 CONV layers are still not supported. Such acceleration is still not
sufficient enough to satisfy the low latency required by object detection tasks, since it has massive
amount of weights and requires more complex computations [2, 26].

3 Framework Design

3.1 Block-Punched Pruning

We propose a novel pruning scheme–block-punched pruning, which preserves high accuracy while
achieving high hardware parallelism. In addition to the 3×3 CONV layer, it can also be mapped
to other types of DNN layers, such as 1×1 CONV layer and FC layer. Moreover, it is particularly
suitable for high-efficient DNN inference on resource-limited mobile devices. As shown in Figure 2,
the whole DNN weights from a certain layer are divided to a number of equal-sized blocks, where
each block contains the weights from n consecutive channels of m consecutive filters. In each block,
we prune a group of weights at the same location of all filters while also pruning the weights at the
same location of all channels. In other words, the weights to be pruned will punch through the same
location of all filters and channels within a block. Note that the number of pruned weights in each
block is flexible and can be different across different blocks.

From the accuracy perspective, inspired by the pattern-based pruning [32], we adopt a fine-grained
structured pruning strategy in block-punched pruning to increase structural the flexibility and mitigate
accuracy loss.

From the hardware performance perspective, compared to the coarse-grained structured pruning,
our block-punched pruning scheme is able to achieve high hardware parallelism by leveraging the
appropriate block size and the help of compiler-level code generation. The reason is that typically the
number of weights in a DNN layer is very large. Even when we divide the weights into blocks, the
computation required by each block is still sufficient to saturate hardware computing resources and
achieve high degree of parallelism, especially on the resource-limited mobile devices. Moreover, our
pruning scheme can better leverage the hardware parallelism from both memory and computation
perspectives. First, during convolution computation, all filters in each layer share the same input.
Since the same locations are pruned among all the filters within each block, these filters will skip
reading the same input data, thus mitigating the memory pressure among the threads processing
these filters. Second, the restriction of pruning identical locations across channels within a block
ensures that all of these channels share the same computation pattern (indices), thus eliminating the
computation divergence among the threads processing the channels within each block.

In our block-punched pruning, block size affects both the accuracy and the hardware acceleration.
On the one hand, a smaller block size provides higher structural flexibility due to its finer granularity,
which typically achieves higher accuracy, but at the cost of reduced speed. On the other hand, larger
block size can better leverage the hardware parallelism to achieve higher acceleration, but it may
cause more severe accuracy loss.

To determine an appropriate block size, we first determine the number of channels contained in
each block by considering the computation resource of the device. For example, we use the same
number of channels for each block as the length of the vector registers in the mobile CPU/GPU
on a smartphone to achieve high parallelism. If the number of channels contained in each block
is less than the length of the vector registers, both the vector registers and vector computing units
will be underutilized. On the contrary, increasing the number of channels will not gain extra on the
performance but cause more severe accuracy drop. Thus, the number of filters contained in each
block should be determined accordingly, considering the trade-off between accuracy and hardware
acceleration.

The hardware acceleration can be inferred by the inference speed, which can be obtained without the
need of retraining the DNN model and is easier to derive compared with model accuracy. Thus, a
reasonable minimum required inference speed is set as the design target that needs to be satisfied. As
long as the block size satisfies the inference speed target, we choose to keep the smallest number

4



of filters in each block to mitigate the accuracy loss. More detailed results will be elaborated in
Section 4.3.

3.2 Reweighted Regularization Pruning Algorithm

In the previous weight pruning algorithms, methods such as group Lasso regularization [40, 17, 27]
or Alternating Direction Methods of Multipliers (ADMM) [42, 36, 20] are mainly adopted. However,
it leads to either potential accuracy loss or requirement of manual compression rate tuning. Therefore,
we adopt the reweighted group Lasso [3] method. The basic idea is to systematically and dynamically
reweight the penalties. To be more specific, the reweighted method reduces the penalties on weights
with larger magnitudes, which are likely to be more critical weights, and increases the penalties on
weights with smaller magnitudes.

LetWi ∈ RM×N×Kh×Kw denote the 4-D weight tensor of the i-th CONV layer of CNN, where M
is the number of filters; N is the number of input channels; Kw and Kh are the width and height
kernels of i-th layer. The general reweighted pruning problem is formulated as

minimize
W ,b

f
(
W ; b

)
+ λ

N∑
i=1

R(α
(t)
i ,Wi), (1)

where f
(
W ; b

)
represents loss function of DNN. R(·) is the regularization term used to generate

model sparsity and the hyperparameter λ controls the trade-off between accuracy and sparsity. α(t)
i

denotes the collection of penalty values applied on the weightsWi for layer i.

Under our block-punched pruning, eachWi is divided into K blocks with the same size gim× gin,
namely,Wi = [Wi1,Wi2, ...,WiK ], whereWij ∈ Rgim×gin. Therefore, the regularization term is

R(α
(t)
i ,Wi) =

K∑
j=1

gim∑
h=1

gin∑
w=1

∥∥α(t)
ijn ◦ [Wij ]h,w

∥∥2
F
, (2)

where α(t)
ijn is updated by α(t)

ijn = 1
‖[Wij ]th,w‖

2
F+ε

.

The pruning process starts with a pre-trained DNN model. By conducting another training process
using the reweighted regularization pruning algorithm, the pruned model with our block-punched
constraints can be obtained.

3.3 Mobile Acceleration with a Mobile GPU-CPU Collaborative Scheme

To improve the computational efficiency of DNNs on mobile devices and meet the low latency
requirements of complex object detection task, we propose a GPU-CPU collaborative computation
scheme.

Mobile devices has mobile GPU and mobile CPU, currently the DNN inference acceleration frame-
works such as TFLite and MNN can only support DNN inference to be executed on either the mobile
GPU or the CPU sequentially, which leads to a potential waste of the computation resources. The
CPU is underutilized for most of the time when the GPU is computing. It can be observed that the
multi-branch architecture, as shown in Figure 3 (a), are widely used in many state-of-the-art networks
such as YOLOv4. Moreover, many branches have no dependencies on each other, and potentially
could be computed on mobile GPU and mobile CPU concurrently to achieve higher efficiency and
speed.

In our framework, we incorporate our GPU-CPU collaborative computation scheme to optimize two
types of branch structures in DNNs, which are 1) the branch structure with CONV layers and 2) the
branch structure with non-CONV operations. We do the offline device selection based on the speed
before deployment.

As we know, the GPU is suitable for high-parallelism computation, such as the convolutional
computations, and it significantly outperforms the CPU in terms of speed. Thus, for the branch
structure with CONV layers, such as the Cross Stage Partial (CSP) block in YOLOv4 as shown in
Figure 3 (a), the GPU is selected for computing the most time-consuming branch, and the problem

5



conv

Transpose
& Reshape

concat

Non-conv
Operations

conv

Transpose
& Reshape

conv

Transpose
& Reshape

Box Classes

Branch 1 Branch 2 Branch 3

Input

Conv
BN

Activate

···×
n

Shortcut

Cross stage
Partial

Connection

Conv
BN

Activate

Conv
BN

Activate

Conv
BN

Activate

Output

Branch 1

Branch 2

(a) (b)

Figure 3: An illustration of the (a) cross-stage partial block and (b) non-convolutional operations in
YOLO Head.

left is to determine whether the other branches use CPU to compute concurrently or still use GPU to
compute sequentially.

In Figure 3 (a), we name the GPU computing time in branch 1 and branch 2 as tg1, tg2, CPU
computing time as tc1, tc2, and data copying time as τ . We execute the most time-consuming branch
1 in GPU and make a decision for branch 2. When using CPU for parallel computing, we also need
to add the data copying time τ . The desired GPU-CPU parallel computing time Tpar depends on the
maximum time cost of the branch 1 and branch 2:

Tpar = max{tg1 , tc2 + τ}

The GPU-only serial computing time Tser is the summation of computing time tg1 + tg2 of two
branches:

Tser = tg1 + tg2

Based on the minimum of GPU-CPU parallel computing time Tpar and GPU-only computing time
Tser, we can select the optimal executing device for branch 2. Note that the determination of execution
devices for each branch structure in YOLOv4 is independent to other branch structures. Thus, the
execution devices for all branch structures in the network can be solved by greedy algorithm [5].

On the other hand, limited by the power and area, mobile GPUs usually have lower performance.
For the less computational intensive operations, such as point-wise add operation and point-wise
multiplication operation, mobile CPU performs similar or even faster speed compared with mobile
GPU. Therefore, for the branch structures with non-CONV operations, either of CPU or GPU can
be used for each branch depending on total computation time.

Take the three final output YOLO head structures in YOLOv4 as an example, as shown in Figure 3
(b). After transposing and reshaping the output from the last CONV layer in each branch, we still
need several non-CONV operations to get the final output. We measure the total GPU and CPU
execution times for the non-CONV operations in each branch and denote them as tg0, tg1, tg2 and
tc0, tc1, tc2 respectively. The Ttotal denotes the total computing time for all three branches.

Now we have eight possible combinations of device selections for the three branches. For example, if
first two branches use CPU and the third branch uses GPU, the total computing time will be

Ttotal = max{tc0 + tc1 , tg2}
Note that the final output has to be moved to CPU sooner or later, so we do not count the data copying
time into the total computation time. As a result, we select the combination that has the minimum total
computation time as our desired computation scheme. Putting all together, our proposed GPU-CPU
collaborative scheme can effectively increase hardware utilization and improve the inference speed.

3.4 Compiler-assisted Acceleration

Inspired by PatDNN [32], YOLObile relies on several advanced compiler-assisted optimizations
that are enabled by our newly designed block-punched pruning to further improve the inference
performance. We summarize them here briefly due to the space constraints. First, YOLObile stores

6



#Weights #Weights
Comp. Rate #FLOPs mAP AP@[.5:.95] FPS

64.36M 1× 35.8G 57.3 38.2 3.5

16.11M 3.99× 10.48G 55.1 36.5 7.3
8.04M 8.09× 6.33G 51.4 33.3 11.5
6.37M 10.1× 5.48G 50.9 32.8 13
4.59M 14.02× 3.95G 49 31.9 17

Table 1: Accuracy and speed under different com-
pression rates.

FPS vs mAP on MS COCO dataset

FP
S

0

5

10

15

20

mAP
20 29 38 47 56 65

YOLOv3-tiny

YOLOv4-tiny

SSD

Ours-14x (CPU&GPU)

CenterNet
YOLOv4

Ours-14x (GPU-only)

Ours-10x
Ours-8x

Ours-4x

YOLOv3

Figure 4: The accuracy (mAP) and speed (FPS)
comparison of YOLObile under different com-
pression rate and different approaches.

the model weights compactly by leveraging the pruning information (the block and punched pattern)
that can further compress the index arrays comparing to the well-known Compressed Sparse Row
format. Second, YOLObile reorders blocks to improve memory and computation regularity, and to
eliminate unnecessary memory access. Moreover, YOLObile employs a highly parallel auto-tuning
model to find the best execution configuration parameters. YOLObile generates both CPU and GPU
codes for each layer, and calls the right one according to our GPU-CPU collaborative scheme during
the actual inference process.

4 Evaluation

In this section we evaluate our proposed YOLObile framework on mobile devices in terms of accuracy
and inference speed, compared with other state-of-the-art frameworks. Additionally, ablation study
on different pruning schemes and configurations are provided.

Experimental Setup Our models are trained on a server with eight NVIDIA RTX 2080Ti GPUs. We
evaluate our framework on an off-the-shelf Samsung Galaxy S20 smartphone, which has a Qualcomm
Snapdragon 865 Octa-core CPU and a Qualcomm Adreno 650 GPU. Each test runs on 50 different
input frames (images), with the average speed results reported. Our YOLObile is derived based on
YOLOv4, with 320×320 input size, and train on MS COCO dataset [23]. We denote mAP as the
Average Precision under IoU 0.5 threshold and AP@[.5:.95] as the Average Precision under IoU
from 0.5 to 0.95. Note that our compiler achieves much higher speed for object detection approaches
compared with existing compiler-assisted frameworks, such as TFLite.

4.1 Evaluation of block-punched pruning

We first evaluate the accuracy and compression rate of our proposed block-punched pruning in YOLO-
bile framework. As mentioned above, block size affects both accuracy and hardware acceleration
performance. We adopt 8×4 as our block size, i.e. 4 consecutive channels of 8 consecutive filters.
The details of the impact of different block sizes are discussed in ablation study 4.3. The original
YOLOv4 model contains 64.36M weights and requires 35.8G floating-point operations (FLOPs).
As shown in Table 1, by applying our block-punched pruning, we achieve the compression rate up
to 14× (in weights) with 49 mAP. The weight number decreases to 4.59M and FLOPs is reduced
to 3.59G. With 92.87% weights and 88.97% FLOPs reduced, our model still maintains a decent
accuracy, with only 8.3 mAP loss.

4.2 Evaluation of YOLObile framework

To validate the effectiveness of our framework, we compare our YOLObile with several representative
works. To make fair comparisons, all the results (including the object detection approaches from
the reference works) are evaluated under our compiler optimizations. As shown in Table 2, under
a similar number of computations and even having a smaller model size, YOLObile consistently
outperforms YOLOv3-tiny and YOLOv4-tiny in terms of mAP and FPS. This indicates our proposed

7



Approach Input Size backbone #Weights #FLOPs mAP AP@[.5:.95] FPS

CenterNet-DLA ([7]) 512 DLA34 16.9M 52.58G 57.1 39.2 1.9
CornerNet-Squeeze ([19]) 511 - 31.77M 150.15G - 34.4 0.3

SSD ([26]) 300 VGG16 26.29M 62.8G 43.1 25.1 4.2
MobileNetv1-SSDLite ([38]) 300 MobileNetv1 4.31M 2.30G - 22.2 49
MobileNetv2-SSDLite ([38]) 300 MobileNetv2 3.38M 1.36G - 22.1 41

Tiny-DSOD ([21]) 300 - 1.15M 1.12G 40.4 23.2 -
YOLOv4 ([2]) 320 CSPDarknet53 64.36M 35.5G 57.3 38.2 3.5

YOLO-Lite ([18]) 224 - 0.6M 1.0G - 12.26 36
YOLOv3-tiny ([35]) 320 Tiny Darknet 8.85M 3.3G 29 14 14
YOLOv4-tiny ([2]) 320 Tiny Darknet 6.06M 4.11G 40.2 - 11

YOLObile (GPU only) 320 CSPDarknet53 4.59M 3.95G 49 31.6 17
YOLObile (GPU&CPU) 320 CSPDarknet53 4.59M 3.95G 49 31.6 19.1

Table 2: Accuracy (mAP) and speed (FPS) comparison with other object detection approaches.

Pruning
Scheme #Weights #Weights

Comp. Rate mAP FPS

Not Prune 64.36M 1× 57.3 3.5
Unstructured 8.04M 8.09× 53.9 6.4

Structured 8.04M 8.09× 38.6 12
Ours 8.04M 8.09× 51.4 11.5

Table 3: Comparison of different pruning
schemes.

4

6

8

10

12

47

48

49

50

51

52

53

4x4 8x4 16x4 32x4

FP
S

m
AP

FPS and mAP in different block size

mAP FPS

Figure 5: Accuracy (mAP) and speed (FPS) of
different block size pruning results.

block-punched pruning is a more desired method to achieve a smaller model size while maintaining
the mAP compared to training a small model from scratch.

YOLObile achieves even higher mAP than the full-size one-stage detector SSD but lower mAP
than YOLOv4 and CenterNet. However, the inference speed of YOLObile is much faster than
SSD, YOLOv4 and CenterNet (4.5×, 5.5× and 10× respectively). Comparing with the lightweight
detectors such as YOLO-Lite and MobileNetv2-SSDLite, YOLObile has lower FPS but much higher
mAP. Figure 4 demonstrates the mAP and FPS of YOLObile under different compression rates and
the results are compared with representative reference works. Our YOLObile lies in top right of
the figure, and outperforms YOLOv3, SSD, YOLOv3-tiny and YOLOv4-tiny in both accuracy and
speed. Unlike the lightweight approaches, which simply trade the mAP for FPS, YOLObile provides
a Pareto-Optimal trade-off solution that maintains both the mAP and FPS.

We also evaluate the performance of our GPU-CPU collaborative computation scheme. As shown in
Table 2, comparing to the GPU-only execution, our GPU-CPU collaborative computation scheme
effectively accelerates the inference speed and improves FPS.

4.3 Ablation Study

Ablation study on pruning scheme. In this section, we conduct experiments on YOLOv4 under
different pruning schemes. Table 3 shows the comparison of different pruning scheme results under
8× compression rate. Unstructured pruning scheme achieves the highest mAP because of its flexibility.
However, the inference speed in FPS is only 6.4 due to underutilized hardware parallelism. Structured
pruning (filter pruning) shows high inference speed, but with severe accuracy drop. Compared with
structured pruning and unstructured pruning, our block-punched pruning scheme achieves both high
accuracy and fast inference speed.

Ablation study on block size. We conduct experiments on four different block sizes using our
block-punched pruning scheme to check the impact of block size on results. To achieve high hardware
parallelism, the number of channels in each block is fixed to 4, which is the same as the length of
GPU and CPU’s vector registers. The accuracy and speeds are evaluated under different numbers
of filters in each block. As shown in Figure 5, larger block size can better leverage the hardware

8



parallelism compared with smaller block size and achieves higher inference speed. However, it leads
to accuracy loss due to its coarse pruning granularity. Smaller block size can achieve higher accuracy
but sacrifice the inference speed. According to the results, we consider 8×4 (4 consecutive channels
of 8 consecutive filters) as a desired block size on mobile devices, which strikes a good balance
between both the accuracy and the speed.

5 Conclusion

In this work, we propose YOLObile, a real-time object detection framework on mobile devices
via compression-compilation co-design. A novel pruning scheme—-block-punched pruning is also
proposed, designed for CONV layers with any kernel size as well as fully-connected (FC) layers.
To improve the computational efficiency of DNNs on mobile devices, the proposed YOLObile
also features a GPU-CPU collaborative computation scheme in addition to our proposed compiler
optimizations. The evaluation demonstrates that our YOLObile framework exhibits high accuracy
while achieving high hardware parallelism.

References
[1] Alibaba. https://github.com/alibaba/MNN, 2020.

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed
and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[3] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by reweighted
`1 minimization. Journal of Fourier analysis and applications, 14(5-6):877–905, 2008.

[4] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm:
An automated end-to-end optimizing compiler for deep learning. In the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[5] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

[6] Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Transactions on Computers, 68(10):1487–1497, 2019.

[7] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Centernet:
Keypoint triplets for object detection. In Proceedings of the IEEE International Conference on
Computer Vision, pages 6569–6578, 2019.

[8] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In The International Conference on Learning Representations (ICLR), 2018.

[9] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587, 2014.

[11] Google. https://www.tensorflow.org/lite, 2020.

[12] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Advances in Neural Information Processing Systems (NeurIPS), 2016.

[13] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in neural information processing systems (NeurIPS),
2015.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

9

https://github.com/alibaba/MNN
https://www.tensorflow.org/lite


[15] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[16] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018.

[17] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2017.

[18] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen. Yolo-lite: a real-time object detection
algorithm optimized for non-gpu computers. In 2018 IEEE International Conference on Big
Data (Big Data), pages 2503–2510. IEEE, 2018.

[19] Hei Law, Yun Teng, Olga Russakovsky, and Jia Deng. Cornernet-lite: Efficient keypoint based
object detection. arXiv preprint arXiv:1904.08900, 2019.

[20] Tuanhui Li, Baoyuan Wu, Yujiu Yang, Yanbo Fan, Yong Zhang, and Wei Liu. Compressing
convolutional neural networks via factorized convolutional filters. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[21] Yuxi Li, Jiuwei Li, Weiyao Lin, and Jianguo Li. Tiny-dsod: Lightweight object detection for
resource-restricted usages. arXiv preprint arXiv:1807.11013, 2018.

[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[24] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti
Pietikäinen. Deep learning for generic object detection: A survey. International journal of
computer vision, 128(2):261–318, 2020.

[25] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping Ye. Autocompress:
An automatic dnn structured pruning framework for ultra-high compression rates. In AAAI,
2020.

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C. Berg. SSD: Single shot multibox detector. In ECCV, 2016.

[27] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2017.

[28] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In International Conference on Learning Representations, 2018.

[29] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma, Bin Ren, and Yanzhi
Wang. Pconv: The missing but desirable sparsity in dnn weight pruning for real-time execution
on mobile devices. In Thirty-Fourth AAAI conference on artificial intelligence (AAAI), 2020.

[30] Xiaolong Ma, Geng Yuan, Sheng Lin, Caiwen Ding, Fuxun Yu, Tao Liu, Wujie Wen, Xiang
Chen, and Yanzhi Wang. Tiny but accurate: A pruned, quantized and optimized memristor
crossbar framework for ultra efficient dnn implementation. In ASP-DAC, 2020.

[31] Chuhan Min, Aosen Wang, Yiran Chen, Wenyao Xu, and Xin Chen. 2pfpce: Two-phase filter
pruning based on conditional entropy. arXiv preprint arXiv:1809.02220, 2018.

10



[32] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi Wang, and Bin
Ren. Patdnn: Achieving real-time dnn execution on mobile devices with pattern-based weight
pruning. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2020.

[33] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788, 2016.

[34] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7263–7271, 2017.

[35] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[36] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai Qian, Xue Lin, and Yanzhi
Wang. Admm-nn: An algorithm-hardware co-design framework of dnns using alternating
direction methods of multipliers. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 925–938,
2019.

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[38] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, Jun 2018.

[40] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
2016.

[41] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance
score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[42] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi
Wang. A systematic dnn weight pruning framework using alternating direction method of
multipliers. In Proceedings of the European Conference on Computer Vision (ECCV), 2018.

[43] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Variational
convolutional neural network pruning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[44] Xiaotian Zhu, Wengang Zhou, and Houqiang Li. Improving deep neural network sparsity
through decorrelation regularization. In Ijcai, pages 3264–3270, 2018.

[45] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou
Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2018.

11


	Introduction
	Background
	Preliminaries on Object Detection DNNs
	DNN Model Pruning
	Compiler-assisted DNN Acceleration on Mobile

	Framework Design
	Block-Punched Pruning
	Reweighted Regularization Pruning Algorithm
	Mobile Acceleration with a Mobile GPU-CPU Collaborative Scheme
	Compiler-assisted Acceleration

	Evaluation
	Evaluation of block-punched pruning
	Evaluation of YOLObile framework
	Ablation Study

	Conclusion

