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Abstract

In this work we show that semi-supervised models for vehicle trajectory prediction
significantly improve performance over supervised models on state-of-the-art real-
world benchmarks. Moving from supervised to semi-supervised models allows
scaling-up by using unlabeled data, increasing the number of images in pre-training
from Millions to a Billion. We perform ablation studies comparing transfer learning
of semi-supervised and supervised models while keeping all other factors equal.
Within semi-supervised models we compare contrastive learning with teacher-
student methods as well as networks predicting a small number of trajectories
with networks predicting probabilities over a large trajectory set. Our results
using both low-level and mid-level representations of the driving environment
demonstrate the applicability of semi-supervised methods for real-world vehicle
trajectory prediction.

1 Introduction

Predicting the trajectory of a vehicle in a multi-agent environment is a challenging and critical task
for developing safe autonomous vehicles. State-of-the-art models rely on a representation of the
environment from either direct, low-level input from sensors on the vehicle, or from a mid-level
representation of the scene, which is commonly a map annotated with agent positions. Both of these
approaches rely on a model to encode either camera data in the low-level case or annotated maps
in the mid-level case. We show an example of both types of representations in Figure 1. Mid-level
representations as depicted in the top-left are used to predict candidate trajectories as shown in the
top-right. Low-level representations such as camera data shown in the bottom-left can be used in an
end-to-end fashion to predict steering angles as illustrated in the bottom-right. To encode these input
representations, rather than training a model from scratch, state-of-the-art models rely on transfer
learning with a model pre-trained on a supervised task [22, 24] such as ImageNet classification. We
perform an ablation study comparing transfer learning of supervised and semi-supervised models,
while keeping all other factors equal, and show that semi-supervised models perform better than
supervised models for both low-level and mid-level representations.

We demonstrate this comparison on state-of-the-art methods for vehicle trajectory prediction. For
a low-level representation, we use the winning architecture of the ICCV 2019: Learning-to-Drive
Challenge, which uses vehicle camera footage to predict the future speed and steering wheel angle
[11]. For a mid-level representation, we use CoverNet [24] and multiple trajectory prediction (MTP)
[9], two multi-modal approaches that take an annotated map image as input. In all of these cases,
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Figure 1: An example of input and output representations for mid-level (top) and low-level represen-
tations (bottom). In the top row, the mid-level input representation is an annotated map of the scene
(top left), with boxes representing agent positions and colors representing semantic categories. The
output (top right) is a probability distribution over a set of candidate trajectories. In the bottom row, a
low-level representation uses an image from the vehicle’s front-facing camera as input (bottom left),
and predicts the future steering wheel angle (bottom right) and speed of the vehicle.

we keep the architecture and computational resources the same, and compare semi-supervised and
supervised models to encode the representation. Semi-supervised models have demonstrated state-
of-the-art performance on computer vision benchmarks since they are able to learn from unlabeled
datasets orders of magnitude larger than available labeled data [4, 15, 27, 29]. Notably, although
annotated maps are not representative of the images in the datasets used to pre-train these models,
they share common features with the mid-level map representation.

Our results demonstrate three key contributions for trajectory prediction (described in Section 3):

1. Semi-supervised models significantly improve upon supervised models using both low-level
and mid-level representations as described in Section 3 and shown in Tables 2 and 3.

2. Contrastive semi-supervised learning (SimCLR [8]) outperforms teacher-student semi-
supervised learning (ResNeXt-101 32x4d SSL and SWSL [29]).

3. Using semi-supervised models for predicting probabilities of a large set of trajectories with
CoverNet [24] results in significant performance improvement over supervised models across
both uni-modal and multi-modal metrics (up to 40.1%); whereas using semi-supervised mod-
els for predicting a small set of trajectories with MTP [9] results in significant performance
improvement only on uni-modal metrics (up to 17.3%).

1.1 Related Work

Low-level approaches to trajectory prediction use sensor data recorded by the vehicle, such as
mounted cameras, as direct input to a model [2, 13]. These approaches use a model to encode the raw
pixels from the camera footage into a feature vector. We evaluate such a low-level representation
[11], which uses front-facing camera images in combination with a vector of semantic map features
to predict a vehicle’s future steering wheel angle and speed.

Many approaches instead use a mid-level representation of the environment as input to the model
[7, 9, 12, 22, 24]. This commonly involves generating a map of the scene and annotating it with
past and current positions of all other agents, using color to designate semantic categories of agents
as well as static entities such as road boundaries and crosswalks. The map is then rasterized into
an image, which serves as a compact mid-level representation of the entire scene. Similar to the
low-level approach, the map image is fed through a model to generate a feature vector, which is used
in a system of neural networks for trajectory prediction.

While systems often predict a single trajectory (mode), there is an advantage in predicting multiple
modes and their associated probabilities, especially when there are multiple plausible trajectories
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that the vehicle might take. Several works [7, 9, 10, 22, 24, 25, 30] use a multi-modal approach,
predicting a probability distribution over trajectories for agents in the environment. This approach
has been extended using multi-head attention [20, 22], allowing the model to focus on certain agents
or other features of the scene context. In another approach [30], a multi-modal multi-task method
jointly reasons about the future speed and steering of the vehicle, noting the joint relationship between
the two. The Trajectron [19] models multiple agents as dynamic graphs, and performs trajectory
prediction for multi-modal, dynamic and variable multi-agent scenarios. SPAGNN [5] addresses the
behavior of other human drivers who make complex trade-offs while driving, modeling this relational
behavior with graph neural networks.

Incorporating prior knowledge about the geometry and topology of roads into loss functions [6]
has been shown to result in more precise trajectory distributions over future outcomes. Rules of
the road [18] encodes high-level semantic information such as the entity state, other entities’ states
and road networks into a spatial grid allowing deep convolutional networks to learn entity-entity
and entity-environment interactions. ChauffeurNet [1] introduces perturbations to trajectories and
incorporates a loss for real-world driving mistakes, such as collisions and driving off-road. Our
mid-level representation overlays multiple elements onto a single map for capturing the scene, losses,
and driving goals.

Recent research has shown the advantages of semi-supervised learning, whereby a model learns from
a set of unlabeled data in addition to labeled data. The key advantage is that the model can learn the
underlying manifold of the input space using the unlabeled data, which are often abundant compared
to the number of available labeled samples. In the computer vision domain, semi-supervised models
have been shown to improve upon supervised ResNets by incorporating large unlabeled datasets of
images [8, 15, 27, 29]. Self-supervised and semi-supervised models have been shown to perform
well on transfer learning tasks compared to supervised models [8, 15, 29, 14, 23, 26]. In our work,
we extend transfer learning of semi-supervised models to the domain of trajectory prediction. We
describe the semi-supervised approaches used in our experiments in Section 2.2.

2 Methods

We perform ablation studies comparing transfer learning of semi-supervised and supervised models
on trajectory prediction tasks. We examine both low-level representations, which use the vehicle’s
front-facing camera images as input, and mid-level representations, which use an annotated map
image as input. In both cases, we use different semi-supervised models to encode the input, while
keeping all other factors equal, including the system architecture and computational resources.

2.1 Input Representation

Mid-level representation. Following state-of-the-art trajectory prediction models [7, 9, 12, 22, 24],
we generate an annotated map image to represent the driving environment. This includes annotations
for drivable areas, crosswalks and walkways using color coding to represent semantic categories. All
scenes are oriented such that the agent under consideration is centered and directed towards the top
of the image. The positions of all agents in the scene are drawn onto the image, using faded bounding
boxes to represent past positions in a historical window. By encoding all this information into a single
map, a large amount of information is condensed into a single image. The top row of Figure 1 shows
an annotated map of a scene in the nuScenes dataset [3]. In addition to the map, a vector of the target
agent’s state at the moment of prediction is also included as input. This includes the agent’s speed
(between 0 and 30 m/s), acceleration (between -25 and 25 m/s2) and yaw rate (between −2π and 2π
radians/s).

Low-level representation. We use front-facing camera images as a low-level representation of a
driving environment. In addition to the image, we include a vector of semantic map data, which in-
cludes datapoints such as the distance to the nearest intersection, the speed limit, and the approximate
road curvature. The bottom row of Figure 1 show an example image from a front-facing camera in
the Drive360 dataset.
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(a) Architecture for Low-
level input representation.
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(b) Architecture for Mid-
level input representation.

Figure 2: System architectures for the (a) low-level and (b) mid-level input representations. Inputs are
shown at the bottom, neural networks in blue, intermediate feature vectors in orange, and the model
output at the top. (a) The network for low-level representations takes as input a vector of semantic
map features and an image from the vehicle’s front-facing camera. The inputs are encoded, and then
fused together with a fully-connected network to capture non-linear interactions. An LSTM combines
observations from multiple timesteps, and finally decoder networks predict the speed and the steering
wheel angle of the driver. (b) The network of the mid-level representation takes as input the current
state of the agent (a vector including velocity, acceleration, and yaw change rate), and an annotated
map image of the environment. The map is fed into a ResNet backbone, and this representation is then
concatenated with the agent state vector and passed to a fully-connected fusion network. For MTP,
the final layer outputs a set of trajectories and an associated probability distribution. For CoverNet we
use a fixed setting in which the output is a probability distribution over a set of candidate trajectories.

Table 1: Comparison of semi-supervised models used in our experiments. The labeled dataset in all
the models consists of 1.2M images. Since SimCLR is trained on augmentations, there is no measure
of unlabeled dataset size.

Model Size Type Label Ratio Parameters
ResNeXt-101 32x4d SWSL 940M Teacher-student 1:780 42M
ResNeXt-101 32x4d SSL 90M Teacher-student 1:75 42M
SimCLR ResNet-50 N/A Contrastive learning N/A 25.6M
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2.2 Semi-Supervised Models

State-of-the-art models [22, 24] use transfer learning of supervised models, whereas we evaluate the
use of semi-supervised models. We perform transfer learning by fine-tuning each semi-supervised
model on our training set, leveraging models already trained on up to a Billion images, orders
of magnitude larger than the nuScenes dataset [3] which consists of 1.4 Million images. In all
experiments, we use pretrained weights provided with the original model rather than performing the
semi-supervised learning ourselves, which requires significant computational resources. We provide
a summary of the semi-supervised models we use in Table 1. Next, we describe each semi-supervised
model in detail.

Teacher-student self-training. We use ResNeXt-101 32x4d SSL and SWSL [29]. ResNeXt-101
32x4d SSL is trained on a semi-supervised task using a teacher-student method on an unlabeled
dataset of 90M images, and fine-tuned on 1.2M images from the ImageNet1k dataset. ResNeXt-101
32x4d SWSL is trained using a teacher-student method on 940M images, leveraging associated
hashtags in a semi-weakly supervised approach, and fine-tuned on the ImageNet1k dataset. Both of
these models use the ResNeXt-101 32x4d architecture from [28].

Contrastive learning. We use SimCLR [8], trained using a contrastive learning method on Ima-
geNet1k. During training, augmented versions of images are passed through a ResNet architecture
[16]. The contrastive loss objective serves to minimize the distance between different augmentations
of the same image, and maximize the distance between representations of other images. We use a
ResNet-50 architecture trained with the SimCLR method.

2.3 Datasets

nuScenes: For our experiments with mid-level representations, we use nuScenes [3], a public
large-scale dataset which consists of 1000 driving scenes in Boston and Singapore. Each scene is
20 seconds in length and is sampled at a frequency of 2Hz. We use the official data partitions from
the nuScenes prediction challenge: 32,186 instances in the training set, 8,560 in the validation set,
and 9,041 in the test set. Each instance is comprised of a scene at a particular point in time, with a
particular agent of interest whose trajectory the model predicts. The dataset includes a high definition
map of the scene, bounding boxes and past positions for all agents.

Drive360: For our experiments with low-level representations, we use the Drive360 dataset [17].
The dataset includes 55 hours of driving recorded in Switzerland, divided into 27 routes and 682
chapters. We partition the data into disjoint datasets for training (43%), validation (43%), and test
(14%). The dataset contains observations at a frequency of 10Hz, including GoPro images positioned
around the car, of which we only use the front-facing camera, and map features in the form of a
vector with 20 semantic datapoints such as the distance to the nearest intersection, the current speed
limit, and the road curvature.

2.4 Experiments

We experiment with using transfer learning from semi-supervised models in place of supervised
models for both low-level and mid-level representations of the input.

Mid-level representation. For mid-level representations, we train our models to predict a 6-second
trajectory for an agent, using 2 seconds of historical observations of the scene represented as an
annotated map image. We use two networks that are successful on the nuScenes dataset: (i) Multiple-
Trajectory Prediction (MTP) [9] which predicts a small number of trajectories; and (ii) CoverNet [24]
which assigns probabilities to a large set of trajectories. The architecture for mid-level representations
is shown in Figure 2b. In all cases, we hold constant the configuration of the architecture during
all experiments, and vary the ResNet component used to encode the images with different semi-
supervised and supervised models.

MTP [9, 24] uses the annotated map image and the target agent’s current state to predict a fixed
number of trajectories, as well as their associated probabilities. The map image is passed through the
“backbone" vision component, which is the model that we vary in our experiments. This representation
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and a vector of the agent’s state are passed through a fully-connected neural network used for fusing
the different inputs. The output is a set of trajectories K, and a vector of logits corresponding to their
probabilities. The loss is calculated as a sum of the classification loss LC , which is a cross-entropy
with the positive sample determined by the element in the trajectory set closest to the ground truth,
referred to as the “best matching" mode, and a regression loss LR for the best matching mode and
the ground truth. In our experiments, we fix the number of output trajectories to 3. This matches one
of the configurations evaluated in [24].

CoverNet [24] performs trajectory prediction by computing the probability distribution over a set
of candidate trajectories. Similar to MTP, the model uses the annotated map image and a vector
representing the target agent’s state as input. However, rather than predicting an entire set of
trajectories K and their associated probabilities, the model only outputs probabilities for a fixed
trajectory set K. Although the original paper evaluates these scenarios using a dynamic and hybrid
version of this trajectory set, we use the fixed version provided in the nuScenes dev-kit implementation
for all our experiments. The loss function is only the classification loss LC of the closest trajectory to
the ground truth. In our experiments, we use the set of 415 trajectories. We show a visualization of
this trajectory set in the top-right of Figure 1.

Low-level representation. For low-level representations, we train models to predict the speed and
steering wheel angle of a human driver one second in the future, using front-facing camera footage
and a vector of semantic map features. We perform our experiments with the winning architectures
of the ICCV 2019: Learning-to-Drive challenge [11], as shown in Figure 2a, trained on the Drive360
dataset [17]. We experiment with different semi-supervised and supervised models to encode the
front-facing camera footage, analogous to our experiments with the input map image of the mid-level
representation. The architecture is depicted in Figure 2a. Images are fed into the ResNet model and
the vector of semantic map data is passed through an encoder. These are then fused together using a
fusion layer to capture the non-linear interactions between the data sources. An LSTM then combines
observations from the current timestep and a recent timestep (400ms in the past). This output is then
fused together with data from the initial timestep and passed through regressors to obtain the vehicle
speed and steering angle prediction which are shown in green. The overall loss is the sum of the
regression losses for the two targets.

3 Results

Mid-level representation. We perform experiments showing the performance of transfer learning
from semi-supervised models for encoding annotated maps in a 6-second trajectory prediction task.
We use two architectures: CoverNet and MTP. For each semi-supervised model, we compare against
a supervised model trained on ImageNet with the same architecture and number of layers. We
additionally include SimCLR with the wider ResNet-50(4x) [8] architecture, one of the latest and best
performing semi-supervised models on ImageNet benchmarks to date, to evaluate how improvements
in semi-supervised pre-training contribute to our task.

We compare CoverNet and MTP models by a standard set of metrics for multi-modal trajectory
prediction: minADE1, minADE5, minADE10, FDE and HitRate5,2m. The minimum Average
Displacement Error (minADEk) is the minimum displacement of the k most likely trajectories from
the ground truth, averaged along corresponding points of the ground truth and predicted trajectories.
The HitRatek,d [24] is the average number of trajectory sets in which this minimum, maximised
along corresponding points of the ground truth and predicted trajectories, is below a threshold d.
The final displacement error (FDE) is the error between the final predicted point and ground truth
trajectory position, for the most likely trajectory. minADE5, minADE10 and HitRate5,2m take into
consideration multiple modes while the other metrics are uni-modal.

As shown in Table 2, using semi-supervised models instead of supervised models shows significant
improvement on most metrics when all other factors are held equal. Semi-supervised models result in
minADE1 improvements ranging from 5.8% to 33.9%, minADE5 improvements up to 17.8% and
minADE10 improvements as high as 15.5% across CoverNet and MTP. The improvement in FDE
from semi-supervised models are as high as 28.8%. The improvement in HitRate5,2m is as high as
33% when SimCLR Resnet-50 replaces supervised ResNet-50 in the CoverNet architecture.
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Table 2: Results of CoverNet and MTP on the nuScenes dataset, comparing different semi-supervised
and supervised models to encode the annotated map. For each semi-supervised model, we make
a direct comparison to a supervised model with the same architecture. Semi-supervised models
significantly outperform their supervised counterparts on most metrics. Additionally we experiment
with SimCLR ResNet-50(4x), one of the latest and top performing semi-supervised models to see
how improvements in semi-supervised pre-training contribute to our task. For minADE(mADE) and
FDE, lower is better, and for HitRate(HR) higher is better.

Model Type mADE1 mADE5 mADE10 FDE HR5,2m
Baselines
Constant velocity 5.48 5.48 5.48 13.44 0.05
Physics oracle 3.91 3.91 3.91 9.53 0.10
CoverNet
ResNet-50 Supervised 9.23 3.03 2.20 18.48 0.12
SimCLR ResNet-50 Semi-Supervised 6.10 2.49 1.86 13.16 0.16
SimCLR ResNet-50(4x) Semi-Supervised 5.53 2.52 1.86 11.95 0.16
ResNeXt-101 32x4d Supervised 9.28 2.95 2.10 18.75 0.14
ResNeXt-101 32x4d SSL Semi-Supervised 7.03 2.67 1.99 14.67 0.14
ResNeXt-101 32x4d SWSL Semi-Weakly Super. 7.43 2.65 1.99 16.64 0.14
MTP
ResNet-50 Supervised 5.13 2.97 2.97 11.71 0.14
SimCLR ResNet-50 Semi-Supervised 4.83 3.04 3.04 11.11 0.14
SimCLR ResNet-50(4x) Semi-Supervised 4.69 3.13 3.13 10.65 0.11
ResNeXt-101 32x4d Supervised 6.26 2.98 2.98 13.93 0.13
ResNeXt-101 32x4d SSL Semi-Supervised 6.02 3.06 3.06 13.50 0.13
ResNeXt-101 32x4d SWSL Semi-Weakly Super. 5.18 2.96 2.96 11.63 0.15

It is notable that SimCLR ResNet-50(4x) outperforms all other semi-supervised models under
consideration for the CoverNet architecture. SimCLR ResNet-50(4x) is relatively new and known
to be one of the best performing semi-supervised models on the ImageNet dataset. This shows that
improvements in semi-supervised pre-training can be leveraged to improve results in this domain
through transfer learning.

In Figure 3, we show the 2-meter HitRate metric as we increase k, the number of most probable
trajectories included in the metric, for our experiments with CoverNet. It is clear that even over
a wide range of k, the semi-supervised models outperform the supervised models, with SimCLR
performing the strongest. We note that the supervised ResNet-50 model is a popular backbone
model used in several implementations of CoverNet [22, 24], and our SimCLR model shows a clear
improvement over this on all metrics without increasing the number of layers or inference time. Of all
the semi-supervised methods, SimCLR, trained with constrastive learning, outperforms ResNeXt-101
SSL and SWSL, both trained with noisy-student methods.

We notice that while semi-supervised models perform better than supervised models across all metrics
on CoverNet, this is not the case for MTP. For MTP, semi-supervised models improve performance
significantly on the uni-modal metrics, however they perform only incrementally better or worse than
supervised models on the multimodal metrics. This can be attributed to the fact that MTP predicts a
small set of modes (3), as opposed to CoverNet which assigns probabilities to a much larger set of
modes (415). We note that there is not a single method that is the clear winner across both CoverNet
and MTP on all evaluated metrics. This indicates that, in practice, it may be beneficial to select the
semi-supervised model for a given task at hand [21].

Low-level representation. The results of our experiments on low-level representations using the
Drive360 dataset are shown in Table 3. For the ICCV 2019: Learning-to-Drive winning architecture
(L2D), which predicts the speed and steering for a timestep one second in the future, we report mean
squared error (MSE) for both targets. SimCLR performs the best on the overall dataset, having the
lowest MSE for both speed and steering wheel angle, outperforming the supervised models. This
reiterates the findings from our experiments on mid-level representations where SimCLR, trained
with constrastive learning, outperforms the other models in most cases. We however do not observe
improvements when using the semi-supervised ResNext-101 32x4d SSL and ResNext-101 32x4d
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Figure 3: Hit Rate for CoverNet (415 modes, fixed) for each backbone model over the top k predicted
trajectories as k is increased. Beginning around k=5, there is a clear separation between the different
backbone models, with the semi-supervised models outperforming the supervised models. As k
increases, the relative ordering of the models remains for the most part constant. This indicates that
increasing the number of candidate trajectories considered in the Hit Rate metric has a consistent
effect across all the models.

Table 3: Comparison of speed and steering wheel angle prediction on the Drive360 test dataset for
the semi-supervised and supervised models we evaluate. For both speed and steering wheel angle
prediction, the semi-supervised SimCLR model improves upon the supervised models. Steering angle
MSE is measured in degrees2 and the speed MSE in (km/h)2.

Model Type Angle MSE Speed MSE
L2D winner on Drive360
ResNet-50 Supervised 1013.46 10.40
SimCLR ResNet-50 Semi-Supervised 1003.56 9.53
ResNet-101 Supervised 1010.64 10.43
ResNeXt-101 32x4d SSL Semi-Supervised 1050.58 10.80
ResNeXt-101 32x4d SWSL Semi-Weakly Super. 1103.13 9.69

SWSL models, trained with noisy-student methods, as compared to the supervised ResNet-101 on
this task.

Implementation Details Training is performed on a Google Cloud Platform instance with an
NVIDIA Tesla T4 or P100 GPU. For the mid-level representations, we downsample the nuScenes
training data by a ratio of 5:1 during training, which reduces training time to 10-20 hours per model.
For the low-level representations, we downsample the Drive360 dataset by a ratio of 10:1 during
training to reduce the number of training instances, and we additionally downsample the input images
from from 1920x1080 to 160x90 pixels. This reduces training to about 5-10 hours per model. For all
models, we report results on the complete test split without downsampling. During training, we freeze
3
4 of the lowest blocks of the semi-supervised and supervised models, fine-tuning the remaining
blocks.

4 Conclusion

We demonstrate the benefits of using transfer learning of semi-supervised models on real-world
driving benchmarks. By performing an ablation study comparing transfer learning of semi-supervised
models with supervised models while keeping all other factors equal, we show that using semi-
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supervised models improves performance for both low-level and mid-level representations. Within
semi-supervised models, we compare: (i) contrastive learning with teacher-student methods; and (ii)
networks predicting a small number of trajectories with networks predicting the probabilities over a
large set of trajectories. Using semi-supervised models in place of supervised models requires no
additional computational resources when performing transfer learning or inference, hence our results
present a simple recipe for significantly improving trajectory prediction.
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Appendix

 

 

 

 

 

 

 

 

 

Figure 4: Steering wheel angle predictions from three examples in the Drive360 dataset. Using the
low-level representation of the front-facing camera image (left), the model predicts the steering wheel
angle 1 second in the future. To the right of each image, we show the ground truth in the top-right
position, the prediction from the supervised ResNet-50 model in the bottom-left, and the predictions
from the three semi-supervised models in the right positions. We highlight the most accurate model
with a dashed green line. In all three examples, one of the semi-supervised models outperforms the
supervised model.
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  Figure 5: Trajectory prediction examples on the nuScenes dataset using CoverNet. The mid-level

representation of the annotated map is on the left. The colored lines on the right represent the ground
truth trajectory (blue) and those predicted by CoverNet with various backbone models, including the
supervised ResNet-50 (orange) and the semi-supervised models we evaluate. The gray lines in the
background are the set of 415 trajectories in the fixed trajectory set.
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  Figure 6: Trajectory prediction examples on the nuScenes dataset using MTP. The mid-level repre-

sentation of the annotated map is on the left. The colored lines on the right represent the ground truth
trajectory (blue) and those predicted by MTP with various backbone models, including the supervised
ResNet-50 (orange) and the semi-supervised models we evaluate. In the third example, we show a
dense traffic scenario.
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