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Abstract

The unprotected left turn is one of the most difficult problems in real-world au-
tonomous driving. Its difficulty is due to the diverse and hard-to-predict interactions
among possibly many road participants in the absence of traffic lights. To help ad-
dress this challenge, we developed a new benchmark called ULTRA (Unprotected
Left Turn for Robust Agents). ULTRA offers controllable diversity and a way to
measure the generalization performance of agents. It is also readily expandable
as more scenarios and behavior models are developed and incorporated. Unlike
prior benchmarks, ULTRA is explicitly focused on providing a rich diversity of
interaction scenarios. In this way, it challenges the RL community to develop algo-
rithms and driving policies that generalize better and are thereby more suitable for
real-world autonomous driving. Our code is available at https://github.com/huawei-
noah/ULTRA
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1 Introduction

Autonomous driving is challenging partly due to the diversity of dynamic interactions among vehicles
[26L [39]]. One of the most challenging problems is the handling of intersections [26] where most
accidents occur [9]. A particularly difficult case in point is the unprotected left turn [34} 26| 9]
where an autonomous vehicle must predict the best time to cross traffic in possibly multiple other
directions by simultaneously taking into account how others vehicles may behave and how itself may
drive. Moreover, the type of social vehicles (i.e. vehicles other than the autonomous vehicle being
considered) plays a significant role in crashes at intersections due to differences in turning behavior
between heavy and light vehicles [34].

There are many ways to address the unprotected left turn challenge, including predicting the trajec-
tories of other vehicles [24, [11], predicting the intentions of other vehicles [29, [16], or modeling
the uncertainty in risk estimates [16]]. Reinforcement learning (RL) is also a popular approach to
the unprotected left turn problem [[10, 15, |30} [32] 13} [15] partly due to its demonstrated capacity for
learning good policies when handling complex situations such as those in Go [28]] and Starcraft II
[33]. However, when RL is applied to the real world, several challenges arise; partial observability of
state, high diversity, poor generalization [14} (7, 40|, safety criticalness, and non-stationarity.

Our objective is to develop a benchmark that is useful for both the autonomous driving and the
RL communities. This benchmark evaluates the ability of agents to generalize by presenting them
with many different unprotected left turn scenarios that feature a high level of interaction diversity
and partial observability in a safety-critical setting. We call our benchmark Unprotected Left Turn
for Robust Agents, or ULTRA for short. We understand robustness informally as generalizable
performance, reliability, and safety in the presence of scenario diversity and limited observability and
expect good RL generalization to be a key source of such robustness.

Many forms of diversity exist in driving: (1) visual diversity, (2) behavioral diversity of other drivers
and pedestrians [26]], (3) situational diversity [9] [39], and (4) vehicle diversity [34]. Instead of
trying to be all encompassing, ULTRA focuses on providing scenarios that test the agent’s ability
to robustly handle behavioral diversity, situational diversity, and vehicle diversity. While there are
some excellent autonomous driving simulation platforms that emphasize visual fidelity, such as [8]],
we have chosen to build ULTRA on top of a recent autonomous driving simulator SMARTS [[1]] that
focuses on behavioral diversity of road participants.

Furthermore, while the unprotected left turn problem is in many ways a multi-agent problem, real-
world autonomous driving does not fit nicely into standard multi-agent problem formulations. Firstly,
it is neither purely competitive nor purely cooperative. Secondly, most vehicles lack the ability
to communicate and coordinate with each other in a standard way. Thirdly, other drivers cannot
be assumed to be acting optimally as is common in multi-agent RL [4] or even maximizing the
same reward. Leaving that issue of multi-agent formulation for future work, we instead make the
simplifying assumption that in any given scenario there is only one “ego agent” that is learning
among “social agents” with mature policies that are no longer changing. However, note that this
setting is compatible with the ego agent learning to model the social agents based on the observable
behavior of the social vehicles under their control. Thus, ULTRA casts the multi-agent situation into
an observability issue and assumes that the primary source of partial observability is that the decision
making processes of the social agents are not directly accessible.

ULTRA turns the unprotected left turn—a most challenging problem from real-world autonomous
driving—into a generalization benchmark in machine learning for autonomous driving (ML4AD). We
hope that ULTRA will make it easier for ML4AD researchers to systematically and accurately assess
solutions for complex interaction, and thereby help to stimulate new researches that will eventually
enable autonomous vehicles to fluidly handle dynamic real-world interactions.

2 Benchmark

The desiderata for the ULTRA benchmark is that it must (1) support many varied scenarios, (2)
evaluate robustness to variability, and (3) provide a graph-based observation. Fig. [I] shows the
ULTRA environment developed in SMARTS [[1]]. The goal for the ego vehicle (red) is to move
from south to west to reach the goal while respecting the road rules and interacting with other social
vehicles (yellow).



Robustness to variability is evaluated similar to [22,38]] by defining a task as a set of training scenarios
and testing scenarios where the agent learns in the training scenarios and is evaluated in the testing
scenarios. A scenario is a combination of map and randomly generated vehicle flow patterns that
describe social vehicle routes to populate, their entry and exit conditions, the types of vehicles, types
of behaviors, and traffic densities. The map includes intersection type, number of lanes, and vehicle
speeds. Fig. 2] highlights the scenario diversity in ULTRA.

Figure 1: ULTRA environment in SMARTS (red is the ego vehicle whereas yellow is the social
vehicle). The ego vehicle must turn left to reach the goal located in the west part of the route.

2.1 Variability

The unprotected left turn environment must provide controllable diversity of social agent behaviors,
different traffic densities, different types of intersections, and different types of vehicles.

Controllable Diversity: Diversity of the social agents is a critical requirement for this benchmark.
The diversity must be controllable such that the scenario is repeatable across training runs regardless
of any other details in implementation. This is accomplished by generating a configurable number of
randomized scenarios and forming tasks around these scenarios. Scenarios are selected randomly
during training; the result is a diverse yet deterministic training environment. The diversity is achieved
through a variety of social behaviors, traffic flow rates, and number of lanes. These different social
behaviors, traffic flow rates and number of lanes are discussed in more detail in Appendix [6.1|and

Controllable traffic density: A vehicle is generated according to its emission probability which is a
configurable parameter that controls the traffic density in each scenario. In this paper, we use three
traffic density levels, low, mid, and high. These density levels are defined in Appendix [6.2}

Different Types of Intersections: There are 2 basic intersection types currently supported by ULTRA
and consist of (1) the T intersection, and (2) the cross intersection as shown in Fig. @ and@ For
each intersection, the number of lanes ranges between 2 to 6 as well 3 different speed limit variations
consisting of 50 km/h, 70 km/h and 100 km/h. The combination of different intersection designs and
speed limits results in a total of 30 types of intersection scenarios.

Different Types of Vehicles: There are 5 basic types of vehicles currently supported by ULTRA
which include cars, buses, trailers, coaches, and trucks. Each vehicle type has different physical sizes,
dynamics profiles, and behaviors which is discussed in Appendix [.1]

(a) T Intersection (b) Cross Intersection (c) High Traffic (d) Multi-lane

Figure 2: Scenario diversity in ULTRA.



2.2 Observation and Action Spaces

The ego agent is the learning agent. It receives actions for throttle, brake, and steering angle where
the steering of the vehicle is provided by an Ackermann steering mechanism. The observation
space consists of the ego information, the social agents, and the information from the map. The ego
information includes its speed, current steering angle. The information from the map includes the
distance from the center of the route on the map, the position of the goal relative to the ego position,
several future route waypoints, the angle deviation from the desired route, and the speed limit. This
is a highly simplified representation since the agent is not provided with details like traffic lights
or the number of lanes, although we plan to add these in the future. The number of waypoints is
configurable and defines how much of the map is visible to the agent.

The social agent’s information is a variable length list consisting of information from each social
agent within a radius of the ego vehicle. Each social agent information includes speed, heading
relative to the ego heading, and position relative to the ego position. The information about social
vehicles is designed to be organized into a graph structure. While it is clearly challenging to encode
the graph information, we describe some example encoders in the Appendix [6.8]

Graph Structured Observations: Given a recent explosion of graph-based deep learning [36], this
benchmark provides an opportunity to train RL agents that observe the world as a graph with a set of
vertices given as the set of social agents in the vicinity of the ego agent. The vertices are attributed
with relative position, velocity, heading, and other characteristics of the vehicles. The design of the
adjacency matrix is left to the researcher since this is an open area of research in autonomous driving.
A common approach computes the adjacency matrix based on relative distance. In some cases, an
adjacency matrix is not required; for example, PointNet can be used to process the social agents
as a list of points. The graph of social agents is dynamic in the sense that the number of vertices
changes over time. Our justification for this representation is that there are very few benchmarks for
graph-based RL and yet this is a common representation in autonomous driving [24} [11]].

Partial Observability: While the position, velocity, and heading of the social agents are known, their
behavior is not known and thus this benchmark presents a partial observability challenge for learning
policies. The true state is not known to the RL agent. Formally, this is commonly characterized
by a partially observable Markov decision process (POMDP) [37, 16, [27]. The only observable
attributes of the social agents are position relative to ego, velocity, heading and vehicle class label
(e.g. car, truck, bus, etc). While we acknowledge that this is a simplification of autonomous driving
where other characteristics of the vehicle, including the driver’s visual characteristics (e.g. sex and
age of the driver), and color of the vehicle can be correlated with different driving behaviors, these
characteristics are difficult to model accurately in simulation and beyond the scope of this benchmark.
We believe the varied vehicle types and behaviors provides enough diversity to challenge RL agents
to learn robust policies under uncertainty, particularly in novel situations on the road.

2.3 Evaluation metrics

After designing the tasks and generating scenarios, the agent is presented with a random scenarios
either from the training set during training or testing set during evaluation. Metrics are recorded to
evaluate performance and some are used directly in the reward function. These metrics are typically
computed over the length of an episode where an episode ends when the vehicle (1) travels off road,
(2) travels off route, (3) reaches the goal, or (4) times out before any of the other events occur. Each
episode is summarized according to the following metrics: (1) travelled off road, (2) travelled off
route, (3) reached the goal location, (4) timed out before reaching the goal location, (5) the episode
length, (6) the average speed, (7) the distance travelled, (8) the average distance from the center of the
route, (9) the number of safety violations, and (10) final distance to the goal location. More details
about the definition of these metrics are given in Appendix

Generalization and Benchmarking: This platform can create benchmarks to evaluate generalization.
Generalization is described using a similar method to ProcGen [6]. First, the task is designed
according to training set and testing set configurations), then a number of scenarios is generated for
each set. The level of performance on the testing set compared to the training set indicates the level
of generalization to the new scenarios. However, to design a benchmark, one needs to fix the number
of scenarios in each set. We can say an algorithm A generalizes better than algorithm B to the testing
set if the difference in performance between training and testing is lower for the algorithm.



(a) Training (b) Evaluation

Figure 3: Task-1 Intersection designs where the training set consists of variations of the T-intersection
and the testing set consists of variations of the cross intersection

Figure 4: Task-2: Traffic densities are depicted for low, medium, and high traffic where the training
set and testing set consist of different distributions of each traffic density.

Scenario Solvability: The scenarios are generated such that many of the scenarios can be solved.
Our definition of "solved" is where the number of steps in an episode is less than a fixed threshold
90% of the time according to a pre-defined behavior policy. The heavier traffic densities can result in
occasional deadlocks and thus special care was taken to understand when these occur and how to
mitigate them. The scenarios and variations in social agent behaviors and traffic densities were tuned
to minimize the risk of a scenario being unsolvable. The detailed analysis for solvability is described
in subsection 3.1.

3 Benchmark Tasks

We define two tasks to evaluate generalization for different intersection designs and different traffic
densities. In Task-1 the agent is trained on straight and curvy t-intersections (Fig. [3a)) and is evaluated
on cross-intersections (Fig. [3b). This task is designed to be easy as the majority of traffic distribution
in both train and test is low-density (61%) and the rest is mid-density (33%), high-density (3%) and
no traffic (3%). Task-2 evaluates generalization to different traffic flows including traffic flows heavier
than the training data and lighter than the training data. All tasks involve different lane configurations
at 3 speed limits (50 km/h, 70 km/h and 100 km/h) (Fig. [2d). The minor road is always 2 lanes at 50
km/h. More details for each task are given in Appendix [6.3] The training and evaluation results for
task 1 are given in Fig. [§]and[0] Task 2 evaluates the generalization among different distributions
of traffic densities depicted in Fig. ] where the low-high task that tests generalization from lower
to higher traffic densities is given in Table[I] The training set and testing set of the low-high task is
reversed to create the high-low task that tests generalization of traffic densities in the reverse direction.

Table 1: Task-2 traffic density distributions for the training set and testing set

| Low Traffic | Medium Traffic | High Traffic | No traffic
Training 61% 33% 3% 3%
Testing 3% 33% 61% 3%
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Figure 5: Histogram of number of time steps needed for a vehicle from ego lane to exit the scenarios
for different traffic densities

3.1 Analysis of the T-Intersection Scenarios

The T-intersection is using is all of our training sets and many of our testing sets and thus we conduct
a thorough analysis of the T-Intersection here. Our analysis focused on characterizing the solvability
and diversity of the T-intersection problem.

Solvablity: To ensure that a learning agent can reach the goal in a reasonable amount of time, we
designed the traffic densities and behavior distributions such as that a scenario can be solved in a
reasonable amount of time for low, medium, and high traffic. We defined solvability as the expectation
that a social vehicle from the ego lane controlled by a hand-crafted baseline policy can successfully
exit the scenario within 1200 time steps more than 90% of the time. The hand-crafted policy is
designed with SUMO [21]. Because the hand-crafted policy is not-optimal, the policies learned by
RL should learn to solve the problem in similar or fewer steps. In other words, the solvability of the
hand-crafted SUMO policy serves as a lower bound on the solvability of the scenario.

To obtain the solvability for a traffic density, 1000 randomly generated scenarios of that density
were ran for 6000 time steps (distributed as 333, 333, and 334 for 50 km/h, 70 km/h, and 100 km/h
speed limits respectively). The number of time steps needed for vehicles starting in the ego lane
to successfully turn left were collected. The solvability for a given density is determined as the
percentage of vehicles that successfully turn left within 1200 time steps. For all of our traffic densities,
the solvability obtained by the SUMO policy calculated were all above 90%. This means that the
solvability by an optimal policy would be above 90% as well. As the tasks are composed of scenarios
that belong to these traffic densities, their solvability would be above 90% as well, satisfying our
design requirements. This is shown in Fig. 5] where we illustrate a histogram of the number of total
number steps for a vehicle from ego lane needed to finish the simulation for each traffic density. We
can see that there is still a difference between the histograms of the densities, suggesting multiple
levels of difficulty. Further information about the relation to routes or behaviors is provided in Fig.

[T2[T3} and[T4}

Diversity: Next, we characterized the diversity of the T-intersection scenarios. The reason was to
understand the diversity of the low, medium, and high traffic flow definitions. The objective was
to determine suitable traffic and behavior definitions that resulted in distinctly different amounts of
interaction to justify and characterize the traffic labels "low", "medium" and "high". Specifically, we
characterized the percentage of all vehicles that stopped for other vehicles at least once as a surrogate
metric for the diversity of interactions. The stop percentage for the south-west route measures the
percentage of vehicles that stopped for any number of time steps either at the intersection or due to
traffic jamming. To generate the plot, we run 1000 randomly generate scenarios the same way as in
section 3.1} The distribution of the maximum number of vehicles in each route is given in tabled] For
all tasks and levels, the same behavioral distribution is used which is defined in table [5} The number
of vehicles that stop at least once is non-trivial for all densities. There are three different modes; they
correspond to the three traffic densities in the histograms, where the amount of interactions increases
progressively from low to high.
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Figure 6: Interaction amount for different traffic densities

4 Related Works

Benchmarks: There are several benchmarks in RL that tailor to evaluating the generalization of
policies [6, 13} 138}, 22]]. The challenge they address is a well-known problem that RL overfits to the
training environment [35} 41} [14}[7,/40]. To address this issue, benchmarks need to (1) test an agent’s
ability to better generalize [7]] and (2) evaluate periodically during training [22]].

One recent benchmark for testing generalization is ProcGen [[6]. ProcGen aims to evaluate the
generalization of the agent to level diversity through procedurally generated worlds. They find that
10,000 different training levels are needed to see generalization on unseen training levels. While the
observation of the agent is image-based, it’s unclear if algorithms that generalize well in ProcGen will
generalize to autonomous driving where there is a far more diverse collection of possible scenarios
and behaviors of other agents.

Another generalization challenge in RL is due to physical variations of the environment as found in
[13]. The benchmark can be characterized as a multi-task, transfer, or lifelong learning benchmark
that focuses on evaluating the suitability of a policy to different physical variations of the same task.
As an example, physical variations include the strength of a joint or the mass of the robot. While
this challenge can be important in robotics, including autonomous driving, due to the different size,
mass, and dynamics of the vehicles, the social diversity in intersections remains the most challenging
problem in autonomous driving [26].

Robotic manipulation is a popular real-world application of RL [38]]. MetaWorld [38] is a benchmark
consisting of 45 training tasks and 5 testing tasks that are created to evaluate multi-task and meta-
learning performance. This benchmark addresses the challenge of generalizing over the goal-space,
i.e. learning to solve new problems more quickly through meta-learning and few shot learning. While
MetaWorld could be useful in autonomous driving to adapt prior learned skills to new skills, it
addresses a different problem than the diversity challenge encountered in autonomous driving.

There are a few simulators and benchmarks in autonomous driving worth mentioning. CARLA is an
open-source simulator with a growing number of users and tasks [8]]. However, while CARLA focuses
on visual fidelity based on game engine technology, the graphics computing overhead is substantial.
Another autonomous driving environment called Highway-Env implemented an unprotected left
turn scenario [[19]. However, the unprotected left turn scenario lacks diversity particularly in the
behavior of social agents and types of intersections. Another simulator is SMARTS [1] which is a
new open-source autonomous driving simulator designed for learning policies for multi-agent RL.

Unfortunately, there are no standard benchmarks for evaluating the performance of RL agents in
autonomous driving that addresses the problem of generalization given the vast diversity of scenarios
and agent behaviors. ULTRA fills this need.

Unprotected Left Turn: There are many useful surveys of RL applied to autonomous driving
[31L 2L [18]]. This is beyond the scope of this paper. Instead, we will focus on the applications of
RL and related methods to the unprotected left turn problem. Most methods recognize the partial
observability of the intention of other drivers. One approach is to learn a hidden Markov model to
learn their intention [29]. Another method is to predict the intention of other drivers in a partially
observable Markov decision process (POMDP) motion planner [37]. In [16], the intention is predicted
with a POMDP motion planner to provide risk-bound guarantees. A hierarchical approach is proposed
in [27] where a candidate path generator chooses trajectories and a low-level POMDP planner for
execution that ensures safe behaviors.



Modeling partial observability with uncertainty and risk is also common. A risk-sensitive reinforce-
ment learning algorithm called worst case policy gradients is developed to avoid uncertain futures
[32]]. Their approach is based on distributional reinforcement learning where they compute the
conditional value-at-risk measure. They tested on an unprotected left turn scenario in CARLA. An
RL algorithm is developed that provides probabilistic guarantees for intersection scenarios [3]]. In
[L5], Bayesian RL is used to estimate uncertainty and make better tactical-decisions in intersections.

Several other methods apply deep RL to the unprotected left turn problem. [10] built a custom
simulator for the unprotected left turn where they applied DRL to choose between stop and go actions.
[20] applies game theory using leader-follow game pairs to tackle uncontrolled intersections. [5]
combines RL and imitation learning in a hierarchical way where RL chooses policies learned by
imitation learning to tackle near accident driving scenarios including an unprotected left turn scenario.
Structured control nets for deep reinforcement learning [30] is proposed for the unprotected left turn
scenario by combining both linear and nonlinear control.

5 Conclusions

We introduce ULTRA as a benchmark for evaluating the generalization of policies, particularly but
not exclusively those learned by reinforcement learning, to different scenarios and social behaviors in
autonomous driving. We have chosen to focus on the unprotected left turn problem as the underlying
problem in our benchmark because it is narrow enough for RL to be easily applied but broad enough
for real-world diversity to be systematically incorporated and evaluated. A unique feature of ULTRA
is that it offers a great deal of diversity supported by the expressive APIs of the underlying multi-agent
simulation platform SMARTS [[L]. Our initial version supports many different kinds of intersections,
different speed limits, different traffic density levels, different social agent policies, and different
social vehicle types. With variegated scenarios systematically available through standard training and
evaluation interfaces, ULTRA allows us to evaluate RL generalization in a way that is both rigorous
in machine learning terms and relevant to real-world autonomous driving.

Moving forward, we hope to expand the benchmark to include more scenarios, vehicle types, and
intersection types (such as roundabouts). We also plan to leverage the “social agent zoo” of SMARTS,
which is supposed to provide many diverse and realistic behavior models of road users, for generating
even more diverse and realistic interactions for ULTRA. Additionally, we are also considering
different levels of difficulty that are tailored to different levels of computational resources available
for training and testing. In addition, we provide observations in the form of an interaction graph
representing the relations among social agents. Unlike the most challenging environments today that
focus on image-based observations, ULTRA presents a challenge to learn policies from graph-based
observations. Finally, while we have chosen to present ULTRA as a generalization challenge for
single-agent RL, we do hope that the proposed solutions will learn to model the behavior of other
vehicles either implicitly or explicitly. And we plan to explicitly treat the multi-agent aspect of the
unprotected left turn in future work.

Overall, ULTRA channels the unprotected left turn problem—one of the most difficult challenges in
autonomous driving—into a machine learning benchmark and thereby makes real-world autonomous
driving more tangible to the broad machine learning and RL research community. On the other hand,
because the unprotected left turn is far from adequately solved in autonomous driving, we also hope
that research stimulated by ULTRA will benefit the autonomous driving community who cares deeply
about the real-world applicability of machine learning solutions.
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6 Appendix

6.1 Social Behaviors and Sizes

Diversity is a key element in ULTRA. We define different social behaviors that ranges from small to
big vehicles and from cautious to aggressive behaviors. The definition of these behaviors and sizes
are given in Tables 2]and [3] Each behavior is defined by acceleration, deceleration, minimum gap,
impatience in junction, and lane change cooperation. The minimum gap is the minimum distance
between the vehicle and the one in front of it. Impatience in junction is the willingness to wait at
the intersection for other vehicles. Lane change cooperation is the willingness to help other vehicles
change lane if needed. These parameters are defined in SUMO [21] as the underlying behavioral
model provider. Later, we will add other models such as data-driven ones.

Table 2: Behavior definitions in SUMO

Behavior | Accel. Decel. Min gap (m) | Impatience | Lane change
(m/s?) (m/s?) cooperation
Normal 3.0 7.5 2.5 Low High
Aggressive | 15.0 10.0 0.01 High Low
Slow 3.0 10.0 5.5 Low High
Blocker 1.0 10.0 5.0 Low High
Crusher 20.0 2.0 0.0 High Low
Bus 1.2 4.0 2.5 High Low
Coach 2.0 4.0 2.5 High Low
Trailer 1.1 4.0 2.5 High Low
Truck 1.3 4.0 2.5 High Low

Table 3: Vehicles’ sizes

Vehicle | Length (m) | Width (m) | Height (m)
Car 4.3 1.8 1.5
Bus 12.0 2.5 34
Coach 14.0 2.6 4.0
Trailer 18.75 2.55 4.0
Truck 7.1 2.4 2.4

6.2 Road distributions and densities

To generate vehicles in the environment, we use emission probability, the expected to denote the
probability of a vehicle spawning at timestep ¢, modeled by (1 — emission)t. From this, we can
obtain the spawn time of each vehicle on the route. The emission probability is applied independently
to each lane; the number of vehicles scales with lane number. Thus, difficulty of a scenario scales
with lane number as well. The emission probability for the low density, medium density, and high
density are 0.02 (Fig. [6a), 0.04 (Fig. [6b), and 0.06 (Fig. [6c) respectively. To avoid situations where
the ego agent is spawned before most social vehicles, leading to low amount of traffic interactions,
each scenario is warmed up with all vehicles controlled by SUMO for fixed amount of time. A social
vehicle moving in the south to west route is then hijacked to become the ego agent. This step makes
sure that there is enough time for vehicles on other routes to be populated, increasing the probability
of them having interactions with ego in the junction.
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Table 4: Road distribution for different densities

Route Vehicles
number

West-south 100
South-west 100

South-east 100
East-south 100
East-west 1000
West-east 1000

Table 5: Social behavior distributions

Behavior | Probability
Normal 85%
Aggressive 5%
Blocker 5%
Cautious 5%
west east
south-west east-west
TTT T T Westeast,\ - T
west-south south-east
south

Figure 7: Routes directions

6.3 Tasks and Difficulty Levels

In ULTRA, we design two tasks. First, transfer from t-intersection to cross-intersection. Second,
transfer from one traffic density into another (from high traffic to low traffic and the opposite). The
purpose of the first task is to evaluate the generalization on another type of intersection whereas the
purpose of the second task is to evaluate generalization to heavier traffics. Each task contains a set of
training scenarios and a set of evaluation scenarios.

In each task, we define two level for each task. For task 1, we have 10000 scenarios in the training set
and 200 in the testing set. The training set is defined as 50% 2-lane and 50% 3-lanes t-intersection
configurations. For both configurations, they contain 21% low-density with a 50 km/h speed limit,
21% low-density with a 70 km/h speed limit, 20% low-density with a 100 km/h speed limit, 12% mid-
density with a 50 km/h speed limit, 12% mid-density with a 70 km/h speed limit, 12% mid-density
with a 100 km/h speed limit, 1% high-density with a 50 km/h speed limit, 1% high-density with a
50 km/h speed limit, and 1% high-density with a 100 km/h speed limit. The testing scenarios are
designed to test generalization to the cross intersection type. The configurations and distributions are
the same as the ones in the training set but with cross-intersections instead of t-intersections.

The hard level in task 1 consists of the same number of training and testing scenarios with the same
lane configurations percentages. However, the specifications of the two configurations are different.
The agent is trained on heavier traffic. For both configurations, they contain 1% low-density with
a 50km/h speed limit, 1% low-density with a 70km/h speed limit, 1% low-density with a 100km/h
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speed limit, 12% mid-density with a 50km/h speed limit, 12% mid-density with a 70km/h speed
limit, 12% mid-density with a 100km/h speed limit, 21% high-density with a 50km/h speed limit,
21% high-density with a 50km/h speed limit, and 20% high-density with a 100km/h speed limit. The
testing scenarios are different only in the intersection type the same as the testing scenarios in the
easy level.

On the other hand, we have high-to-low and low-to-high levels for the second task. low-fo-high
represents training on low density and evaluating on high density, and vice versa with high-to-low.
We use the same number of training and testing scenarios as in task 1. For low-fo-high, the training set
is defined as 50% 2-lane and 50% 3-lanes t-intersection configurations. The training set contains 21%
low-density with a 50 km/h speed limit, 21% low-density with a 70 km/h speed limit, 20% low-density
with a 100 km/h speed limit, 12% mid-density with a 50 km/h speed limit, 12% mid-density with
a 70 km/h speed limit, 12% mid-density with a 100 km/h speed limit, 1% high-density with a 50
km/h speed limit, 1% high-density with a 50 km/h speed limit, and 1% high-density with a 100 km/h
speed limit. The testing scenarios are designed to test generalization to the heavier traffics. The
configurations and distributions are the same is defined as 50% 2-lane and 50% 3-lanes t-intersection
configurations. The testing set contains 21% high-density with a 50 km/h speed limit, 21% high-
density with a 70 km/h speed limit, 20% high-density with a 100 km/h speed limit, 12% mid-density
with a 50 km/h speed limit, 12% mid-density with a 70 km/h speed limit, 12% mid-density with a
100 km/h speed limit, 1% low-density with a 50 km/h speed limit, 1% low-density with a 50 km/h
speed limit, and 1% low-density with a 100 km/h speed limit. Results of this level in task 2 are shown

in Fig, [10]
For high-to-low, it is the almost the same as low-fo-high but all high and low densities are switched.

The purpose of this level is to evaluate generalization to low traffics after training on high traffics.
Results of this level in task 2 are shown in Fig. [TT}

6.4 Algorithms and Hyperparameters

In our experiments, we report the results obtained by two algorithms, PPO [25]] and SAC [12]. The
hyperparameters of each are given by table [6]

Table 6: Algorithms Hyperparameters

PPO | SAC

Batch size 2048 Replay buffer size 106

Adam stepsize 0.001 Adam stepsize 0.0003

Num. epochs 10 target smoothing coefficient 0.005
(7)

Minibatch size 128 target update interval 1

vy 0.99 vy 0.99

A 0.96 gradient steps 1

number of hidden layers 2 number of hidden layers 2

number of hidden units per 256 number of hidden units per 256

layer layer

6.5 Training and Evaluation Results

In benchmark experiments, we use two state-of-the-art algorithms PPO [25]] and SAC [12]] described
in appendix table[6] The tuning of hyper-parameters is completed using no-traffic (having no social
vehicles) and low-traffic scenarios. Episode termination events are collision, going off-road, timing
out, and reaching the goal. The maximum steps for the time-out event is set to 1200 and each time-step
corresponds to 0.1 seconds in real-time. The evaluation is run every 10000 observation iterations
on a separate set of scenarios and results are averaged over 200 different fixed seeds. Reward signal
and evaluation metric are discussed in details in section[6.7} Environment setup is consistent for all
tasks but scenarios are adjusted accordingly. Benchmark tasks are designed to challenge the agent’s
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generalization skills by changing the density of traffics and types of intersections. For task definitions
and training results refer to Appendix [6.3]

We show the training and evaluation plots for our two tasks. The plots show collisions, distance to
road center, distance travelled, reaching goal signal, timeouts, ego-safety violations, social-safety
violations, episode reward, distance to goal, speed violations, off-roads, and speed. All of these data
are plotted as a function of the time steps. We train the agent in each experiment for 1M steps. The
training data are plotted and filtered by a moving average filter with a window of 100 steps. These

plots are shown in Fig. [8] [0} [10] and [T}

6.6 Other statistics

Further statistics about our scenarios to understand the collective behavior by agents with the high
diversity offered by our framework are provided in Fig. [I2} [T3] and[14] For each traffic density, the
following statistics are collected and plotted in a histogram form.

e Steps taken by each vehicle type to exit the episode. This depends on the behaviors of
different vehicle types. It allows us to partly see how different the vehicle types are. (Fig.

and [4)

e Steps taken by vehicle on each route to exit the episode. This depend on the distributions
of vehicle on each route and the interaction between the routes. It allows us to grasp how
dense traffic is and how difficult it is to navigate traffic in the intersection. (Fig.

and[14b)

e Percentage of vehicles that got stopped at any point during its time in the episode,
aggregated by route. A vehicle is defined as being stopped at a time step if its speed at
that time step is 0. This quantity is a surrogate for the number of meaningful interactions
between vehicles in an episode for each route. In the simulation, a social vehicle only stop
due to yielding or avoiding collision with another vehicle. (Fig. [6)

6.7 Rewards and Evaluation Metrics

The agent interacts with the environment for 600 time steps where it gets rewarded based on the
reward function R, given by Eq[I]after getting an observation O; which presents partial information
about the environment state S;.

Rt+1 (St) = Tcollision T Toff road + Treached goal T+ T'dist to center (1

~+ Tangle error 1 Tego safety + T'social safety + Tenvironment

with

Teollision = — 10.0 if ego collides with another vehicle )

Toffroad = — 1.0 if ego goes out of the road 3)

Treached goal = 100.0 if ego reach the desired destination 4

Fdist o center = —0.002 % min(4, d"™ P*™) if ego reach the desired destination 3)

Tdist to center = —0.005 * max(0, cos ;) (6)

Tego safety = —0.02 if ego safety is violated @)

Tsocial safety = —0.02 if social safety is violated (8)

r
Tenvironment = SNiAORTS 9)

where 6, is the difference between heading of the ego and the lane heading at the current time step, v,

is the speed of ego at the current time step, d}™ "™ is the distance from the ego to the middle of the
road at the current time step. Tsparts is the step reward that is coming from SMARTS.

The reward is designed to encourage behaviors that will follow the road rules and respect other
vehicles while maintaining safety. rconision penalizes the agent for colliding with any social vehicle.
Toff road PENalizes the agent for going off road. rieached goal TEWards the agent after reaching the desired
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goal position. Tgis 1o center peNalizes the agent for going away from the center of the road. rego safety and
Tsocial safety are designed to make the agent maintain safety. The methods to detect collision, wrong
way, off road, reached goal and to compute ego speed, difference between ego heading and lane
heading, location of center of the road are provided by SMARTS. The criteria used for determining
whether ego safety or social safety are violated are given in [[17] where ¢t. = 1s and d,,;,, = 1m for
both the ego and social vehicles. Finally, repyironment 1S the scaled down reward from SMARTS, which
rewards the agent according to the distance travelled.

6.8 Social Vehicles Encoders

For handling the graph structured information about social vehicles, three encoders are used. Low
level features of social vehicles observed from the environment are relative position with respect to
the ego vehicle, the relative heading, and speed. These encoders can handle any number of social
vehicles. The output of each encoder is a fixed length vector that is concatenated to other observation
elements.

6.8.1 Direct encoder

In this encoding scheme, each social vehicle that exist in the scenario is represented by their own
low level features. Instead of considering all social vehicles, we only select a fixed number of social
vehicles that are prioritized based on these criteria: (1) highest priority are nearest social vehicles
in front and rear of ego in its current lane, (2) social vehicles on other lane are prioritized by their
distance to ego, nearer vehicle has higher priority. We then select the top prioritized vehicle as output
from the direct encoder. In case there are less vehicles than the number needed, fake vehicles with
fixed low level features are padded in. Additionally, a permutation of the vehicles are performed to
make downstream task resilient to effect of permutation.

6.8.2 Shared-FC

At each time step, the agent can observe a variable number of social vehicles. For each social vehicle,
its features are fed into a shared fully connected network between all of the observed social vehicles.
The encoding of each vehicle information is concatenated. To maintain a fixed length vector, we have
a limit on the number of vehicles that can be detected.

6.8.3 PointNet

PointNet [23] takes a batch of points (i.e. a point cloud) with variable batch size as input and
output their global feature, which can then be used for downstream tasks. The points are first passed
independently through a number of shared fully connected layers, resulting in a batch of point features
with the same length. Then, the batch of point features are aggregated into a two-dimension matrix
and a maxpooling is applied along the batch dimension to give the final fixed length feature.

In order to make the representation of the point cloud invariant to geometric transformations in the
original point space as well as in the intermediate feature spaces, transformation matrices are applied
to the original coordinates of the points and their intermediate features before each shared fully
connected layer to undo the effects of such transformations. Each transformation matrix is predicted
from the batch using a similar idea as above: the point coordinates/features are passed independently
through multiple shared fully connected layers, followed by by a max pooling to get the feature of
the point cloud, this feature is then passed through a couple of fully connected layers to regress the
transformation matrix of the batch. To keep optimization easy during training, the transformation
matrices are constrained to be close to be orthogonal via an auxiliary loss objective.
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