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Abstract

A commonly-used representation for motion prediction of actors is a sequence
of waypoints (comprising positions and orientations) for each actor at discrete
future time-points. While this approach is simple and flexible, it can exhibit
unrealistic higher-order derivatives (such as acceleration) and approximation errors
at intermediate time steps. To address this issue we propose a simple and general
representation for temporally continuous probabilistic trajectory prediction that
is based on polynomial trajectory parameterization. We evaluate the proposed
representation on supervised trajectory prediction tasks using two large self-driving
data sets. The results show realistic higher-order derivatives and better accuracy at
interpolated time-points, as well as the benefits of the inferred noise distributions
over the trajectories. Extensive experimental studies based on existing state-of-the-
art models demonstrate the effectiveness of the proposed approach relative to other
representations in predicting the future motions of vehicle, bicyclist, and pedestrian
traffic actors.

1 Introduction

In robotics in general and self-driving vehicle (SDV) applications in particular, anticipating the
motion of other actors around the robot plays a critical role in planning safe paths to navigate
the environment (1). Recently, significant improvements have come from exploring the input
representation of the sensor data (2; 3; 4; 5; 6) and the neural network structures (7; 8; 9). Likewise,
the output representation for trajectories has seen extensions to account for multimodality (10; 11; 12)
and for modeling probability distributions over their future locations (9; 13). However, these output
representations generally provide predictions of locations only at discrete and prefixed time-points
which may also lack the physics constraints that govern object motion in the real world.

Prediction representations should offer enough flexibility to approximate the motion of various
actors types, while still providing regularization that encourages physical realism in the predicted
actor motion. Physical realism, such as realistic velocities and accelerations in the trajectories, is
particularly important for safety-critical applications. Some representation choices provide such
regularization (14), but also make learning more difficult by creating a more complex optimization
surface. Additionally, prediction representations should be able to express multi-modal probability
distributions over trajectories that reflect the uncertainty of the prediction. In robotics systems,
trajectory predictions are often used to compare the probable future positions of other actors against
possible future trajectories for the robot in order to find an efficient and low-risk trajectory for the
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robot (15; 16). Many algorithms for this collision checking can be made more computationally
efficient if actor locations can be accessed at arbitrary time-points in parallel within the prediction
horizon.

In this paper we propose an approach for trajectory prediction that exhibits these desirable properties.
It expresses the time-varying distributions over actor future motion in terms of rigid transformations
parameterized with polynomials. We show that low-order polynomials are effective for accurately
representing labeled motion of various actor types. When they are applied in extensive supervised
learning tasks on two large-scale SDV data sets, the comparison of prediction performance shows
that low-order polynomials are as effective as other representations at the fixed time-points, while
providing better prediction accuracy on interpolated time-points, low-count actors, and learning tasks
with large supervision time intervals. Moreover, we demonstrate that this representation implicitly
provides effective regularization that improves physical realism in the predicted actor motion.

2 Related work

Commonly-used representations for trajectory predictions include waypoints and occupancy maps.
The waypoint approach describes the probable future locations of an actor at some fixed, usually
periodic, time-points (1). In order to take the multimodality into account, multiple trajectories can be
predicted for an actor (10; 11; 12). When the uncertainty of the prediction is considered, a spatial
probability distribution is provided at each of the given time-points independently (9; 13). The
mathematical details can also be found in the following section. The occupancy map representation
expresses the multimodality and uncertainty of future actor motion by creating a spatially discretized
grid around the actor. Each of the grid cells estimates the probability of the actor occupying this cell at
a particular time-point (17; 18; 19). Both representations, continuous in the spatial dimensions or not,
are discrete temporally, which may lead to suboptimal performance in many real world applications
where the actors usually behave smoothly. In this paper, we explore a prediction representation option
that is continuous in both the spatial and temporal domains.

Physical realism of motion prediction is another important research topic. Studies in (20; 21) improve
the feasibility of human motion prediction by constructing the graph of skeleton joints and applying
constraints on the graph edges. Physical realism such as collision avoidance and kinematic feasibility
is studied for vehicle trajectory prediction. In the interactive vehicle following scenario, physical
models are embedded in a network to avoid collision (22). The authors in (14) build a vehicle
kinematic model for the waypoint representation with constraints and regularization to enforce
kinematic feasibility. We show that the proposed low-order polynomial representation leads to good
physical realism in predicted trajectories, without enforcing additional physical models, constraints,
or regularization.

Lastly, it is well-known that low-dimensional parametric approximation is widely used in many
scientific and engineering fields, such as the spectrum approximation based on Gaussian, Lorentzian,
or Voigt functions in spectroscopy (23; 24; 25), or the value function approximation in reinforcement
learning (26; 27; 28). Its benefits such as providing implicit regularization, compact expression, and
avoiding the curse of dimensionality, are also well-understood. In this work, we successfully apply
this methodology to the task of motion prediction.

3 Approach

3.1 Trajectory representation

The waypoint trajectory representation P can be generally expressed as a sequence of rigid transfor-
mations, SE3 in general or SE2 for 2D applications,

P = {(Tt,Rt)}, t ∈ {0, t1, t2, . . . , T}, (1)
each of which denotes the translation and rotation of the actor at time t. The probabilistic represen-
tation describes the full probability distribution in terms of a sequence of (p(Tt), p(Rt)) each of
which denotes the spatial probability densities of the position and orientation at time t. A probability
distribution can be described with its sufficient statistics in terms of moments or distribution parame-
ters if it has an analytical expression, denoted as M. Note that the non-probabilistic representation in
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(1) can be viewed as a special case where only the zeroth moments (i.e., the means) are considered.
While the waypoint representation is very flexible to express an arbitrary trajectory at the predicted
time-points, intermediate time-points need to be interpolated, with a common choice being linear
interpolation (i.e., the trajectory is interpreted as a linear spline). As linear interpolation introduces
approximation errors on accelerating objects, this might be mitigated by predicting many time-points
which increases the computational complexity.

We propose another general prediction representation which parameterizes the prediction distributions
over time based on polynomial approximation. More specifically, we represent each scalar element
m of M independently with a low-order polynomial function of time as follows,

m(t) = fm

(
Nm∑
n=0

am,n

(
t

T

)n)
, (2)

where am,n are the coefficients of the polynomial of degree Nm, and fm(·) can be an identity
function or a function to ensure the validity of M, if necessary. The normalization over the maximum
prediction horizon of interest T , is often desired in practice, particularly for large t’s. In this paper,
we explore the trajectory prediction of traffic actors in SDV applications where each actor can be
approximated with a fixed polygon and a time-varying SE2 transformation from the frame of the
polygon to a shared world frame. The SE2 transformation consists of translation in the x-y plane
and yaw rotation around the vertical axis, denoted as (cxt, cyt, sin θt, cos θt). We model each of
the components independently with a univariate distribution. Using the Laplace distribution as an
example, the probabilistic prediction for a specific component v can be expressed as

pv(t) = L(v|µv(t), bv(t)), (3)

whose means over time t are parameterized by a polynomial

µv(t) =

Nµv∑
n=0

aµv,n

(
t

T

)n
. (4)

One physics insight into the coefficients can be found by noticing that the important moments of the
trajectory can be expressed analytically and computed from the coefficients at arbitrary time-points
(without finite differencing), including position, velocity, acceleration, lateral acceleration, curvature,
etc., for Nµv > 1. The waypoint representation with linear interpolation, in contrast, is equivalent to
using polynomials with Nµv = 1 over each time interval, and it only allows for direct computation
of position. Another view is that predicting the polynomial coefficients is equivalent to predicting
Nµv + 1 control points that determine a trajectory through polynomial interpolation. Besides µv , the
diversity parameter bv over time can be parameterized as

bv(t) = exp

Nbv∑
n=0

abv,n

(
t

T

)n
. (5)

The additional exponential function ensures the positiveness. Note that the generality and simplicity
of the representation allow its application in common non-probabilistic and probabilistic prediction
models of various spatial distributions, and straightforward replacement of the representation in the
models that output waypoints with few changes.

3.2 Label trajectory approximation

The Weierstrass Approximation Theorem (29) states that any continuous function can be approxi-
mated to arbitrary accuracy on a closed and bounded interval with a polynomial of sufficiently high
degree. On the in-house data set (see its details in the next section), we investigate the maximum ap-
proximation error using (4) to fit label trajectories with various low-order polynomials and prediction
horizons. The label trajectory of each actor in the data set can be represented by a bounding box of
fixed size with a sequence of SE2 transformations at 10Hz. We parameterize the four components
(cx, cy, sin θ, cos θ) of the time-varying SE2 transform as follows, using two polynomials for the
centroid translation (i.e., cx and cy) and two polynomials which are normalized to produce the sine
and cosine components of the rotation. We find the best-fit polynomials by minimizing the total L2
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Figure 1: Approximation errors of polynomial representation to fit label trajectories. Cumulative
fraction as a function of max corner errors for 4s and 8s trajectories of vehicles, bicyclists, and
pedestrians, with polynomials of degrees 2-4 (P2-4)

error between the labeled bounding box corner and the associated fitted corner over all corners and
all 4-second time-points at 10Hz. While for metrics, we compute the maximum corner error for each
trajectory defined as the maximum L2 distance over all corners and all time-points, which examines
the worst approximation. Note this error metric includes both translation and orientation errors, and
bounds the maximum error that a collision-checking algorithm could encounter.

Fig. 1 shows the maximum corner error using polynomials of degrees 2 through 4 to fit label
trajectories over 4s and 8s time horizons, for vehicles, bicyclists, and pedestrians. As expected,
polynomials of higher orders yield lower approximation errors. However, what is surprising is how
quickly the maximum corner error drops below the average predicted centroid displacement error as
the order of the polynomial is increased, suggesting that even very low-order polynomials are able to
represent traffic actor motion with small approximation error relative to the expected prediction error
of state-of-the-art prediction models. For instance, the average displacement error for vehicles at 8s is
approximately 1.3m (see Table 2), and 96.0% of quadratic trajectories and 99.5% of cubic trajectories
have maximum corner error less than that value. Further analysis shows that the high approximation
errors occur mainly on maneuvers that have high jerk, or switch between being stopped and moving.
For models that cannot achieve good predictions for such hard maneuvers, the low-order polynomials
would not hurt; higher-order polynomials or splines of polynomials can be used to provide more
representational capacity when necessary. This paper focuses on low-order polynomials as the results
in Table 2 show no significant gains in prediction accuracy between 3rd and 4th order polynomials
for prediction horizons of up to 8s.

3.3 Applying the representation in supervised learning

Next, we study the proposed representation in supervised trajectory prediction tasks by replacing
the waypoint representation with the polynomial representation using (3), and compare prediction
performances using the different representations. We adapt MultiXNet(9), which is a deep model
with competitive performance designed to detect traffic actors around a SDV and predict their future
trajectories. Like most works in trajectory prediction (30; 10; 31; 32; 33; 34; 35), MultiXNet outputs
trajectory prediction at periodic time-points t ∈ {0, τ, 2τ, . . . , nτ}. The model assumes a univariate
Laplace distribution for each of the (cx, cy , sin θ, cos θ) components at each of the n+ 1 time-points,
i.e, (n+1)× 4× 2 values are regressed for the means (µ’s) and diversity parameters (b’s). By contrast,
in models with the polynomial representation, the regression values are the Nµ + 1 coefficients in (4)
and the Nb + 1 coefficients in (5), for the four components individually. If multimodal prediction is
modeled, such as for the vehicles in MultiXNet, independent polynomial representation is applied to
each separate mode.

Note that the data sets used in this paper provide prediction label as bounding boxes at periodic
time-points. To train the polynomial models, we sample waypoints from the polynomial prediction
at the same time-points as the waypoint models, and the regression loss is applied to these sampled
waypoints. While it would be possible to compute the target polynomial coefficients by fitting
the label trajectories and define regression loss on the polynomial coefficients directly, our goal in
this study is to compare representations with minimal modeling differences, therefore we keep the
regression targets and loss functions unchanged.
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4 Evaluation

4.1 Experimental setups

Implementation details. We evaluate the proposed representation by adapting the MultiXNet as the
waypoint representation (WP) baseline. In each comparison experiment group, the supervision is
provided at the same periodic time-points. The baseline WP model outputs waypoint probabilistic
prediction in terms of four univariate Laplace distributions for (cxt, cyt, sin θt, cos θt) at each of the
time-points (note however that we do not model heading for pedestrians). To simplify the discussion,
we use polynomial representation of a same degree d for all of the four means, denoted as Pd, and
polynomial of a same degree k for their diversity parameters, denoted as Pk(b). Using the 8-second
prediction as an example, a waypoint model would regress 648 values for one trajectory, while
the polynomial representation for (d = 2, k = 1) would provide 20 values as the model output
instead. We use this setting as a default for the polynomial models, unless specified differently. We
also implement the vehicle kinematic model (KM) proposed in (14; 36). The KM model outputs
the longitudinal acceleration and curvature for each waypoint, clipped within [−8, 8] m/s2 and
[−0.2, 0.2] m−1, respectively, with L2 regularization with weight 0.1 applied on the outputs to
encourage smoothness.

Data. The experiments are carried out on the open-sourced nuScenes data (37) (7000 scenes of
20s in the training split with 2Hz annotations) with the results shown in Table 1. We also used the
larger Uber ATG in-house data set (14000 scenes of 25s in the training split with 10Hz annotations)
throughout the studies, as it yields lower metric variances and the finer label interval facilitates finite
difference computation. We explore short-term (4s) and mid-term (8s) prediction for (a) vehicles that
are the most common traffic actors, (b) bicyclists that are as rare as about 2% of vehicles in the data
sets, and (c) pedestrians whose motion can change abruptly.

Metrics. Detection is evaluated using average-precision (AP) with the intersection-over-union (IoU)
matching threshold of 0.5, 0.3, 0.1 for vehicles, bicyclists, and pedestrians, respectively. We report
prediction performance in terms of displacement errors (DE’s) for centroids, and angle error (∆θ’s)
for headings. The models within each comparison group have close AP’s and are thus not reported.
To compare prediction fairly, the prediction metrics are computed with the detection probability
threshold set to yield a recall of 0.8 as the operational point for the models trained on the in-house
data set, and 0.6, 0.3, and 0.6 for vehicles, bicyclists, and pedestrians, respectively on the nuScenes
data set.

4.2 Prediction performance

The first block in Table 1 shows the experiments on nuScenes data with prediction supervision at
t ∈ {0, 0.5, 1.0, . . . , 4.0} seconds. Within the metric variance, P2 and P3 achieve performance
similar to WP. P1 has worse performance for vehicles and pedestrians, which we attribute to its lack
of representational power. P1 outperforms other models for predicting bicycle centroids, which might
be explained by the low population of bicyclists in the data set and the strong regularization provided
by polynomials of degree 1. Similarly 4-second prediction is studied on the in-house data set with
interval 0.1s, and presented in the second block. With lower metric variance, we again see that the
performance of P2 and P3 is close to that of WP for vehicles and pedestrians. The under-performance
of P1 for vehicles and pedestrians is further confirmed on this data set. Furthermore, the in-house data
set uses a finer supervision interval which might explain why P1 does not outperform the other models
on the bicyclists class. Then, we further extend the prediction supervision horizon to 8s (See Table 2).
Except for P1, which is too simple to express 8s trajectories, the polynomial models still perform as
well as the model using waypoints. To show that the representation works effectively with other model
designs and loss functions, we study the representations in single-stage single-modal MultiXNet
variants where the second stage network is removed, each actor is modeled with a single trajectory,
and the Kullback–Leibler divergence for trajectory regression is replaced by the displacement error
without uncertainty learning using the smooth-L1 loss (1). For the models with these common but
less optimal techniques, the prediction accuracy is also close using the polynomials and waypoints
(see Table 3).

We measure the calibration of the probabilistic predictions using waypoint representation (WP(b)),
and polynomials of degrees 0-2 (P0-2(b)) for the diversity parameters. Fig. 2 provides one example
by their reliability diagrams (1) for the cross-track dimension at 0s, 2s, and 4s. Except for P0(b), the
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Table 1: Four-second models on nuScenes and the in-house data sets with different representations
for the means. First block: model comparison on nuScenes data set with a supervision interval of
0.5s. The models using waypoints and polynomials of degrees 1-3 for the means are denoted as WP
and P1-3. Second block: model comparison on the in-house data set with a supervision interval of
0.1s. On top of WP models, KM is only applied to vehicle prediction. DE is in meters, and ∆θ is in
degrees. Lowest errors within metric variance are in bold.

Vehicles Bicyclists Pedestrians

Method 2s DE 4s DE 2s ∆θ 4s ∆θ 2s DE 4s DE 2s ∆θ 4s ∆θ 2s DE 4s DE
WP 0.73 1.67 2.39 3.33 1.6 3.6 7.7 10.5 0.51 1.06
P1 0.75 1.74 2.50 3.49 1.5 3.1 8.0 10.7 0.51 1.05
P2 0.73 1.68 2.37 3.39 1.6 3.4 7.4 10.3 0.51 1.06
P3 0.74 1.65 2.41 3.41 1.9 3.6 7.6 10.6 0.50 1.04
WP 0.307 0.565 1.47 1.76 0.27 0.52 5.8 6.0 0.378 0.807
P1 0.328 0.672 1.51 1.83 0.27 0.51 6.2 6.4 0.380 0.815
P2 0.311 0.563 1.45 1.79 0.28 0.50 5.9 6.1 0.379 0.811
P3 0.311 0.568 1.49 1.79 0.28 0.51 6.1 6.4 0.380 0.812
KM 0.313 0.575 1.64 1.80 0.30 0.53 5.9 6.1 0.381 0.812

Table 2: Eight-second models on the in-house data with a supervision interval of 0.1s. The models
using waypoints and polynomials of degrees 1-4 for the means are denoted as WP and P1-4.

Vehicles Bicyclists Pedestrians

Method 4s DE 8s DE 4s ∆θ 8s ∆θ 4s DE 8s DE 4s ∆θ 8s ∆θ 4s DE 8s DE
WP 0.580 1.362 1.78 2.21 0.70 1.41 6.5 6.8 0.828 1.903
P1 0.684 1.618 1.85 2.36 0.67 1.28 6.7 7.0 0.832 1.926
P2 0.593 1.295 1.83 2.31 0.58 1.13 6.7 6.9 0.826 1.899
P3 0.590 1.291 1.82 2.28 0.59 1.21 6.5 6.7 0.827 1.899
P4 0.595 1.287 1.82 2.28 0.60 1.26 6.4 6.6 0.829 1.913

Table 3: Comparison of using waypoints (WP) and polynomials of degree 2 (P2) on simplified
variants that are single-stage and single-modal, and uses displacement errors as the regression losses.
The experiments are performed on the in-house data set and have four-second predictions with interval
0.1s.

Vehicles Bicyclists Pedestrians

Method 2s DE 4s DE 2s ∆θ 4s ∆θ 2s DE 4s DE 2s ∆θ 4s ∆θ 2s DE 4s DE
WP 0.337 0.653 1.68 2.05 0.29 0.52 6.5 6.8 0.414 0.874
P2 0.339 0.654 1.68 2.04 0.28 0.51 6.6 6.9 0.411 0.870

probabilistic predictions are well calibrated in all models, as their curves are close to the reference
lines. P0(b) has stationary diversity parameters, which yields under confident predictions at the
start of the prediction horizon, and over-confident prediction at the end of the horizon. Notice that
polynomials of degree 1 suffice for representing b in these 4-second models.

4.3 Continuous prediction representation

We hypothesize that the polynomial representation improves accuracy over linear interpolation at
time-points where supervision is not provided during training. To demonstrate this, we study models
with waypoint representations (WP) and polynomials of degree 2 (P2) for the means with supervision
at 0s, 2s, and 4s. We compare their performance at 1s, 2s, 3s, and 4s. The predictions of WP at 1s
and 3s are computed by linear interpolation. Table 4 focuses on the actors faster than 0.2m/s. For the
prediction of vehicles, P2 has slightly better performance at 2s and 4s where regression supervision
is available, while it outperforms marginally the interpolated prediction of WP at 1s and 3s. WP has
significantly worse performance in centroid prediction of bicyclists at all time-points, which can be
explained by the large supervision interval and low population in the training, while the regularization
provided by low-order polynomials mitigates those problems. Notice that for predictions of vehicles
and bicyclists, the polynomial representation exhibits strength over the waypoint representation even
at the fixed time-points, when the supervision time intervals are large, in additional to the better
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Figure 2: Reliability diagrams for the cross-track dimension at 0s (left), 2s (middle) and 4s (right)
of models using waypoints (WP(b)) and polynomials of degrees 0-2 (P0-2(b)) for the diversity
parameters.

Table 4: Comparison of the continuous prediction using polynomial of degree 2 (P2) and the discrete
prediction using waypoints (WP) for the means on the in-house data set. The regression supervision
is provided at 0, 2, and 4s. DE in meters is provided in the first block. ∆θ in degrees is in the second
block. The predictions at 1 and 3s of WP are computed by linear interpolation. Metrics are computed
only for actors that are faster than 0.2m/s.

Vehicles Bicyclists Pedestrians

Method 1s DE 2s DE 3s DE 4s DE 1s DE 2s DE 3s DE 4s DE 1s DE 2s DE 3s DE 4s DE
WP 0.99 1.92 3.43 4.97 3.9 7.7 11.1 14.2 0.34 0.63 0.96 1.30
P2 0.92 1.90 3.21 4.85 2.9 5.1 6.8 8.3 0.34 0.64 0.95 1.29

1s ∆θ 2s ∆θ 3s ∆θ 4s ∆θ 1s ∆θ 2s ∆θ 3s ∆θ 4s ∆θ 1s ∆θ 2s ∆θ 3s ∆θ 4s ∆θ
WP 1.97 2.92 4.13 5.59 4.6 6.6 8.2 9.0 - - - -
P2 1.87 2.81 4.06 5.56 4.6 6.4 7.9 8.7 - - - -

accuracy at intermediate time-points. The two models perform similarly for pedestrians, suggesting
that the second order states for pedestrians are either not captured by the models or less important in
pedestrian prediction.

4.4 Physical feasibility

To measure the physical realism of a trajectory, we analyze the maximum and the minimum lon-
gitudinal acceleration (at · vt/|vt|), maximum lateral acceleration (at × vt/|vt|), and maximum
lateral speed (|vt × ht|) over all prediction time-points for each trajectory, where at is the centroid
acceleration vector, vt is the centroid velocity vector, and ht = (cos θt, sin θt) is the unit heading
vector, measured at time-point t. For motion of common traffic actors these quantities are usually
tightly constrained, as shown in Fig. 3 by their distribution for the label trajectories on the in-house
data set. We compare this label distribution to the trajectory distributions predicted by models using
different representations.

Fig. 3 shows their distributions in normalized histograms that focus on trajectories of non-static
vehicles. One can see that the majority of the trajectories of WP have infeasible maximum and
minimum accelerations, while the trajectories of label and P2-3 have distributions concentrating near
zero. Interestingly, KM trajectories peak at about ±1m/s2 instead of close to zero. In the maximum
lateral acceleration plot, a large portion of the WP trajectories have less feasible lateral acceleration,
while trajectories of the polynomial models demonstrate closer distributions to that of labels. Because
there are no constraints on lateral acceleration in KM, it has considerable amount of trajectories
showing unfeasible lateral acceleration. Lastly, the trajectories of WP show the greatest divergence
from the label distribution in lateral speed. All trajectories produced by KM have zero lateral speed
as it is enforced by the explicit vehicle model. Note that non-zero lateral speed is expected in the
label trajectories and those of P2-3 because the speed is computed for the centroids instead of the
rear axle centers that are not annotated. Feasible longitudinal acceleration and lateral speed in KM
are achieved by hand-crafted constraints and regularization on the controls, which may contribute
to unnatural behaviors such as the distribution peaks at around 1m/s2 and 5m/s2 in the maximum
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Figure 3: Normalized histograms of maximum acceleration, minimum acceleration, maximum lateral
acceleration, and maximum lateral speed of label trajectories (Label) and prediction trajectories
by the models (WP, P2, P3 and KM). Y-axis values of the plots are fractions of non-static vehicle
trajectories per 0.1, 0.1, 0.1 m/s2, and 0.01 m/s interval, respectively. The label and all models have
4-second trajectories. The prediction trajectories of P2-3 are sampled with the same 0.1s interval for
the metric computation that uses finite difference.

longitudinal distribution, and the prediction performance regression shown in the second block in
Table 1. By contrast, the polynomial representation does not require extra regularization to produce
physically realistic trajectories.

5 Conclusion

We proposed a simple and general trajectory representation that expresses continuous time-varying
probabilistic predictions with polynomial parameterization. Detailed studies show that the polynomial
representation is broadly effective, and can outperform the waypoint representation for low-count
actors and large temporal supervision intervals. Moreover, we discussed the strength of the parametric
representation in providing continuous and precise predictions, which is highly desired in applied
robotics systems. Lastly, studying the physical feasibility of the predicted trajectories shows that the
polynomial representation exhibits physical realism intrinsically without additional constraints or
explicit regularization.
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