Stochastic-YOLO: Efficient Probabilistic Object
Detection under Dataset Shifts

Tiago Azevedo* René de Jong
Department of Computer Science and Technology Arm ML Research Lab
University of Cambridge rene.dejong@arm.com

tiago.azevedol@cst.cam.ac.uk

Matthew Mattina Partha Maji
Arm ML Research Lab Arm ML Research Lab
matthew.mattina@arm.com partha.maji@arm.com
Abstract

The robustness of object detection (OD) tasks under a probabilistic framework
have become a question of paramount interest in autonomous driving applica-
tions. However, unlike in image classification, OD tasks pose other challenges
for uncertainty estimation and evaluation. For example, one needs to evaluate
both the quality of the label uncertainty (i.e., what?) and spatial uncertainty (i.e.,
where?) for a given bounding box, but that evaluation cannot be performed with
more traditional average precision metrics (e.g., mAP). In this paper, we adapt
the well-established YOLOV3 architecture to generate uncertainty estimations by
introducing stochasticity in the form of Monte Carlo Dropout (MC-Drop), and
evaluate it across different levels of dataset shift. We call this novel architecture
Stochastic-YOLO, and provide an efficient implementation to effectively reduce the
burden of the MC-Drop sampling mechanism at inference time. Finally, we provide
some sensitivity analyses, while arguing that Stochastic-YOLO is a sound approach
that improves different components of uncertainty estimations, in particular spatial
uncertainties.

1 Introduction

Current developments in computer vision for autonomous driving (AD) applications are sustained by
very powerful deep learning models, with proven capabilities to deliver good results. Due to its direct
impact in daily human lives, it is of paramount importance to have models that generalise well to
unseen cases during training time.

This is well explored for image classification tasks, where it has been seen that many models get
wrong very confidently as dataset shift increases [[13]. But object detection (OD) tasks pose other
types of challenges, as the metrics used in image classification tasks can be quite distinct. For
example, in OD tasks, one has none to many bounding boxes being predicted for just a single image,
in which uncertainty semantics have a more diverse meaning. While in both image classification and
OD tasks we can measure how certain the model is about what the labels might be, in the OD case we
also need to know how certain the model is about where the objects (i.e., bounding boxes) are located.
These two measures of uncertainty — related to label and spatial information — can be evaluated using
a recently introduced metric named Probability-based Detection Quality (PDQ) [3] (see Section @

*Work performed while the author was at Arm ML Research Lab

Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

We introduce Stochastic-YOLO, a novel architecture adapted from the well-established YOLOv3 [15]],
into which we add Monte Carlo Dropout (MC-Drop) sampling to introduce stochasticity in the
predictions, which in turn generate uncertainty estimations. Although there are alternatives to
introduce stochasticity, MC-Drop is computationally light-weight and scales well at inference time.
Ideally, a Bayesian neural network [17, [1] would provide a fully probabilistic framework with
more precise measures of uncertainty, but Bayesian nets have the downside of significant memory
footprint. Likewise, an ensemble of models is known in the literature to produce better class labels
and uncertainty predictions [13}[16], but it also brings an obvious memory footprint and expensive
training times. We claim that using MC-Drop in OD tasks is the best trade-off between cost and
robustness to dataset shifts under a probabilistic framework.

Similarly to previous works on image classification tasks, we will systematically evaluate how
OD models generalise on increasing levels of corruptions, mainly in terms of label and spatial
uncertainties. Although all these topics are somehow scattered throughout literature, to the best of
our knowledge, no recent paper systematically evaluated label and spatial quality of OD techniques
in increasing levels of dataset shifts in a single work, with inference time performance in mind. We
also provide some sensitivity analysis on specific decisions for MC-Drop implementation which
we did not find in the literature. Our contributions can be summarised in the following three main
points: (1) improvements on YOLOvV3 architecture with an introduction of MC-Drop and sensitivity
analysis over important hyperparameters, (2) introduction of an efficient caching mechanism for
MC-Drop, effectively reducing sampling burden at inference time, which can be directly adapted to
other models, and (3) leveraging probabilistic-based metrics (e.g., PDQ) to systematically evaluate
model robustness for different levels of uncertainty (i.e. spatial and label qualities), while showing
MC-Drop is a sound approach to improve PDQ.

The code used in this work is publicly available in the following Github link: https://githubl
com/tjiagoM/stochastic-YOLO/.

2 Related Work

There are many attempts in the literature to bring stochasticity to OD models in order to capture their
prediction confidence. Such attempts can be summarised in four categories: (1) directly learning
to output Gaussian parameters for each bounding box coordinate, (2) using Bayesian approaches
(e.g., Bayesian neural networks) to have a full probabilistic model, (3) using sampled-based Bayesian
approximations like Monte Carlo Dropout (MC-Drop), and (4) using ensemble of models that generate
a distribution of predictions, which can also be approximated as Gaussian parameters.

Uncertainty in Object Detection (OD): Gaussian YOLOv3 [2] adapted the YOLOV3 architec-
ture [[15]] and corresponding loss so the model could output Gaussian parameters instead of single,
deterministic coordinates. This approach significantly reduced the false positive cases while keeping
similar inference time when compared to YOLOv3. Similarly, He et al. [4] proposed a new loss
named KL Loss to learn localisation uncertainty (i.e., variance) together with bounding boxes, which
could then empower a voting scheme to select bounding boxes. Another work [5] on a large scale au-
tomotive pedestrian dataset also reimplemented YOLOvV3 in order to estimate epistemic and aleatoric
uncertainty by using MC-Drop. Finally, another related work [12] used the variance introduced by
MC-Drop on a YOLOV3 architecture to measure spatial uncertainty; as a result, detections of lunar
craters could be accepted or rejected based on that variance. However, the spatial quality of those
bounding boxes were not directly evaluated using specific quantitative metrics and these detections
did not need to be performed in real-time like Stochastic-YOLO is targeted for.

Robustness to non closed-set data: Ovadia et al. [[13] claim to have conducted the first rigorous,
large-scale empirical comparison of predictive uncertainty for probabilistic deep learning methods
under dataset shift. However, this study was conducted in an image classification task, leaving it
open how these methods would behave in OD tasks. Indeed, some recent works analysed these
issues in more detail for OD tasks. One work [10] claims to be the first to investigate the utility of
dropout sampling for OD. The authors were able to show that dropout variational inference is able
to improve OD performance under open-set conditions when compared to non-bayesian models,
even though they did not evaluated how good the spatial uncertainty was for their open-set datasets.
Posterior works further extended this analysis: one work [[10] compared different combinations of

https://github.com/tjiagoM/stochastic-YOLO/
https://github.com/tjiagoM/stochastic-YOLO/

affinity measures and clustering methods for MC-Drop with a Single Shot Multi-Box Detector (SSD)
in closed set data, near open-set data, and distant open-set data. Furthermore, some authors
also analysed the performance of MC-Drop and Deep Ensembles in one- and two-stage OD models,
showing Deep Ensembles yielding the best results. They have also introduced a new merging strategy
that achieved comparative performance with only one hyperparameter needed, compared to three
from other models, which we used in this paper (see Section[3). Robustness to OOD cases can also
be seen under the framework of adversarial attacks [I8]]; however, we willingly did not tackle that
research direction in this work and focused instead on more systematic dataset shifts.

All these works showed advantages in considering localisation/spatial uncertainty in OD models
for non closed-set data. Spatial uncertainty is many times used to help in deciding which bounding
boxes are correct, but there was not an unified way to systematically evaluate measures of uncertainty
for different open-set scenarios. Indeed, from the OD models presented in this section, only one [11]]
used the unifying metric for probabilistic OD that we use in this paper (i.e., PDQ). Our work also has
the objective of introducing stochasticity for good predictive uncertainty measures in a way that can
be efficiently run at inference time, which we do not see in previous related literature.

3 Methods

3.1 Stochastic-YOLO

Figure 1: Working blocks of a deterministic baseline model and a stochastic model with Monte Carlo
Dropout, from which YOLOvV3 and Stochastic-YOLO are special cases. A stochastic model outputs
better probabilistic scores (i.e., PDQ) when compared to a deterministic baseline that outputs inflated
mAP metrics. These inflated mAP metrics give a false sense of model performance.

‘We introduce Stochastic-YOLO, a novel OD architecture based on YOLOv3 with efficiency in
mind. We added dropout layers for Monte Carlo Dropout (MC-Drop) sampling in each one of the
three YOLO heads; in specific, each head had a dropout layer before the last CNN layer, and before
the second to last CNN layer. We argue that MC-Drop brings a good trade-off in terms of complexity
and efficiency for introducing stochasticity at inference time.

The introduction of dropout layers towards the end of a deep OD model, instead of after every layer,
allows for an efficient sampling procedure. When sampling N times from a deep OD model, one can
cache the intermediate resulting feature tensor of one forward pass right until the first dropout layer.
This cached tensor is deterministic (assuming that numerical errors are not significant), thus allowing
only the last few layers of the model to be sampled from instead of making N full forward passes.

For the specific case of Stochastic-YOLO, MC-Drop is applied at inference time by sampling 10
times from the model with the dropout layers activated. The suppressions included in this work,
both for Stochastic-YOLO and YOLOV3, consisted of (1) removing bounding boxes below a certain
confidence threshold a (we tested for 0.1 and 0.5), (2) removing bounding boxes in which at least one
coordinate was located outside image margins, and (3) removing bounding boxes with an intersection
over union (IoU) above 0.6 with another bounding box containing a higher classification score. These
suppressions are calculated on the coordinates averaged from the 10 samples, thus closely following
the Pre-NMS technique introduced by Miller et al.’s [T1]]. There are other techniques in the literature
for suppressing bounding boxes when using MC-Drop, but this one revealed to have a good trade-off
between speed and performance when compared to other bounding box merging techniques [11]].

This entire process is summarised on a higher-level for non-stochastic and stochastic cases in Figure[T]
from which YOLOv3 and Stochastic-YOLO are special cases. For the non-stochastic baseline model

at the top, its output is a set { 52} ZD:"l, where l;i € R>+C is a bounding box predicting C possible labels,

and D, is the number of bounding boxes originally produced by the specific model (e.g., YOLOV3).
Each bounding box contains 5 + C' real values: four representing the bounding box (i.e., x and y
coordinates, and width and height), one representing the objectness score (i.e., softmax score that the
bounding box contains an object), and C' softmaxed scores for each possible label. This set enters the
Filtering block which contains the suppression techniques described in the previous paragraph, now
producing a smaller set { gz} i’fl of bounding boxes, where D is the final number of bounding boxes
to be evaluated. For the stochastic model, the number of bounding boxes being originally produced
is instead N x D,, where N is the number of MC-Drop samples. This distinction in the stochastic
model’s output, when compared to the non-stochastic one, will make the Filtering block to have an

extra output: for each averaged bounding box l_);- not being filtered, we need the corresponding N

3N

samples of that bounding box, represented as {b{ } .
Jj=1

A further Format Conversion block is needed to transform these sets into a format which can

be evaluated from a probabilistic perspective in the Evaluation block (see Section [3.3). In

practice, a bounding box vector b; = [z,y,width, height,obj, pg, ..., pc] is transformed into
B; = [%1,91, T2, §2, 5, ¥2, Po, ..., Pc |, where now we have two coordinates for the top-left corner
(i.e., (Z1, 1)) and bottom-right corner (i.e., (T2, §2)) instead of a single coordinate with width/height.

In this work, for a deterministic model these values correspond to those originally in l_)'i, whereas for
the stochastic model these are the average coordinates across the /N samples. Each softmaxed score
is transformed such that p; = p; x obj. Finally, 3* is a covariance matrix for one coordinate with the

following representation:

7 7
Dye Dyy

in which for the deterministic model these will all be zeros, whereas for the stochastic model each
covariance matrix is calculated from the distribution of the N sampled points in each coordinate.
When a covariance matrix is not positive semi-definite, we transform it by computing the eigen
decomposition, and reconstructing the matrix again with eigenvalues of zero where they were
previously negative.

We highlight that the reasoning in this section illustrated in Figure[I|can be applied in almost any OD
model that outputs some set of bounding boxes, even though in our experiments we illustrate this
for YOLOV3 and Stochastic-YOLO only. Indeed, researchers might want to consider other merging
strategies for their specific needs [9]].

3.2 Systematic Evaluation of Dataset Shift Scenarios

We used the Python package proposed by Michaelis et al. [8] to systematically evaluate the robustness
of our models to increasing dataset shifts. Among other contributions, the package provides a total
of 5 severity levels across 15 corruption types to be applied in images, some of them corresponding
to distortions that can be seen more often in real-world scenarios, like rain, snow, and fog. From
these 15 corruptions, we used all but glass blur due to the extended time taken to be calculated, when
compared with all the others.

Michaelis et al. [8] also presented a single measure to evaluate relative performance degradation
under corruption, named relative performance under corruption (rPC):

Ne Ns

PC = c=1 s=1 ’ (2)

where P, is the performance of the model for severity level s on corruption ¢, IV, is the number of
corruptions applied (i.e., 14 in our case) and N, the number of severity levels (i.e., 5 in our case).
Pjean corresponds to the performance of the model without any corruption in the dataset. Note that in
the original paper the authors only used mAP as a performance metric, but this can be applied in any
performance metric. For instance, rPC,,,, corresponds to the relative performance of the model under
corruption for metric m;.

3.3 Probability-based Detection Quality (PDQ)

We use the Probability-based Detection Quality (PDQ) metric [3]], which is calculated between the
set of ground truths G, and the set of detections D. This metric is built on top of two ideas: label
quality and spatial quality.

Label quality ()1, on the f-th image (named frame instead of image in the original paper) between a
i-th ground-truth object sz and a j-th detection D; , can be defined as:

Q1 (G{,Dj) —1/ (cf) 3)

where I; is the probability distribution across all classes on the j-th detection object, and é{ the
ground-truth class. Note that this ignores whether the class is the highest ranked in the probability

distribution I, thus effectively evaluating the quality of whar object is being predicted.

Spatial quality ()5 on the f-th image between a i-th ground-truth object Gf and a j-th detection D,
can be defined as:

Qs (G{,D{) = exp (— (LFG (G{,D-j) + L (G{,D{))) ,)

where L g and L g are two loss terms for the foreground and background of that image, respectively.
This spatial quality will be equal to 1 (i.e., maximum value) when the detector D]f assigns a probability

of 1 to all the ground-truth pixels in G { , while not assigning any probability to the other pixels (i.e.,
background). The probability distribution used to measure these two losses is calculated by joining
the two covariance matrices from each corner introduced in Equation[I] For details on how to derive
the final PDQ score, we refer the reader to the original paper [3].

4 Experiments and Results

4.1 Training Procedure

We have used and adapted Ultralytics” open-source implementatiorﬂ of YOLOv3 for Pytorch [[14]
with input size of 416 x 416. Training followed all the repository’s default hyperparameters, unless
stated otherwise. Baseline YOLOv3 model was trained for 200 epochs using Stochastic Gradient
Descent, cosine learning rate decay [7]], and data augmentation. Final model is selected according
to best mAP in the validation set. Training and evaluation was performed using the train2017 and
val2017 splits provided by MS COCO [6] 2017 release, with 118,287 and 5,000 images, respectively.
Stochastic-YOLO is created by inserting the dropout layers in the best YOLOv3 model as previously
described. For comparison, we train an ensemble of five YOLOv3 models, where each one was
trained in the same way with different random seeds when initialising the network’s weights.

YOLOV3 baseline model was trained with a batch size of 20, distributed across 2 GeForce RTX 2080
GPUs, producing training times of around 48 minutes per epoch. Ensemble models were trained
with a batch size of 40, distributed across 2 GeForce RTX 2080 Ti GPUs, producing training times
of around 35 minutes per epoch. When Stochastic-YOLO is fine-tuned, this is done under the same
conditions as YOLOvV3, but with dropout layers activated at training time and for 50 extra epochs.

4.2 Robustness to Corruptions

Table[I] summarises metrics and their relative performance under corruption (rPC) across different
models. For every model we show two confidence thresholds — 0.1 and 0.5 — and for all the
models a confidence threshold of 0.1 corresponds to higher values of mAP and better robustness for
mAP. However, for the label and spatial quality metrics (and corresponding relative performances
under corruption), all the models perform significantly worse when a confidence threshold of 0.1 is
used. This illustrates well-known concerns in the field, where many developers try to decrease the
confidence threshold to inflate mAP values, giving a false sense of good performance.

Zhttps://github.com/ultralytics/yolov3

https://github.com/ultralytics/yolov3

Table 1: Overall results across different models and metrics, where Lbl and Sp mean average label
and spatial uncertainty quality, respectively. In parenthesis confidence threshold. S-YOLO means
Stochastic-YOLO in which the corresponding number is the dropout percentage applied, and -X
means fine-tuned model. In bold best results for each metric.

Deterministic Metrics (%) Probabilistic Metrics (%)

mAP PC,ap PDQ rPCppq Lbl 1PCpy Sp rPCg,,
YOLOV3 (0.1) 3443 20.64 7.19 4.88 55.27 48.38 1453 12.18
YOLOV3 (0.5) 26.07 14.64 9.26 5.40 72.88 69.70 18.42 16.11
Ensemble-5 (0.1) 3714 2228 1836 1338 50.66 4325 3924 37.66
Ensemble-5 (0.5) 26.00 14.07 19.53 11.50 72.21 69.63 49.21 48.59
S-YOLO-25 (0.1) 31.67 1931 1773 1340 4818 41.67 3727 3484
S-YOLO-25 (0.5) 22.72 12.91 20.27 12.46 70.17 67.70 4578 44.95
S-YOLO-25-X (0.1) 33.16 1966 1729 11.95 51.01 4462 3859 34.58
S-YOLO-25-X (0.5) 24.20 13.58 19.08 11.39 70.99 68.09 4876 45.58
S-YOLO-75(0.1) 1736 ' 11.11 444 420 2988 2479 1971 17.19
S-YOLO-75 (0.5) 7.47 4.36 7.81 5.09 61.32 60.71 2588 26.61
S-YOLO-75-X (0.1) 2936 17.63 1786 1257 4294 3868 3936 36.82
S-YOLO-75-X (0.5) 17.76 10.11 15.20 9.51 66.34 64.41 5227 49.97

Fine-tuning Stochastic-YOLO models usually brings better metrics and robustness to corruptions
when compared to Stochastic-YOLO used directly from a pre-trained YOLOv3 model with inserted
dropout layers and no fine-tuning. Although for a dropout rate of 25% these are just slight improve-
ments, for a dropout rate of 75% they are much more substantial, even resulting in the best spatial
quality and robustness for spatial quality among all models.

PDQ score, spatial quality and robustness for these two metrics more than doubled for Stochastic-
YOLO model with 25% dropout rate when compared to YOLOv3. At the same time, label quality,
robustness for label quality, and robustness for mAP only reduced around 2% when compared to
YOLOv3 with the same 0.5 confidence threshold. The mAP metric is the only one that is more
significantly impacted (almost 4%) with Stochastic-YOLO for a confidence threshold of 0.5 at 25%
dropout rate, but the issues with mAP usefulness are well-known in the field.

It is noteworthy the very good label quality across all models when a confidence threshold of 0.5
is used. The disproportionate capability of YOLOv3 to produce very high label quality measures
but very low spatial quality measures has been previously seen in the literature [3]]. This is also the
performance metric more robust to corruptions, with a relative performance (i.e., tPCpry;) of almost
70% in the best models. By using a confidence threshold of 0.1 instead of 0.5, these two metrics are
the most severely impacted.

4.3 Model Fine-tuning

As it can be seen in Table[l} the decision of further fine-tuning Stochastic-YOLO can impact overall
results. We check three representative dropout rates (25%, 50%, and 75%) and resulting spatial and
label qualities over corruptions averaged across dataset shifts. These results are depicted in Figure
for label and spatial quality, with a confidence threshold of 0.5.

Both uncertainty qualities (i.e., label and spatial) follow similar patterns: fine-tuning Stochastic-
YOLO produces better averaged metrics across increased levels of dataset shifts, with these improve-
ments being smaller for a smaller dropout rate (i.e., 25%), and more noticeable for a higher dropout
rate (i.e., 75%). For spatial quality this behaviour is even more evident, as the best averaged spatial
qualities are produced when fine-tuning with 75% dropout rate, followed by 50% and 25%. All these
three fine-tuned models are the best, on average, for most cases when compared to all the other non
fine-tuned models.

Nevertheless, Stochastic-YOLO with a dropout rate of 25% with no fine-tuning seems to yield the
best trade-off in terms of performance and complexity, as it achieves comparable results without the
need to spend further time fine-tuning it.

w
(=)

IS
o

w
o

|
64 —— YOLOv3 —— YOLOvV3
—f— S-YOLO 25%-X —f— S-YOLO 25%-X

—— S-YOLO 25% —— S-YOLO 25%

627 4~ 5-YOLO 50%-X —}— S-YOLO 50%-X
S-YOLO 50% "\'\'\ﬁ\ S-YOLO 50%

60{ —F— S-YOLO 75%-X —}— S-YOLO 75%-X
—— 5-YOLO 75% 10] —+ SYOLO75%

0 1 2 3 4 5 0 1 2 3 4 5
Severity of corruption Severity of corruption

Label Quality (%)
(=2
o

Spatial Quality (%)

N
o

Figure 2: Label Quality and Spatial Quality averaged across all corruptions for each severity, with 0.5
confidence threshold. Error bars correspond to one standard deviation. S-YOLO means Stochastic-
YOLO followed by dropout rate. -X means fine-tuned model. Note the reduced variation in the y-axis
for the Label Quality.

50 ' I
 ——
S —

< 3

€68 40

> 2

= =

T gg{ —+ YOLOV3 S | =+ volowv3

& S-YOLO 1% 939 S-YOLO 1%

© —f— S-YOLO 5% o —4— S-YOLO 5% |
< 64 —— S-YOLO 10% § —— S-YOLO 10%

- —f— S-YOLO 15%) —— S-YOLO 15%

62 S-YOLO 20% 20 S-YOLO 20%
—- sYoLo2s% o} + —}— S-YOLO 25%
60 S-YOLO 50% { S-YOLO 50%
—4— S-YOLO 75% —}— S-YOLO 75%

10

0 1 2 3 4 5 0 1 2 3 4 5
Severity of corruption Severity of corruption

Figure 3: Label Quality and Spatial Quality across different dropout rates, averaged across all
corruptions for each severity, with 0.5 confidence threshold. Error bars correspond to one standard
deviation. S-YOLO means Stochastic-YOLO. Note the reduced variation in the y-axis for the Label
Quality.

4.4 Sensitive Analysis on Dropout Rate

We provide a sensitivity analysis on the influence of dropout rate, a hyperparameter that needs to be
defined when using Stochastic-YOLO. Due to resource and time constrains, we focus this sensitivity
analysis on Stochastic-YOLO without any further fine-tuning. Figure 3] contains the results for label
and spatial quality, with a confidence threshold of 0.5.

The behaviour of Stochastic-YOLO is very consistent for label quality across increased dataset
shifts: the smallest dropout rate produces the best label quality (only surpassed by YOLOv3), and
consistently worsens for higher dropout rates. However, for the spatial quality the behaviour is not
the same. There is a range of very similar results between 5% and 25%, with significant worse results
below and above this range. Indeed, on average, with 1% dropout rate Stochastic-YOLO yields worse
results when compared to 50% for spatial quality. Once again, Stochastic-YOLO with 25% dropout
achieves a good trade-off across different metrics without fine-tuning.

4.5 Model Efficiency

We measure the impact of the networks on inference time and power usage, by setting up an
experiment running the different models on two different real devices. For this, we make use of the
NVIDIA Jetson TX2 (TX?2) platform and the NVIDIA GeForce RTX 2080 (RTX 2080) graphics card.
Both platforms allow for an accurate power measurement during runtime. The TX?2 has a Dual core
Denver 2 CPU (2GHz) and a Quad-Core Arm Cortex-A57 CPU (2GHz). It comes with a 256-core
NVIDIA Pascal GPU, and 8GB LPDDR4 memory. The RTX 2080 is a Turing architecture GPU
with 2944 CUDA cores and 8GB GDDR6 memory. Each network inference is run 1000 times and

SN

1
N RTX 2080
. TX2

1
N RTX 2080
. TX2

10

®
o N}

o
o
o

IN
o
o

Inference time (normalised)
Power usage (normalised)

N
1
IS

o
N}

0 YOLOv3 S-YOLO hed S-YOLO 5 10 0.0 YOLOv3 S-YOLO hed S-YOLO 5 10

Figure 4: Comparison of inference time (left) and power usage (right) of the different models
normalised to the inference time (left) and power usage (right) of YOLOv3 on that platform, as run
on a NVIDIA RTX 2080, and a NVIDIA Jetson TX2.

throughout the run we measure the power. At the end of each experiment we calculate the average
power consumption and inference times of each network.

By performing measurements on both platforms, we illustrate the effect of the different model
performances for high-performance systems as well as energy-efficient systems. The results of these
measurements are summarised in Figure[d] All the results are normalised to the results as measured
for the YOLOV3 run on that platform. The measured inference time for YOLOvV3 is 12 ms per
instance on the RTX 2080, and 162 ms on the TX2. Its power usage is 216 W and 9 W for the RTX
2080 and the TX2, respectively. “Ensemble-10" was created only for comparison purposes, and
corresponds in practice to duplicating the models from “Ensemble-5.

We see that the baseline run of YOLOv3 shows in all cases the lowest inference times, and the
non-cached Stochastic-YOLO and the Ensemble show the highest. Since this non-cached version of
Stochastic-YOLO is run ten times, we see an unsurprising ten-time slowdown in the inference times.
However, the overhead for the cached model only shows a two to three times slowdown compared to
the baseline and a three to four times speedup compared with the non-cached Stochastic-YOLO. The
power consumption does increase only marginally in comparison with YOLOv3. This demonstrates
that Stochastic-YOLO’s caching mechanism is an efficient alternative to the full Stochastic-YOLO
without any caching mechanism.

5 Discussion

In this work, we enhanced the well-established YOLOv3 architecture in order to generate uncertainty
estimations in OD tasks. These improvements included the addition of Monte Carlo Dropout (MC-
Drop), thus successfully generating both label and spatial uncertainties. The implementation of this
architecture was achieved using a caching mechanism that enabled minimal impact on inference time
when deploying the model in the real world. All these developments allowed for better resulting
probabilistic metrics (i.e., PDQ), which have proven advantages over the more traditional mAP metric
that can sometimes give a false sense of performance.

Although in the literature the use of MC-Drop usually includes dropout layers activated at both
training and test times, in many OD architectures dropout is not a typical choice of regulariser
for training. As a consequence, we developed Stochastic-YOLO in a way that can fit most of OD
researchers current pipelines, in the sense that we show that direct application of MC-Drop in pre-
trained models without any fine-tuning results in significant improvements (see Table[T). To further
help the community decide how to use Stochastic-YOLO, we provided sensitivity analysis on dropout
rate and on the decision of further fine-tuning the model, which to the best of our knowledge has
not yet been fully explored in the field. Overall, we found that not fine-tuning Stochastic-YOLO
yields sufficiently good results already, in which case a smaller dropout rate should be picked. For
those with the time and computational resources for further fine-tuning their stochastic models with
MC-Drop, a higher dropout rate should be picked instead. We hope that this work encourages other
researchers to extend the ideas presented in this paper on their own models (as illustrated in Figure[T)
with the help of our publicly available code.

References

(1]
(2]

(3]

[4

—

(5

—

(6]

(7]
(8]

[9

—

[10]

(11]

(12]

[13]

[14]

(15]
(16]

(17]

(18]

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International Conference on Machine Learning, pages 1613-1622, 2015.

Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae Lee. Gaussian yolov3: An accurate and fast
object detector using localization uncertainty for autonomous driving. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2019.

David Hall, Feras Dayoub, John Skinner, Haoyang Zhang, Dimity Miller, Peter Corke, Gustavo Carneiro,
Anelia Angelova, and Niko Sunderhauf. Probabilistic object detection: Definition and evaluation. In 2020
IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, Mar. 2020.

Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu Zhang. Bounding box regression
with uncertainty for accurate object detection. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, June 2019.

Florian Kraus and Klaus Dietmayer. Uncertainty estimation in one-stage object detection. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC). IEEE, Oct. 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In Computer Vision — ECCV
2014, pages 740-755. Springer International Publishing, 2014.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2016.

Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexander S.
Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking robustness in object detection: Autonomous
driving when winter is coming. arXiv preprint arXiv:1907.07484, 2019.

Dimity Miller, Feras Dayoub, Michael Milford, and Niko Sunderhauf. Evaluating merging strategies for
sampling-based uncertainty techniques in object detection. In 2019 International Conference on Robotics
and Automation (ICRA). IEEE, May 2019.

Dimity Miller, Lachlan Nicholson, Feras Dayoub, and Niko Sunderhauf. Dropout sampling for robust object
detection in open-set conditions. In 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, May 2018.

Dimity Miller, Niko Sunderhauf, Haoyang Zhang, David Hall, and Feras Dayoub. Benchmarking sampling-
based probabilistic object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2019.

Tomoyuki Myojin, Shintaro Hashimoto, Kenji Mori, Keisuke Sugawara, and Naoki Ishihama. Improving
reliability of object detection for lunar craters using monte carlo dropout. In Lecture Notes in Computer
Science, pages 68—80. Springer International Publishing, 2019.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. In Advances in Neural Information Processing Systems, pages 13991-14002,
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 8024—-8035. Curran Associates, Inc., 2019.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767,
2018.

Pan Wei, John Ball, and Derek Anderson. Fusion of an ensemble of augmented image detectors for robust
object detection. Sensors, 18(3):894, Mar. 2018.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference on International Conference on Machine Learning,
ICML’11, page 681-688, Madison, WI, USA, 2011. Omnipress.

Haichao Zhang and Jianyu Wang. Towards adversarially robust object detection. In Proceedings of the
IEEE International Conference on Computer Vision, pages 421-430, 2019.

	Introduction
	Related Work
	Methods
	Stochastic-YOLO
	Systematic Evaluation of Dataset Shift Scenarios
	Probability-based Detection Quality (PDQ)

	Experiments and Results
	Training Procedure
	Robustness to Corruptions
	Model Fine-tuning
	Sensitive Analysis on Dropout Rate
	Model Efficiency

	Discussion

