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Abstract

Research in machine learning for autonomous driving (AD) is a constantly evolving
field as researchers strive to build a Level 5 autonomous driving system. However,
current benchmarks for such learning algorithms do not satisfactorily allow re-
searchers to evaluate and compare performance across safety-critical metrics such
as generalizability, out-of-distribution performance, etc. Reasons for this include
the expensive nature of data collection from the real-world for autonomous driving
and the limitations of software tools currently available for autonomous driving
simulators.

We develop a pipeline that allows for automatic generation of new town maps
for simulator environments from OpenStreetMap [Haklay and Weber, 2008].
We demonstrate that our pipeline is capable of generating towns that, when per-
ceived via LiDAR , share similar footprint to real-world gathered datasets like
NuScenes [Caesar et al., 2020]. Additionally, we learn a realistic noise aug-
mentation via Conditional Adversarial Networks [Isola et al., 2017] to further
improve the similarity with real-world LiDAR . Our pipeline allows researchers for
the first time to benchmark at scale various AD agents, both in-distribution, and
out-of-distribution.

1 Introduction

The challenge of autonomous driving has received a lot of attention in these past two decades from a
number of organizations, ranging from governmental entities such as Defense Advanced Research
Projects Agency (DARPA) which ran the DARPA Grand Challenge in the mid/late 2000s [DARPA],
to commercial actors like Weymo, Tesla or Toyota. Despite this attention over a long period of time,
fully autonomous (Level 5) driving in urban environments remains an elusive problem to solve.

The main paradigm of developing autonomous driving agents is via simulated driving environments,
such as CARLA [Dosovitskiy et al., 2017]. Simulators allow for quick turnaround of training and
testing different Autonomous Driving (AD) agents, with the aim of deploying such agents in real
world. Overcoming the so-called reality gap [Jakobi et al., 1995] requires significant engineering
effort and measuring the safety and performance of the agents in real-world can be potentially
risky. Existing benchmarking tools focus on a limited set of maps or real world data gathered in the
wild [Caesar et al., 2020, Sun et al., 2020], which don’t allow testing behaviors in an online fashion.

With this project we propose to overcome these limitations by bringing real world maps into a
simulation environment (Real2Sim) to allow researchers to quickly test out-of-distribution and
in-distribution scenarios.
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Figure 1: An example of the pipeline in action. (a) View of Keble College, Oxford, in Open Street Map. (b) The
top down view in Blender, after importing and post processing. (c) LiDAR view from inside the CARLA simulator
of the map object after the fbx and xodr files have been ingested.

We summarize the high-level desiderata below —

1. The pipeline should be easy for everyone to use.
2. The generated towns should contain diversity that mimic the complexity of the real world.
3. The pipeline should be Open Source for it to be usable and accessible to the AD community.

2 Related Work

There are several proposed benchmarks for autonomous driving, such as the nuScenes tasks [Caesar
et al., 2020], the Waymo competition [Sun et al., 2020] or the CARLA Leaderboard . Many of
these benchmarks share some similarities. They often involve solving a series of challenges —
object detection challenges, trajectory forecasting challenges etc. — and tend to be in the form of a
competition.

However, there are limitations to evaluating autonomous driving frameworks on these static sets of
hold out data. These benchmarks are once again built on snapshots of a particular urban environment
in a particular point in time. They don’t allow a researcher to evaluate the performance of an
autonomous driving agent in rare but plausible scenarios. For example, if we would want to examine
how a AD vehicle would react if say, an animal jumped out from out of sight into the vehicle’s path,
these static datasets, most of which have not collected data about such rare occurrences, will not let
the evaluation of the performance under such circumstances.

There are benchmarks available that allow for assessments of AD frameworks in such rare situations.
One such benchmark, CARNOVEL (car novel-scene benchmark), introduced in Filos et al. [2020], is
built on top a town provided by the CARLA simulator. The training set provided in this benchmark
does not contain a number of situations — such as roundabouts and abnormal turns, and collectively
referred to as out of distribution (OOD) scenarios — are only exposed during the evaluation. This
benchmark too has limitations — The number of OOD scenarios that the performance of the AD
framework can be evaluated on is bounded.
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Figure 2: Over of the pipeline.

https://leaderboard.carla.org/challenge/



Table 1: Performance of the models with different LiDARs
Source of LiDAR | NuScenes CARLA Blank

Off-road metric \ 0.0719  0.100 0.177

3 The Pipeline

Here we describe an end-to-end automated pipeline. Each step of this process runs in a Docker
instance which makes the system deployable as a service and scalable under load.

Generation of 3D geometry

Our target is to generate towns for a popular autonomous driving simulator, CARLA . A town consists
of 3D geometry (FBX file) and annotated street layouts (OpenDRIVE), bundled together as a binary
map which CARLA loads and allows for agents to be interact with it.

We use OpenStreetMap as a source to generate the towns, where we receive annotated a topology and
additional metadata which help us generate the appropriate assets.

First, we use Blender to generate the geometries as it is a scriptable, open source, 3D editing software.
We used blender-osm to generate the FBX files which we use for the generation of the towns. The
main limitation of this approach is that although the high-level geometries are matched, details and
textures are not generated, therefore we focus mostly on the high-level features. For automating
blender we used Docker images provided by New York Times which allowed us to use it as a headless
service.

Generation of OpenDRIVE

OpenDRIVE is an open format specification which is used by CARLA to extract the layout and meta-
data of the streets. To build a map, it is a requirement to extract an OpenDRIVE file from the
OpenStreetMap location. For this, we are using netconvert, a tool which is part of the SUMO
open-source package.

Compile the map

Given the FBX (geometry) file from Blender and the OpenDRIVE file from netconvert, we run the
build process from CARLA to generate a binary map. The full pipeline can be seen in figure 2.

4 Experiments and Results

Our goal is to automate a pipeline that generates towns which can be used for autonomous driving
benchmarking. However, removing too much fidelity can cast the generated town unusable for
evaluation of AD agents.

4.1 Comparison with NuScenes

To evaluate the quality of the generated maps we devised a methodology which helped us compare
against existing real-world, like NuScenes dataset.

We select one thousand scenes from NuScenes randomly. For each scene we use the lat/lon coordinate
of the recording car to extract the corresponding OpenStreetMap map. We generate the town for that
part of the city and we start CARLA , with an agent placed at the same lat/lon of the NuScenes scene.
Then we use the LiDAR from CARLA to take a snapshot . That way, we construct a dataset which
consists of the LiDAR images as taken from inside CARLA , for each of the NuScenes scenes. We call
this CARLA LiDAR .

Next, we train a density model py(s|¢), like the one suggested in Rhinehart et al. [2018] (s is the
future trajectory and ¢ the LiDAR ) on the NuScenes dataset. We then use the trained model to
assess the quality of our town by replacing the LiDAR from NuScenes with the CARLA gathered
LiDAR image. First, we evaluate the downstream task performance (summarized in Table 1), as well

https://github.com/vvoovv/blender-osm

https://en.wikipedia.org/wiki/FBX
https://github.com/nytimes/rd-blender-docker

Please note that we have made sure that the LiDAR settings matched the ones from NuScenes .
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Figure 3: (a) LiDAR from CARLA (b) corresponding LiDAR from NuScenes (c) Results of applying P2P on
LiDAR images from the CARLA images

as the difference of the distributions between py(s|¢, for different ¢ settings, measured with Kullback-
Leibler (KL) divergence. Specifically we compare the following LiDAR settings: NuScenes (NS),
CARLA (CARLA), corrupted NuScenes LiDAR with Bernoulli noise of probability o (NS-«) and
finally blank LiDAR (blank). We summarize the comparisons KLys_q-ns, KLys_carras KLxs_b1ank ON
Table 2.

Experiment ‘ KLys_a-ns; « = 0.2 Klys_carea  KLys_blank
Mean \ 0.38334 0.38994 0.41349

Table 2: Table showing the average of KL divergences between using LiDAR images from the NuScenes dataset,
and using LiDAR images from the CARLA simulator and lidar images after applying various values of o zeroing
on the nuScenes dataset.

We found the distribution induced when LiDAR is fed from NuScenes , has the same KL divergence
when we corrupt NuScenes with Bernoulli noise of p = 0.2 and when we replace NuScenes with
CARLA dataset.

As summarized in table 1, we can see that the downstream task, although is affected when swapping
NuScenes LiDAR with the one from CARLA , it’s less that the performance evaluated with empty
LiDAR (blank LiDAR case), suggesting the our generated towns maintain the fidelity required to solve
the task.

4.2 Realistic Noise Augmentation via Conditional Adversarial Networks

Although the LiDAR in CARLA captures the high level geometry (obstacles) correctly, in the real world
there is noise that is not modeled in the LiDAR sensor of CARLA , making the received LiDAR images
look unrealistic. We cast the problem of learning a noise model into an Image to Image translation.
We used Pix2Pix [Isola et al., 2017], a GAN based model, to learn the conditional noise model
which make the LiDAR look closer to NuScenes . As we see in Figure 3, the image after the applied
transformation look closer to the original NuScenes LiDAR . Although this is a promising direction,
extra care need to be taken as the learned noise can introduce artifacts that can increase the uncertainty
of the model.

5 Discussion And Future Work

With this work we demonstrated a pipeline for automatic generation of towns for autonomous driving
from real maps. The generated maps share similar LiDAR footprint with real-world gathered data
and therefore can allow for scaled-up benchmarks or data gathering of in-distribution and out-of-
distribution scenarios. While this is a promising first step of brining real-world maps in simulated
environments, we are currently working in bring more detailed geometry and texture generation to
allow also camera based perception systems as well.

An open challenge remains to generate diverse towns with various difficulties. We aim to extend
this work equipping it with an active process which will use the epistemic uncertainty of the trained
models to select map locations that will improve the policy.

Finally, we aim to make the tools and source code available online for the research community to use
and build upon.
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