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Abstract

Predicting future trajectories of surrounding obstacles is a crucial task for au-
tonomous driving cars to achieve a high degree of road safety. There are several
challenges in trajectory prediction in real-world traffic scenarios, including obey-
ing traffic rules, dealing with social interactions, handling traffic of multi-class
movement, and predicting multi-modal trajectories with probability. Inspired by
people’s natural habit of navigating traffic with attention to their goals and sur-
roundings, this paper presents a unique dynamic graph attention network to solve
all those challenges. The network is designed to model the dynamic social interac-
tions among agents and conform to traffic rules with a semantic map. By extend-
ing the anchor-based method to multiple types of agents, the proposed method can
predict multi-modal trajectories with probabilities for multi-class movements us-
ing a single model. We validate our approach on the proprietary autonomous driv-
ing dataset for the logistic delivery scenario and two publicly available datasets.
The results show that our method outperforms state-of-the-art techniques and
demonstrates the potential for trajectory prediction in real-world traffic.

1 Introduction

Autonomous driving is believed [6] to have a tremendous positive impact on human society. To en-
sure a high degree of safety even in uncertain or dynamically changing environments, an autonomous
vehicle should be able to anticipate the future trajectories of the surrounding agents (e.g. vehicles,
pedestrians, and cyclists) in advance and plan a plausible path in response to the behaviour of other
agents such that the probability of collision is minimized. However, the motion trajectory of the
surrounding agents is often hard to predict without explicitly knowing their intention. In this case,
we need to utilize other useful information to improve safety and efficacy of the planned path of the
ego-vehicle, including the observed current status of notable surrounding agents, possible physically
acceptable routes in the current traffic scenario, and possible interaction outcomes with their likeli-
hoods. Unfortunately, several challenges still exist that prevents us from utilizing this information
to achieve reliable trajectory prediction. In this paper, five main challenges in trajectory prediction
for autonomous driving are summarized and discussed as follows:

Considering surrounding traffic environments. In real-world traffic scenarios, the movement
of traffic must obey traffic rules, and avoid surrounding obstacles in the meantime. That useful
information can be found in the high definition (HD) map.

Dealing with social interactions. To avoid the collision, the trend of interacting with surrounding
traffic agents needs to be captured. However, interactions between different types of traffic are very
different, e.g. the interaction between pedestrians is different from the interaction between a car and
a pedestrian.
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Table 1: Comparison of challenges handled in different methods in trajectory prediction.
Methods Traffic Environments Social Multi-class Multi-modal Probability
Social LSTM [1] ✓
Social GAN [7] ✓ ✓
PECNet [12] ✓ ✓
Argoverse [4] ✓
Trajectron++ [21] ✓ ✓ ✓
Multipath [2] ✓ ✓ ✓
DGAN (ours) ✓ ✓ ✓ ✓ ✓

Handling traffic of multi-class movement. The movement patterns of different types of traffic
need to be considered for autonomous driving, including cars, buses, trucks, motorcycles, bicycles,
and pedestrians. In this paper, those types of traffic are divided into three categories, namely vehicles
(cars, buses, and trucks), cyclists (motorcycles and bicycles) and pedestrians.

Predicting multi-modal trajectories with probability. In reality, people may follow several plau-
sible ways when navigating crowd and traffic. To avoid potential collisions, the most probable future
movements should be considered.

Probability awareness. The probability value of each possible path of surrounding obstacles is a
considerable factor in the planning and control of the autonomous driving car.

State-of-the-art methods only solve some, but not all, challenges at once as shown in Table 1. In this
paper, we present a multi-modal trajectory prediction method to tackle all these challenges, which
models the dynamic social interactions among agents using Graph Attention Network (GAT) [23]
and semantic map. The contributions of our proposed method are summarized as follows:

• The proposed method is designed to achieve multi-modal predictions with considering traf-
fic environments, dealing with social interactions, and predicting multi-class movement
patterns with probability values, simultaneously.

• In the proposed Dynamic Graph Attention Network (DGAN), Dynamic Attention Zone
and GAT are combined to model the intention and habit of human driving in heterogeneous
traffic scenarios.

• To capture complex social interactions among road agents, we combine different types of
information, including a semantic HD map, observed trajectories of road agents, and the
current status of the traffic.

2 Related Work

Here, we review recent literature on trajectory prediction with social interactions.

RNN-related methods. The recurrent neural network (RNN) [13] and long short term memory
(LSTM) [8] have proven to be very effective in time-related prediction tasks. To capture social inter-
actions between pedestrians in crowds, Alexandre et al. [1] used a social pooling layer in LSTMs
to capture social interactions based on the relative distance between different pedestrians. Chandra
et al. [3] introduced an LSTM-CNN hybrid method with the weighted horizon and local relative in-
teractions in heterogeneous traffic. However, those previous studies only focus on predicting future
trajectories for one class, e.g. pedestrians or vehicles.

GAN-related methods. As there are multiple plausible paths that people could take in the future,
several methods [7, 9, 14] were proposed using the GAN framework to generate multiple trajecto-
ries for a given input. However, to generate multiple results for one target in practice, the generative
model should be executed repeatedly with a latent vector randomly sampled from N (0, 1) as input.
Randomly initialised inputs will generate random outcomes, which may lead to large margins be-
tween the generated results and the ground truth. To cover the most likely future paths, the number
of executions has to be increased.

Methods that encode traffic rules. To predict trajectories that obey traffic rules, several methods
used features learned from customised semantic HD map or static-scene images to encode prior
knowledge on traffic rules. Chai et al. [2] proposed a multipath model to predict parametric dis-
tributions of future trajectories with HD map. It regresses offsets for each predefined anchor and
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Figure 1: Dynamic attention zone and graph
modelling for simulating the interaction pattern
in real world traffic scenario.

Figure 2: RGB image representation of seman-
tic HD map for encoding the real world traffic
environments.

predicts a Gaussian Mixture Model (GMM) at each time step. Meanwhile, with a birds-eye-view
(BEV) binary image, probabilities are predicted over the fixed set of K predefined anchor trajecto-
ries. Cui et al. introduced a multi-modal architecture using a raster image from an HD map with
each agent’s surrounding content encoded. In [4], lane sequences were extracted from rich maps
as reference lines to predict cars’ trajectories. Sadeghian et al. [19] presented a GAN framework
integrating features encoded from the static-camera frames as the traffic rule constraints using the
attention mechanism. However, those works only encode car lanes without considering pedestrian
crossings, cycle lanes and other static obstacles labeled in the HD map at the same time.

3 Methodology

3.1 Problem Definition

Given a set of N agents in a scenario with their corresponding observed information over a time
period Tob from time steps 1, ..., tob, our goal is to predict the future trajectories Ŷ = {Ŷ1, ..., ŶN}
of all agents involved in the scenario over a time period Tf from time step tob + 1, ..., tf . N agents
belong to multiple c classes, e.g. vehicle, cyclist, and pedestrian. Similarly, the ground truth of the
future trajectory is defined as Y = {Y1, ..., YN}, where Yi = {pti = (xt

i, y
t
i)|t ∈ {tob + 1, ..., tf},

and i ∈ {1, ..., N}. There are three different kinds of observed information as inputs to our model,
including the semantic map maptob of the current scenario at time stamp tob, the traffic state Stob

i
of agent i at current time stamp tob, and the observed trajectories of all agents X = {X1, ..., XN},
where Xi = {pti = (xt

i, y
t
i)|t ∈ {1, ..., tob}}.

3.2 Dynamic Graph Attention Network

3.2.1 Dynamic Attention Zone and Graph Modelling

Inspired by the real-world traffic moving pattern, a dynamic attention zone is designed to capture
the normal ability of people when interacting with others in traffic. Human beings have the natural
sense to choose which surrounding moving agents should be noticed by judging their current status,
such as distances, headings, velocities, and sizes. Then, we model each object in the scenario to
have an attention circle. Based on the intersection status of the attention circles, we can easily select
surrounding agents to have social interactions with. The radius r of the circle is defined as follows:

rti = velocityti ∗ Tf + λ ∗ lengthi, (1)

where Tf represents the period of future time for prediction, and λ is a constant value. The velocityti
and lengthi represent the speed at time t and length of object i, respectively. The attention zone at
time t covers all potential future positions over a time period Tf based on the observed speed at the
current time step and the length of the agent. If the agent accelerates or decelerates, the region of
attention zone will be enlarged or reduced accordingly to predict the future movement for the next
time step.

As illustrated in Figure 1.(a), based on the current position and radius of each agent, attention zones
of all agents are firstly drawn. Then, the graph of the current scenario at time step t is generated
based on the intersection relations of every attention zone.
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Figure 3: Dynamic Graph Attention Network.

We define G as (V,E), in which V = {vi|i ∈ {1, .., N}} and E = {eij |∀i, j ∈ {1, .., N}}, where V
and E denotes the vertexes and edges of the graph G. As shown in Figure 1.(b), the graph represents
the relations in the whole scenario, but in Figure 1.(c), we only focus on the partial graph related to
the target in red color. The value of eij will be calculated and updated in the GAT model in section
3.2.3. Each node in V denotes feature embeddings calculated from three different sources including
semantic map, observed trajectory, and traffic state.

3.2.2 Feature Extraction

To make the best use of the available information, three types of features are jointly extracted from
the semantic map, observed history trajectories, and current moving status.

Semantic Map. In autonomous driving applications, semantic HD map contains valuable traffic rule
information. We create an RGB image representation to encode traffic rule information contained
in semantic HD map. In the RGB image representation of the semantic HD map (Figure.2), pink
regions represent commonly seen un-movable road obstacles, e.g. median strips or barriers. Yellow
lines represent road boundaries. Grey and white regions represent pedestrian crossings and bicycle
lanes. The green lines are the centre lines of lanes. Blue boxes denote movable obstacles (i.e. it can
move even though it could be stationary) in the current traffic scenario. Dotted white lines and solid
white lines are the traffic lane lines and edge lines, respectively. The middle-layer output estimated
by the CNN is extracted as the visual feature V tob

map to represent traffic rule information in maptob :

V tob
map = CNN(maptob ;Wcnn). (2)

Observed Trajectory. An LSTM is used to extract joint features from the observed trajectories
of all involved agents. Similar to [7], we first embed the location using a single-layer multilayer
perceptron (MLP) to get a fixed-length vector eti as the input of the LSTM cell:

eti = ϕot(X
t
i ;Wot),

V t
oti = LSTM(V t−1

oti , eti;Wot),
(3)

where ϕ is an embedding function with a rectified linear unit (ReLU) nonlinearity, and Wot is the
embedding weight. The LSTM weight (Wot) is shared between all agents.

traffic state. The traffic state S is very important for capturing extra information to predict the
future trajectories, where St

i = (velocityti , acceleration
t
i, heading

t
i , widthi, lengthi, ci) represent

the velocity, acceleration, heading, width, length, and class of agent i, respectively. A simple MLP
is used for encoding to get the embedding feature V t

ts of the traffic state.

V t
tsi = ϕts(S

t
i ;Wts), (4)

where Wts is the embedding weight of the MLP.

The final embedding feature is defined as V tob
i , which concatenates the three types of embedding

calculated from the semantic map, observed trajectory, and agent status at the current time step:

V tob
i = concatenate(V tob

map, V
tob
oti , V

tob
tsi ). (5)
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3.2.3 Graph Attention Network

The attention mechanism is found to be extremely powerful to draw global dependencies between
inputs and outputs [22]. In attention-related methods, the GAT [23] can naturally work with our
proposed dynamic attention zone and graph modelling described in section 3.2.1. In the graph, the
vertex Vi represents the embedding feature of agent i, and eij represents the relative weight between
an agent i and its neighbour j according to the graph generated from the dynamic attention zone.
We use multiple stacked graph attention layers, and for each layer l, Wgat is updated during training.

eij = a(WgatV
tob
i ,WgatV

tob
j ),

aij = softmax(eij),

P l(i) =
∑
j∈Ni

aijWgatV
tob
j ,

(6)

where eij indicates the importance of node j′s feature to node i, a is the shared attentional mecha-
nism described in [23], and P l is the output of the lth layer by summing the corresponding weighted
feature of each j in Ni neighbours of agent i. We define PL, the output from the last GAT layer L,
as the final feature.

Finally, the final feature PL and the original feature V tob
i are concatenated as the input of the final

MLP layers ϕf to predict the future trajectories. We follow the idea of hierarchical classification
[17] to calculate the probabilities belonging to class c and anchor kc.

(prob(c)i, prob(kc|c)i), µik = ϕf (concatenate(P
L, Vi);Wac,Wor), (7)

where Wac and Wor are weights of the MLPs for the two parallel headers, anchor classification and
offset regression, respectively; prob(c)i and prob(kc|c)i are the hierarchical probabilities for agent
i classified into class c and anchor kc; and µikc

is the predicted future trajectory offset based on the
kc-th anchor for the i-th agent.

3.3 Multi-modal Trajectory Prediction

The proposed method is capable of predicting multiple possible future trajectories with correspond-
ing probability using pre-defined anchor trajectories. In this section, we present the details of multi-
modal trajectory prediction.

For the anchor and loss design, we follow the methods described in [2] and [5], respectively. First,
all ground-truth future trajectories are normalized in the training dataset. Then, an unsupervised clas-
sification algorithm [2] such as the k-means or uniform sampling algorithm, depending on datasets,
is applied to obtain a fixed number of anchors with squared distance dist(Yi, Yj) between future
trajectories.

dist(Yi, Yj) =

tf∑
t=tob

||Mip
t
i −Mjp

t
j ||22, (8)

where Mi and Mj are transform matrices which transform trajectories into the agent-centric coordi-
nate frame with the same orientation at time step tobs.

However, those unsupervised classification algorithms always generate redundant results for a heav-
ily skewed distribution. In practice, we manually select anchors based on the normalized ground-
truth trajectories. For each class c, we extract Kc anchors. In total, we have K anchors for anchor
classification and corresponding offset regression.

The final loss consists of anchor classification loss and trajectory offset loss:

Lθ =

N∑
i=1

[Lclass
i + α

C∑
c=1

Kc∑
kc=1

Ikc=k∗L(Ŷikc
, Yi)]. (9)

L(Ŷik, Yi) represents the single-mode loss L of the ith agent’s kcth anchor, where:

L(Ŷikc , Yi) =
1

Tf

tf∑
t=tob+1

∥atikc
+ µt

ikc
−Mip

t
i∥2, (10)
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where atikc
, µt

ikc
, and pti are points at each time step t of the kcth anchor, corresponding offset based

on the kcth anchor, and Yi, respectively.

Lclass
i is the hierarchical classification loss [17]:

Lclass
i = −

C∑
c=1

Kc∑
kc=1

Ic=c∗Ikc=k∗
c
log(prob(c)i ∗ prob(k|c)i), (11)

where I is the indicator function; c∗ is the ground-truth class of the agent i; k∗c is the index of the
anchor trajectory closest to the ground-truth trajectory according to the squared distance function
dist(Ŷikc

, Yi):
k∗c = argmin

kc∈{1,...,Kc}
dist(Ŷikc

, Yi). (12)

4 Experiments

In this section, we evaluate the proposed methods on three datasets, including our internal propri-
etary logistic delivery dataset and two publicly available datasets, the Stanford drone dataset [18],
and ETC-UCY datasets. These three datasets all include trajectories of multiple agents with social
interaction scenarios and birds-eye-view RGB frames used for semantic maps. The commonly used
metrics [1–3, 7], including Average Displacement Error (ADE), Final Displacement Error (FDE),
and Minimum Average Displacement Error (minADEN ), are used to assess the performances of the
proposed trajectory prediction method. minADEN is the displacement error against the closest tra-
jectory in the set of size N . minADEN [2] is computed to evaluate the method with the multi-modal
property.

4.1 Implementation Details

The proposed learning framework is implemented using PyTorch Library [15]. For the selection
of the base CNN model, we follow a similar setting as Multipath [2] method. Firstly, the base
CNN model is a Resnet50 network with a depth multiplier of 25%, followed by a depth-to-space
operation to restore the spatial resolution of the feature map to 200×200. Then we extract patches of
size 11×11 centered on agents locations in this feature map followed by a single-layer MLP as the
representation of the traffic rules. Then, the 640-dimension feature embedding is calculated from
the feature extraction block, concatenated with 256, 256 and 128-dimensional embeddings from the
semantic map, observed trajectory, and current status, respectively. For the dynamic attention zone,
we set the parameter λ=0.5. We train one model for each class using baseline methods, and only one
model for all classes with our method.

4.2 Logistic Delivery Dataset

Our autonomous driving dataset for the logistic delivery purpose is collected by a vehicle equipped
with multiple RGB cameras, Lidar and, radar from several regions in Beijing. We benchmark the
performance of the proposed method with these baseline methods, including linear, a basic LSTM,
Social LSTM(S-LSTM) [1], Social GAN (S-GAN) [7], and Multipath [2]. For the logistic delivery
dataset, we sample time steps every 0.2 (5Hz) from the original data and use 2 seconds of history (10
frames) to predict 3 seconds (15 frames) into the future. This dataset contains around 0.8 million
agents. We extract approximately 2 million trajectories and use 90% for training and the rest for
testing. We compare our method on ADE, FDE, and minADE5 against different baselines and other
state-of-the-art methods. We define ADEv, FDEv, ADEc, FDEc, ADEp, and FDEp representing the
ADE and FDE of vehicles, cyclists, and pedestrians, respectively. The experimental results for the
logistic delivery dataset are shown in Table 2. As expected, the linear method performs the worst
for only predicting straight paths. Our method DGAN with setting 20S (kc=20 with semantic map)
performs the best compared with other methods.

Figure 4 illustrates the original labeled dataset, ground truth trajectories, and the top two generated
results with probabilities using our method. We compare with different settings of our method, in-
cluding using or not using the semantic map (Table 2) and the different number of K (Figure 5). The
proposed method using the semantic map performs significantly better than without using it for the
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Figure 4: Logistic delivery dataset examples and results using our proposed method DGAN. Left:
Logistic delivery dataset example, consisting of three-dimensional cloud points with manually la-
beled information, front camera image, and semantic map. Middle: observed in dashed yellow and
future ground truth trajectories in red. Right: Prediction results using our proposed DGAN method
showing up the two most likely future trajectories, and corresponding probabilities encoded in a
color map to the right. The green box on the semantic map represents our autonomous driving
vehicle, and only agents around it are evaluated using the proposed method.

vehicle and cyclist classes. However, due to the unpredictability of movements of pedestrians and
the unavailability of traffic marks in the HD map for pedestrians, the influence of the semantic map
is small for the pedestrian class. The results demonstrate that our method can handle complex situa-
tions at traffic intersections. It also indicates the predicted trajectory with the maximum probability
value is more likely to follow center lines of lanes guiding by the semantic map.

4.3 Stanford Drone Dataset

The Stanford drone dataset [18] is collected by drones in college campus scenarios for trajectory
prediction applications, consisting of birds-eye-view videos and labels of multi-class agents, includ-
ing pedestrians, cyclists, and vehicles. The RGB camera frames encode traffic rule information in a
semantic HD map and can serve as input to our method without any modification. For the Stanford
drone dataset, we use the direction calculated from positions at the latest two observed time steps as
the heading information. We use the length of the labeled bounding box as the length information
of the agent. In addition to pedestrians as one class, the largest category in this database, we treat
cyclists, skateboarders as one class, and the rest (carts, cars, and buses) as another class. We sample
the dataset every 0.4s (2.5Hz) and use five frames of information to predict the trajectory in the next
12 frames. We evaluate the ADE, FDE, and minADE5 for all agents in the test dataset compared
with several state-of-the-art methods, and results are shown in Table 3.
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Table 2: Comparison of our proposed method (DGAN) and baselines on our logistic delivery dataset.
kS means the method with K = k anchors using our semantic map (the S of kS stands for evaluating
with semantic map).

Methods ADEv FDEv ADEc FDEc ADEp FDEp
linear 3.8809 6.7718 3.7221 6.0352 1.5334 3.2096
LSTM 3.2296 5.1659 3.0519 4.8564 1.3536 2.7642
S-LSTM [1] 2.9196 5.0659 2.9519 4.7145 1.2561 2.6018
S-GAN 20VP [7] 2.7276 4.5493 2.7567 4.1431 1.0305 2.2416
Multipath 20S [2] 1.9366 3.2300 1.8573 2.9416 0.9416 1.8603
DGAN 20S (ours) 1.8398 3.0685 1.7593 2.7945 0.9312 1.8314
Methods minADE5v minFDE5v minADE5c minFDE5c minADE5p minFDE5p
S-GAN 20VP [7] 1.6840 2.8835 1.6511 2.6134 0.6645 1.2848
Multipath 20S [2] 1.4595 2.5293 1.1391 2.2136 0.5534 1.1590
DGAN 20 (ours) 1.4697 2.5531 1.1415 2.1918 0.5530 1.1153
DGAN 20S (ours) 1.4323 2.3946 1.1309 2.1636 0.5521 1.1134

Figure 5: The impact of the number of an-
chors Kc on the final ADE result for each
class.

Table 3: Comparison of our proposed method
(DGAN) and other state-of-the-art methods on the
Stanford Drone Dataset. Following a similar set-
ting with Multipath [2] method, distance metrics
are in terms of pixels in the original resolution.

Methods ADE FDE minADE5

Linear 26.14 53.24 -
CVAE [10] 30.91 61.40 26.29
DESIRE-SI-IT0 [10] 36.48 61.35 30.78
Social Forces [24] 36.48 58.14 -
S-LSTM [1] 31.19 56.97 -
Multipath µ,Σ [2] 28.32 58.38 17.51
CAR-Net [20] 25.72 51.80 -
DGAN (ours) 24.53 50.78 17.28

4.4 ETH and UCY Datasets

The ETH[16] and UCY[11] datasets for pedestrian trajectory prediction only, include 5 scenes in
total, including ETH, HOTEL, ZARA1, ZARA2, and UNIV. The trajectories were sampled every
0.4 seconds. The information in 8 frames (3.2 seconds) is observed and the model predicts the
trajectories for the next 12 frames (4.8 seconds). We follow a similar setting with other relevant
works [1, 7] for evaluating those two datasets. Results are shown in Table 4.

Table 4: ADE/FDE metrics for several methods on ETH and HCY datasets.

Methods ETH HOTEL UNIV ZARA1 ZARA2 AVG
Linear 1.33/2.94 0.39/0.72 0.82/1.59 0.62/1.21 0.77/1.48 0.79/1.59
LSTM 1.09/2.41 0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11 0.72/1.52
S-LSTM [1] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
S-GAN [7] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
S-GAN-P [7] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
Ours 0.78/1.50 0.80/1.71 0.59/1.26 0.31/0.64 0.39/0.79 0.57/1.18

5 Conclusion

We have introduced a dynamic social interaction-aware model that predicts the future trajectories of
agents in real-world settings to solve several challenges simultaneously. In the proposed framework,
we use an encoded semantic map, the observed history trajectories, and the current status of agents
as the input of the GAT. To generate the graph at the current time step, we use the dynamic attention
zone to simulate the intuitive ability of people to navigate roads in real-world traffic. The proposed
method is evaluated in different datasets, including our internal logistic delivery dataset and two
publicly available datasets. The results demonstrate the potential ability of our method for trajectory
prediction in a real-world setting. Through synthetic and real-world datasets, we have shown the
benefits of the proposed method over previous methods.

8



5.1 References

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio

Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 961–971, 2016.

[2] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multipath: Multiple probabilistic
anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449, 2019.

[3] Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Dinesh Manocha. Traphic: Trajectory prediction
in dense and heterogeneous traffic using weighted interactions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8483–8492, 2019.

[4] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, Andrew Hartnett,
De Wang, Peter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d tracking and forecasting with
rich maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
8748–8757, 2019.

[5] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang,
Jeff Schneider, and Nemanja Djuric. Multimodal trajectory predictions for autonomous driving using
deep convolutional networks. CoRR, abs/1809.10732, 2018.

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3354–
3361. IEEE, 2012.

[7] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan: Socially
acceptable trajectories with generative adversarial networks. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[9] Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, Hamid Rezatofighi, and Silvio
Savarese. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks.
In Advances in Neural Information Processing Systems, pages 137–146, 2019.

[10] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and Manmohan Chan-
draker. Desire: Distant future prediction in dynamic scenes with interacting agents. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 336–345, 2017.

[11] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. In Computer graphics
forum, volume 26, pages 655–664. Wiley Online Library, 2007.

[12] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik,
and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned trajectory prediction.
arXiv preprint arXiv:2004.02025, 2020.

[13] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent neural
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