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Abstract

Predicting future trajectories of surrounding obstacles is a crucial task for au-
tonomous driving cars to achieve a high degree of road safety. There are several
challenges in trajectory prediction in real-world traffic scenarios, including obey-
ing traffic rules, dealing with social interactions, handling traffic of multi-class
movement, and predicting multi-modal trajectories with probability. Inspired by
people’s natural habit of navigating traffic with attention to their goals and sur-
roundings, this paper presents a unique dynamic graph attention network to solve
all those challenges. The network is designed to model the dynamic social interac-
tions among agents and conform to traffic rules with a semantic map. By extend-
ing the anchor-based method to multiple types of agents, the proposed method can
predict multi-modal trajectories with probabilities for multi-class movements us-
ing a single model. We validate our approach on the proprietary autonomous driv-
ing dataset for the logistic delivery scenario and two publicly available datasets.
The results show that our method outperforms state-of-the-art techniques and
demonstrates the potential for trajectory prediction in real-world traffic.

1 Introduction

Autonomous driving is believed [6] to have a tremendous positive impact on human society. To en-
sure a high degree of safety even in uncertain or dynamically changing environments, an autonomous
vehicle should be able to anticipate the future trajectories of the surrounding agents (e.g. vehicles,
pedestrians, and cyclists) in advance and plan a plausible path in response to the behaviour of other
agents such that the probability of collision is minimized. However, the motion trajectory of the
surrounding agents is often hard to predict without explicitly knowing their intention. In this case,
we need to utilize other useful information to improve safety and efficacy of the planned path of the
ego-vehicle, including the observed current status of notable surrounding agents, possible physically
acceptable routes in the current traffic scenario, and possible interaction outcomes with their likeli-
hoods. Unfortunately, several challenges still exist that prevents us from utilizing this information
to achieve reliable trajectory prediction. In this paper, five main challenges in trajectory prediction
for autonomous driving are summarized and discussed as follows:

Considering surrounding traffic environments. In real-world traffic scenarios, the movement
of traffic must obey traffic rules, and avoid surrounding obstacles in the meantime. That useful
information can be found in the high definition (HD) map.

Dealing with social interactions. To avoid the collision, the trend of interacting with surrounding
traffic agents needs to be captured. However, interactions between different types of traffic are very
different, e.g. the interaction between pedestrians is different from the interaction between a car and
a pedestrian.
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Table 1: Comparison of challenges handled in different methods in trajectory prediction.
Methods Traffic Environments Social Multi-class Multi-modal Probability
Social LSTM [1] ✓
Social GAN [7] ✓ ✓
PECNet [12] ✓ ✓
Argoverse [4] ✓
Trajectron++ [21] ✓ ✓ ✓
Multipath [2] ✓ ✓ ✓
DGAN (ours) ✓ ✓ ✓ ✓ ✓

Handling traffic of multi-class movement. The movement patterns of different types of traffic
need to be considered for autonomous driving, including cars, buses, trucks, motorcycles, bicycles,
and pedestrians. In this paper, those types of traffic are divided into three categories, namely vehicles
(cars, buses, and trucks), cyclists (motorcycles and bicycles) and pedestrians.

Predicting multi-modal trajectories with probability. In reality, people may follow several plau-
sible ways when navigating crowd and traffic. To avoid potential collisions, the most probable future
movements should be considered.

Probability awareness. The probability value of each possible path of surrounding obstacles is a
considerable factor in the planning and control of the autonomous driving car.

State-of-the-art methods only solve some, but not all, challenges at once as shown in Table 1. In this
paper, we present a multi-modal trajectory prediction method to tackle all these challenges, which
models the dynamic social interactions among agents using Graph Attention Network (GAT) [23]
and semantic map. The contributions of our proposed method are summarized as follows:

• The proposed method is designed to achieve multi-modal predictions with considering traf-
fic environments, dealing with social interactions, and predicting multi-class movement
patterns with probability values, simultaneously.

• In the proposed Dynamic Graph Attention Network (DGAN), Dynamic Attention Zone
and GAT are combined to model the intention and habit of human driving in heterogeneous
traffic scenarios.

• To capture complex social interactions among road agents, we combine different types of
information, including a semantic HD map, observed trajectories of road agents, and the
current status of the traffic.

2 Related Work

Here, we review recent literature on trajectory prediction with social interactions.

RNN-related methods. The recurrent neural network (RNN) [13] and long short term memory
(LSTM) [8] have proven to be very effective in time-related prediction tasks. To capture social inter-
actions between pedestrians in crowds, Alexandre et al. [1] used a social pooling layer in LSTMs
to capture social interactions based on the relative distance between different pedestrians. Chandra
et al. [3] introduced an LSTM-CNN hybrid method with the weighted horizon and local relative in-
teractions in heterogeneous traffic. However, those previous studies only focus on predicting future
trajectories for one class, e.g. pedestrians or vehicles.

GAN-related methods. As there are multiple plausible paths that people could take in the future,
several methods [7, 9, 14] were proposed using the GAN framework to generate multiple trajecto-
ries for a given input. However, to generate multiple results for one target in practice, the generative
model should be executed repeatedly with a latent vector randomly sampled from N (0; 1) as input.
Randomly initialised inputs will generate random outcomes, which may lead to large margins be-
tween the generated results and the ground truth. To cover the most likely future paths, the number
of executions has to be increased.

Methods that encode traffic rules. To predict trajectories that obey traffic rules, several methods
used features learned from customised semantic HD map or static-scene images to encode prior
knowledge on traffic rules. Chai et al. [2] proposed a multipath model to predict parametric dis-
tributions of future trajectories with HD map. It regresses offsets for each predefined anchor and
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Figure 1: Dynamic attention zone and graph
modelling for simulating the interaction pattern
in real world traffic scenario.

Figure 2: RGB image representation of seman-
tic HD map for encoding the real world traffic
environments.

predicts a Gaussian Mixture Model (GMM) at each time step. Meanwhile, with a birds-eye-view
(BEV) binary image, probabilities are predicted over the fixed set of K predefined anchor trajecto-
ries. Cui et al. introduced a multi-modal architecture using a raster image from an HD map with
each agent’s surrounding content encoded. In [4], lane sequences were extracted from rich maps
as reference lines to predict cars’ trajectories. Sadeghian et al. [19] presented a GAN framework
integrating features encoded from the static-camera frames as the traffic rule constraints using the
attention mechanism. However, those works only encode car lanes without considering pedestrian
crossings, cycle lanes and other static obstacles labeled in the HD map at the same time.

3 Methodology

3.1 Problem Definition

Given a set of N agents in a scenario with their corresponding observed information over a time
period Tob from time steps 1; :::; tob, our goal is to predict the future trajectories Ŷ = {Ŷ1; :::; ŶN}
of all agents involved in the scenario over a time period Tf from time step tob + 1; :::; tf . N agents
belong to multiple c classes, e.g. vehicle, cyclist, and pedestrian. Similarly, the ground truth of the
future trajectory is defined as Y = {Y1; :::; YN}, where Yi = {pt

i = (xt
i; yt

i)|t ∈ {tob + 1; :::; tf},
and i ∈ {1; :::; N}. There are three different kinds of observed information as inputs to our model,
including the semantic map maptob of the current scenario at time stamp tob, the traffic state Stob

i
of agent i at current time stamp tob, and the observed trajectories of all agents X = {X1; :::; XN},
where Xi = {pt

i = (xt
i; yt

i)|t ∈ {1; :::; tob}}.

3.2 Dynamic Graph Attention Network

3.2.1 Dynamic Attention Zone and Graph Modelling

Inspired by the real-world traffic moving pattern, a dynamic attention zone is designed to capture
the normal ability of people when interacting with others in traffic. Human beings have the natural
sense to choose which surrounding moving agents should be noticed by judging their current status,
such as distances, headings, velocities, and sizes. Then, we model each object in the scenario to
have an attention circle. Based on the intersection status of the attention circles, we can easily select
surrounding agents to have social interactions with. The radius r of the circle is defined as follows:

rt
i = velocityt

i ∗ Tf + � ∗ lengthi; (1)

where Tf represents the period of future time for prediction, and � is a constant value. The velocityt
i

and lengthi represent the speed at time t and length of object i, respectively. The attention zone at
time t covers all potential future positions over a time period Tf based on the observed speed at the
current time step and the length of the agent. If the agent accelerates or decelerates, the region of
attention zone will be enlarged or reduced accordingly to predict the future movement for the next
time step.

As illustrated in Figure 1.(a), based on the current position and radius of each agent, attention zones
of all agents are firstly drawn. Then, the graph of the current scenario at time step t is generated
based on the intersection relations of every attention zone.
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Figure 3: Dynamic Graph Attention Network.

We define G as (V; E), in which V = {vi|i ∈ {1; ::; N}} and E = {eij |∀i; j ∈ {1; ::; N}}, where V
and E denotes the vertexes and edges of the graph G. As shown in Figure 1.(b), the graph represents
the relations in the whole scenario, but in Figure 1.(c), we only focus on the partial graph related to
the target in red color. The value of eij will be calculated and updated in the GAT model in section
3.2.3. Each node in V denotes feature embeddings calculated from three different sources including
semantic map, observed trajectory, and traffic state.

3.2.2 Feature Extraction

To make the best use of the available information, three types of features are jointly extracted from
the semantic map, observed history trajectories, and current moving status.

Semantic Map. In autonomous driving applications, semantic HD map contains valuable traffic rule
information. We create an RGB image representation to encode traffic rule information contained
in semantic HD map. In the RGB image representation of the semantic HD map (Figure.2), pink
regions represent commonly seen un-movable road obstacles, e.g. median strips or barriers. Yellow
lines represent road boundaries. Grey and white regions represent pedestrian crossings and bicycle
lanes. The green lines are the centre lines of lanes. Blue boxes denote movable obstacles (i.e. it can
move even though it could be stationary) in the current traffic scenario. Dotted white lines and solid
white lines are the traffic lane lines and edge lines, respectively. The middle-layer output estimated
by the CNN is extracted as the visual feature V tob

map to represent traffic rule information in maptob :

V tob
map = CNN(maptob ; Wcnn): (2)

Observed Trajectory. An LSTM is used to extract joint features from the observed trajectories
of all involved agents. Similar to [7], we first embed the location using a single-layer multilayer
perceptron (MLP) to get a fixed-length vector et

i as the input of the LSTM cell:

et
i = �ot(X

t
i ; Wot);

V t
oti = LST M(V t�1

oti ; et
i; Wot);

(3)

where � is an embedding function with a rectified linear unit (ReLU) nonlinearity, and Wot is the
embedding weight. The LSTM weight (Wot) is shared between all agents.

traffic state. The traffic state S is very important for capturing extra information to predict the
future trajectories, where St

i = (velocityt
i ; accelerationt

i; headingt
i ; widthi; lengthi; ci) represent

the velocity, acceleration, heading, width, length, and class of agent i, respectively. A simple MLP
is used for encoding to get the embedding feature V t

ts of the traffic state.

V t
tsi = �ts(St

i ; Wts); (4)

where Wts is the embedding weight of the MLP.

The final embedding feature is defined as V tob
i , which concatenates the three types of embedding

calculated from the semantic map, observed trajectory, and agent status at the current time step:

V tob
i = concatenate(V tob

map; V tob
oti ; V tob

tsi ): (5)
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3.2.3 Graph Attention Network

The attention mechanism is found to be extremely powerful to draw global dependencies between
inputs and outputs [22]. In attention-related methods, the GAT [23] can naturally work with our
proposed dynamic attention zone and graph modelling described in section 3.2.1. In the graph, the
vertex Vi represents the embedding feature of agent i, and eij represents the relative weight between
an agent i and its neighbour j according to the graph generated from the dynamic attention zone.
We use multiple stacked graph attention layers, and for each layer l, Wgat is updated during training.

eij = a(WgatV
tob

i ; WgatV
tob

j );

aij = softmax(eij);

P l(i) =
X

j2Ni

aijWgatV
tob

j ;
(6)

where eij indicates the importance of node j0s feature to node i, a is the shared attentional mecha-
nism described in [23], and P l is the output of the lth layer by summing the corresponding weighted
feature of each j in Ni neighbours of agent i. We define P L, the output from the last GAT layer L,
as the final feature.

Finally, the final feature P L and the original feature V tob
i are concatenated as the input of the final

MLP layers �f to predict the future trajectories. We follow the idea of hierarchical classification
[17] to calculate the probabilities belonging to class c and anchor kc.

(prob(c)i; prob(kc|c)i); �ik = �f (concatenate(P L; Vi); Wac; Wor); (7)

where Wac and Wor are weights of the MLPs for the two parallel headers, anchor classification and
offset regression, respectively; prob(c)i and prob(kc|c)i are the hierarchical probabilities for agent
i classified into class c and anchor kc; and �ikc

is the predicted future trajectory offset based on the
kc-th anchor for the i-th agent.

3.3 Multi-modal Trajectory Prediction

The proposed method is capable of predicting multiple possible future trajectories with correspond-
ing probability using pre-defined anchor trajectories. In this section, we present the details of multi-
modal trajectory prediction.

For the anchor and loss design, we follow the methods described in [2] and [5], respectively. First,
all ground-truth future trajectories are normalized in the training dataset. Then, an unsupervised clas-
sification algorithm [2] such as the k-means or uniform sampling algorithm, depending on datasets,
is applied to obtain a fixed number of anchors with squared distance dist(Yi; Yj) between future
trajectories.

dist(Yi; Yj) =

tfX
t=tob

||Mip
t
i − Mjpt

j ||22; (8)

where Mi and Mj are transform matrices which transform trajectories into the agent-centric coordi-
nate frame with the same orientation at time step tobs.

However, those unsupervised classification algorithms always generate redundant results for a heav-
ily skewed distribution. In practice, we manually select anchors based on the normalized ground-
truth trajectories. For each class c, we extract Kc anchors. In total, we have K anchors for anchor
classification and corresponding offset regression.

The final loss consists of anchor classification loss and trajectory offset loss:

L� =

NX
i=1

[Lclass
i + �

CX
c=1

KcX
kc=1

Ikc=k�L(Ŷikc
; Yi)]: (9)

L(Ŷik; Yi) represents the single-mode loss L of the ith agent’s kcth anchor, where:

L(Ŷikc ; Yi) =
1

Tf

tfX
t=tob+1

∥at
ikc

+ �t
ikc

− Mip
t
i∥2; (10)
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where at
ikc

, �t
ikc

, and pt
i are points at each time step t of the kcth anchor, corresponding offset based

on the kcth anchor, and Yi, respectively.

Lclass
i is the hierarchical classification loss [17]:

Lclass
i = −

CX
c=1

KcX
kc=1

Ic=c�Ikc=k�
c

log(prob(c)i ∗ prob(k|c)i); (11)

where I is the indicator function; c� is the ground-truth class of the agent i; k�
c is the index of the

anchor trajectory closest to the ground-truth trajectory according to the squared distance function
dist(Ŷikc

; Yi):
k�

c = arg min
kc2f1;:::;Kcg

dist(Ŷikc
; Yi): (12)

4 Experiments

In this section, we evaluate the proposed methods on three datasets, including our internal propri-
etary logistic delivery dataset and two publicly available datasets, the Stanford drone dataset [18],
and ETC-UCY datasets. These three datasets all include trajectories of multiple agents with social
interaction scenarios and birds-eye-view RGB frames used for semantic maps. The commonly used
metrics [1–3, 7], including Average Displacement Error (ADE), Final Displacement Error (FDE),
and Minimum Average Displacement Error (minADEN ), are used to assess the performances of the
proposed trajectory prediction method. minADEN is the displacement error against the closest tra-
jectory in the set of size N . minADEN [2] is computed to evaluate the method with the multi-modal
property.

4.1 Implementation Details

The proposed learning framework is implemented using PyTorch Library [15]. For the selection
of the base CNN model, we follow a similar setting as Multipath [2] method. Firstly, the base
CNN model is a Resnet50 network with a depth multiplier of 25%, followed by a depth-to-space
operation to restore the spatial resolution of the feature map to 200×200. Then we extract patches of
size 11×11 centered on agents locations in this feature map followed by a single-layer MLP as the
representation of the traffic rules. Then, the 640-dimension feature embedding is calculated from
the feature extraction block, concatenated with 256, 256 and 128-dimensional embeddings from the
semantic map, observed trajectory, and current status, respectively. For the dynamic attention zone,
we set the parameter �=0.5. We train one model for each class using baseline methods, and only one
model for all classes with our method.

4.2 Logistic Delivery Dataset

Our autonomous driving dataset for the logistic delivery purpose is collected by a vehicle equipped
with multiple RGB cameras, Lidar and, radar from several regions in Beijing. We benchmark the
performance of the proposed method with these baseline methods, including linear, a basic LSTM,
Social LSTM(S-LSTM) [1], Social GAN (S-GAN) [7], and Multipath [2]. For the logistic delivery
dataset, we sample time steps every 0.2 (5Hz) from the original data and use 2 seconds of history (10
frames) to predict 3 seconds (15 frames) into the future. This dataset contains around 0.8 million
agents. We extract approximately 2 million trajectories and use 90% for training and the rest for
testing. We compare our method on ADE, FDE, and minADE5 against different baselines and other
state-of-the-art methods. We define ADEv, FDEv, ADEc, FDEc, ADEp, and FDEp representing the
ADE and FDE of vehicles, cyclists, and pedestrians, respectively. The experimental results for the
logistic delivery dataset are shown in Table 2. As expected, the linear method performs the worst
for only predicting straight paths. Our method DGAN with setting 20S (kc=20 with semantic map)
performs the best compared with other methods.

Figure 4 illustrates the original labeled dataset, ground truth trajectories, and the top two generated
results with probabilities using our method. We compare with different settings of our method, in-
cluding using or not using the semantic map (Table 2) and the different number of K (Figure 5). The
proposed method using the semantic map performs significantly better than without using it for the
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