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Abstract

Prediction of trajectories such as that of pedestrians is crucial to the performance of
autonomous agents. While previous works have leveraged conditional generative
models like GANs and VAEs for learning the likely future trajectories, accurately
modeling the dependency structure of these multimodal distributions, particularly
over long time horizons remains challenging. Normalizing flow based generative
models can model complex distributions admitting exact inference. These include
variants with split coupling invertible transformations that are easier to parallelize
compared to their autoregressive counterparts. To this end, we introduce a novel
Haar wavelet based block autoregressive model leveraging split couplings, condi-
tioned on coarse trajectories obtained from Haar wavelet based transformations
at different levels of granularity. This yields an exact inference method that mod-
els trajectories at different spatio-temporal resolutions in a hierarchical manner.
We illustrate the advantages of our approach for generating diverse and accurate
trajectories on two real-world datasets — Stanford Drone and Intersection Drone.

1 Introduction

Anticipation is a key competence for autonomous agents such as self-driving vehicles to operate in
the real world. Many such tasks involving anticipation can be cast as trajectory prediction problems,
e.g.anticipation of pedestrian behaviour in urban driving scenarios. To capture the uncertainty of
the real world, it is crucial to model the distribution of likely future trajectories. Therefore recent
works [4} 3,128, [36] have focused on modeling the distribution of likely future trajectories using either
generative adversarial networks (GANS, [[15]]) or variational autoencoders (VAEs, [24]]). However,
GANs are prone to mode collapse and the performance of VAEs depends on the tightness of the
variational lower bound on the data log-likelihood which is hard to control in practice [9} 20]. This
makes it difficult to accurately model the distribution of likely future trajectories.

Normalizing flow based exact likelihood models [[12} [13] 23] have been considered to overcome
these limitations of GANs and VAE:s in the context of image synthesis. Building on the success of
these methods, recent approaches have extended the flow models for density estimation of sequential
data e.g.video [26]] and audio [21]. Yet, VideoFlow [26] is autoregressive in the temporal dimension
which results in the prediction errors accumulating over time [27] and reduced efficiency in sampling.
Furthermore, FloWaveNet [21] extends flows to audio sequences with odd-even splits along the
temporal dimension, encoding only local dependencies [} 20, 25]. We address these challenges of
flow based models for trajectory generation and develop an exact inference framework to accurately
model future trajectory sequences by harnessing long-term spatio temporal structure in the underlying
trajectory distribution.

Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.
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Figure 1: Our normalizing flow based model uses a Haar wavelet based decomposition to block
autoregressively model trajectories at K coarse-to-fine scales.

In this work, we propose HBA-Flow, an exact inference model with coarse-to-fine block autoregressive
structure to encode long term spatio-temporal correlations for multimodal trajectory prediction. The
advantage of the proposed framework is that multimodality can be captured over long time horizons
by sampling trajectories at coarse-to-fine spatial and temporal scales (Fig. [I). Our contributions are:
1. we introduce a block autoregressive exact inference model using Haar wavelets where flows applied
at a certain scale are conditioned on coarse trajectories from previous scale. The trajectories at each
level are obtained after the application of Haar wavelet based transformations, thereby modeling
long term spatio-temporal correlations. 2. Our HBA-Flow model, by virtue of block autoregressive
structure, integrates a multi-scale block autoregressive prior which further improves modeling
flexibility by encoding dependencies in the latent space. 3. Furthermore, we show that compared
to fully autoregressive approaches [26]], our HBA-Flow model is computationally more efficient as
the number of sampling steps grows logarithmically in trajectory length. 4. We demonstrate the
effectiveness of our approach for trajectory prediction on Stanford Drone and Intersection Drone,
with improved accuracy over long time horizons.

2 Related Work

Pedestrian Trajectory Prediction. =~ Work on traffic participant prediction dates back to the Social
Forces model [18]. More recent works [} 18} 139, [34]] consider the problem of traffic participant
prediction in a social context, by taking into account interactions among traffic participants. Notably,
Social LSTM [[1] introduces a social pooling layer to aggregate interaction information of nearby
traffic participants. An efficient extension of the social pooling operation is developed in [10]
and alternate instance and category layers to model interactions in [29]. Weighted interactions are
proposed in [7]. In contrast, a multi-agent tensor fusion scheme is proposed in [41] to capture
interactions. An attention based model to effectively integrate visual cues in path prediction tasks is
proposed in [35]. However, these methods mostly assume a deterministic future and do not directly
deal with the challenges of uncertainty and multimodality.

Generative Modeling of Trajectories. To deal with the challenges of uncertainty and multimodal-
ity in anticipating future trajectories, recent works employ either conditional VAEs or GANs to
capture the distribution of future trajectories. This includes, a conditional VAE based model with
a RNN based refinement module [28], a VAE based model [14] that “personalizes” prediction to
individual agent behavior, a diversity enhancing “Best of Many” loss [3] to better capture multi-
modality with VAEs, an expressive normalizing flow based prior for conditional VAEs [4] among
others. However, VAE based models only maximize a lower bound on the data likelihood, limiting
their ability to effectively model trajectory data. Other works, use GANSs [[16} 41} 136]] to generate
socially compliant trajectories. GANs lead to missed modes of the data distribution. Additionally,
[33}[11] introduce push-forward policies and motion planning for generative modeling of trajectories.
Determinantal point processes are used in [40] to better capture diversity of trajectory distributions.
The work of [30] shows that additionally modeling the distribution of trajectory end points can
improve accuracy. However, it is unclear if the model of [30] can be used for predictions across
variable time horizons. In contrast to these approaches, in this work we directly maximize the exact
likelihood of the trajectories, thus better capturing the underlying true trajectory distribution.

Autoregressive Models. Autoregressive exact inference models like PixelCNN [38]] have shown
promise in generative modeling. Autoregressive models for sequential data includes a convolutional
autoregressive model [37] for raw audio and an autoregressive method for video frame prediction [26].
In particular, for sequential data involving trajectories, recent works [31]] propose an autoregressive



method based on visual sources. The main limitation of autoregressive approaches is that the models
are difficult to parallelize. Moreover, for sequential data, errors tend to accumulate over time [27]].

Normalizing Flows.  Split coupling normalizing flow models with affine transformations [12]]
offer computationally efficient tractable Jacobians. Recent methods [[13} 23] have therefore focused
on split coupling flows which are easier to parallelize. Flow models are extended in [[13] to multiscale
architecture and the modeling capacity of flow models is further improved in [23] by introducing
1 x 1 convolution. Recently, flow models with more complex invertible components [8,|19] have been
leveraged for generative modeling of images. Recent works like FloWaveNet [21]] and VideoFlow
[21] adapt the multi-scale architecture of Glow [23] with sequential latent spaces to model sequential
data, for raw audio and video frames respectively. However, these models still suffer from the limited
modeling flexibility of the split coupling flows. The “squeeze” spatial pooling operation in [23]]
is replaced with a Haar wavelet based downsampling scheme in [2] along the spatial dimensions.
Although this leads to improved results on image data, this operation is not particularly effective in
case of sequential data as it does not influence temporal receptive fields for trajectories — crucial for
modeling long-term temporal dependencies. Therefore, Haar wavelet downsampling of [2] does not
lead to significant improvement in performance on sequential data (also observed empirically). In
this work, instead of employing Haar wavelets as a downsampling operation for reducing spatial
resolution [2]] in split coupling flows, we formulate a coarse-to-fine block autoregressive model where
Haar wavelets produce trajectories at different spatio-temporal resolutions.

3 Block Autoregressive Modeling of Trajectories

In this work, we propose a coarse-to-fine block autoregressive exact inference model, HBA-Flow,
for trajectory sequences. We first provide an overview of conditional normalizing flows which form
the backbone of our HBA-Flow model. To extend normalizing flows for trajectory prediction, we
introduce an invertible transformation based on Haar wavelets which decomposes trajectories into K
coarse-to-fine scales (Fig.[I). This is beneficial for expressing long-range spatio-temporal correlations
as coarse trajectories provide global context for the subsequent finer scales. Our proposed HBA-Flow
framework integrates the coarse-to-fine transformations with invertible split coupling flows where it
block autoregressively models the transformed trajectories at K scales.

3.1 Conditional Normalizing Flows for Sequential Data

We base our HBA-Flow model on normalizing flows [12]] which are a type of exact inference model.
In particular, we consider the transformation of the conditional distribution p(y|x) of trajectories
y to a distribution p(z|x) over z with conditional normalizing flows [2} 4] using a sequence of n
transformations g; : h;_; — h;, with hy = y and parameters 6;,

y<9—1>h1(g—2>h2"-<g—n>z. (1)

Given the Jacobians Jy, = 9hi/on,_, of the transformations g;, the exact likelihoods can be computed
with the change of variables formula,

n
log po(y|x) = log p(zlx) + Y _ log [det Iy, 2)

=1

Given that the density p(z|x) is known, the likelihood over y can be computed exactly. Recent
works [12} [13} 23] consider invertible split coupling transformations g; as they provide a good
balance between efficiency and modeling flexibility. In (conditional) split coupling transformations,
the input h; is split into two halves 1;, r;, and g; applies an invertible transformation only on 1;
leaving r; unchanged. The transformation parameters of 1; are dependent on r; and x, thus h;; =
[gi+1(L;|r;, %), r;]. The advantage of (conditional) split coupling flows is that both inference and
sampling are parallelizable when the transformations g;; have an efficient closed form expression
of the inverse gi;ll, e.g.affine [23]] or non-linear squared [42] and unlike residual flows [8].

As most of the prior work, e.g.[2} [12} [13} 23], considers split coupling flows g; that are designed to
deal with fixed length data, these models are not directly applicable to data of variable length such as
trajectories. Moreover, recall that for variable length sequences, while VideoFlow [26] utilizes split
coupling based flows to model the distribution at each time-step, it is still fully autoregressive in the
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Figure 2: Left: HBA-Flow generative model with the Haar wavelet [[17]] based representation Fj,,.
Right: Our multi-scale HBA-Flow model with K scales of Haar based transformation.

temporal dimension, thus offering limited computational efficiency. FloWaveNets [21] split 1; and r;
along even-odd time-steps for audio synthesis. This even-odd formulation of the split operation along
with the inductive bias [25} 20, 5] of split coupling based flow models is limited when expressing
local and global dependencies which are crucial for capturing multimodality of the trajectories over
long time horizons. Next, we introduce our invertible transformation based on Haar wavelets to
model trajectories at various coarse-to-fine levels to address the shortcomings of prior flow based
methods [26| 21]] for sequential data.

3.2 Haar Wavelet based Invertible Transform

Haar wavelet transform allows for a simple and easy to compute coarse-to-fine frequency decomposed
representation with a finite number of components unlike alternatives e.g.Fourier transformations
[32]. In our HBA-Flow framework, we construct a transformation Fj, comprising of mappings fpa
recursively applied across K scales. With this transformation, trajectories can be encoded at different
levels of granularity along the temporal dimension. We now formalize invertible function fj,;, and its
multi-scale Haar wavelet based composition Fjy,.

Single Scale Invertible Transformation. Consider the trajectory at scale k as y, =
(Y, ,ykT,k], where T is the number of timesteps of trajectory yy,. Here, atscale k = 1, y1 =y is

the input trajectory. Each element of the trajectory is a vector, y;, € R? encoding spatial information
of the traffic participant. Our proposed invertible transformation f,;, at any scale £ is a composition,
fiva = fraar © feo- First, fe, transforms the trajectory into even (e;) and odd (o) downsampled
trajectories,

feo(yk) = ey, 0, where, ey = [yl2c7 T ,yka] and o, = [yllcv to ;Y£k_l}~ 3)

Next, fraqr takes as input the even (e ) and odd (o) downsampled trajectories and transforms them
into coarse (cg) and fine (f;,) downsampled trajectories using a scalar “mixing” parameter .. In detail,

Snaar(€k,0r) = fx, cp where,cp, = (1 — a)eg + aor, and

“4)

fr=0r—cr=(1—a)op+ (a—1)eg

where, the coarse (cy) trajectory is the element-wise weighted average of the even (e ) and odd (o)
downsampled trajectories and the fine (f}) trajectory is the element-wise difference to the coarse
downsampled trajectory. The coarse trajectories (cg) provide global context for finer scales in our
block autoregressive approach, while the fine trajectories (f};) encode details at multiple scales. We
now discuss the invertibilty of this transformation fj;, and compute the Jacobian.

Lemma 1. The generalized Haar transformation fupy = fraar © feo is invertible for o € [0,1) and
the determinant of the Jacobian of the transformation fupa = fraar © feo for sequence of length Ty,
with y, € R% is det Jppy = (1 — o) TR/,

We provide the proof in the appendix. This property allows our HBA-Flow model to exploit fs,
for spatio-temporal decomposition of the trajectories y while remaining invertible with a tractable



Jacobian for exact inference. Next, we use this transformation f;, to build the coarse-to-fine
multi-scale Haar wavelet based transformation Fj;, and discuss its properties.

Multi-scale Haar Wavelet based Transformation. To construct our generalized Haar wavelet
based transformation Fj,,, the mapping frp, is applied recursively at K scales (Fig. [2] left). The
transformation f;, at a scale k applies a low and a high pass filter pair on the input trajectory yy
resulting in the coarse trajectory c; and the fine trajectory f; with high frequency details. The coarse
(spatially and temporally sub-sampled) trajectory (cy) at scale & is then further decomposed by using
it as the input trajectory yx11 = Ci to frpe at scale k + 1. This is repeated at K scales, resulting
in the complete Haar wavelet transformation F,;,(y) = [f1,- - ,fk, cx] which captures details
at multiple (K) spatio-temporal scales. The finest scale f; models high-frequency spatio-temporal
information of the trajectory y. The subsequent scales f; represent details at coarser levels, with cx
being the coarsest transformation which expresses the “high-level” spatio-temporal structure of the
trajectory (Fig.[I).

Next, we show that the number of scales K in Fj;, is upper bounded by the logarithm of the length
of the sequence. This implies that F};,, when integrated in the multi-scale block auto-regressive
model provides a computationally efficient setup for generating trajectories.

Lemma 2. The number of scales K of the Haar wavelet based representation Fpp, is K < log(Th),
for an initial input sequence y1 of length T1.

Proof. The Haar wavelet based transformation f,;, halves the length of trajectory y;, at each level k.
Thus, for an initial input sequence y; of length 77, the length of the coarsest level K in Fjp,(y) is
lex|= Ti/2% > 1. Thus, K < log(T}). O

3.3 Haar Block Autoregressive Framework

HBA-Flow model. ~ We illustrate our HBA-Flow model in Fig. 2] Our HBA-Flow model first
transforms the trajectories y using Fj,, where the invertible transform fy,, is recursively applied on
the input trajectory y to obtain fj, and cy, at scales k € {1,--- , K'}. Therefore, the log-likelihood of
a trajectory y under our HBA-Flow model can be expressed using the change of variables formula as,

log(pe (y|x)) = log(ps(f1, c1[x)) + log [det (Tnpa), |
S (5)
= log(po(f1,--- ,fx,cK|x)) + Zlog |det (Jnpa); |-
i=1
Next, our HBA-Flow model factorizes the distribution of fine trajectories w.l.0.g. such that f}, at level
k is conditionally dependent on the representations at scales k + 1 to K,

IOg(pG(flv"' 7fK7CK‘X)) = ]Og(pg(f1|f2,-~- 7fK7CK7X)) +oee

+ log(ps (Exc|exc, )) + log(po(cx|x). ©

Finally, note that [fy41,- - , fx, ck]| is the output of the (bijective) transformation Fj,(cy) where
frnva 18 recursively applied to ¢ = yr41 at scales {k + 1,--- , K }. Thus HBA-Flow equivalently
models pg (fx [fx11,- -+, cx, ) as po(fi|ck, x),
log(ps (y[x)) =log(pe(filc1, x)) + - + log(ps(fx[cx, x))
S ™
+ log(po(ck|x)) + Z log |det (Jppa); |-

i=1
Therefore, as illustrated in Fig. [2| (right), our HBA-Flow models the distribution of each of the fine
components fj, block autoregressively conditioned on the coarse representation cj, at that level. The
distribution py(fy|cy, x) at each scale k is modeled using invertible conditional split coupling flows
(Fig. [2] right) [21]], which transform the input distribution to the distribution over latent “priors”

zy. This enables our framework to model variable length trajectories. The log-likelihood with our
HBA-Flow approach can be expressed using the change of variables formula as,

log(pe (fi|ck, x)) = log(pe(zk|ck, x)) + log [det(Jse) k|- ®)

log |det(J)x| is the log determinant of Jacobian (J;. ) of the split coupling flow at level k. Thus,
the likelihood of a trajectory y under our HBA-Flow model is expressed exactly, Eqs. (7) and (8).
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Figure 3: Mean top 10% predictions (Blue - Groudtruth, - FloWaveNet [21]], Red - Our HBA-
Flow model) and predictive distributions on Stanford Drone dataset. The predictions of HBA-Flow
are more diverse and better capture the multimodality the future trajectory distribution.

The key advantage of our approach is that after spatial and temporal downsampling of coarse scales,
it is easier to model long-term spatio-temporal dependencies. Moreover, conditioning the flows at
each scale on the coarse trajectory provides global context as the downsampled coarse trajectory
effectively increases the spatio-temporal receptive field. This enables our HBA-Flows better capture
multimodality in the distribution of likely future trajectories.

HBA-Prior. Complex multimodel priors can considerably increase the modeling flexibility of
generative models [4}, 21] 26]]. The block autoregressive structure of our HBA-Flow model allows
us introduce a Haar block autoregressive prior (HBA-Prior) over z = [z1,- - - , A x| in Eq. ,
where zj; is the latent representation for scales k € {1,--- , K — 1} and zf i, 2%k are the latents for
the coarse and fine representations scales K. The log-likelihood of the prior factorizes as,

log(pg(2|x)) = log(pg (21|22, -+ , 2" K, 2%k, X)) + - -

f c c (9)
+log(pe(z' Kk |2°K, X)) + log(py (2° K [X)).

Each coarse level representation ¢y is the output of a bijective transformation of the latent variables
[Z141, - , 2% ¢ Z°K] through the invertible split coupling flows and the transformations fy,;, at
scales {k +1,--- , K}. Thus, HBA-Prior models py(z¢|z1+1, - - , 2 k, 2K, X) as pg(zx|cy, x) at
every scale (Fig.[2] left). The log-likelihood of the prior can also be expressed as,

log(pe(z[x)) = log(pg(z1c1,x)) + - -+ + log(ps(zr—1]|cKx-1,%))

. i (10)
+log(py (2" k|ck, %)) + log(py (2° k[x))-

We model py (zx|ck, x) as conditional normal distributions which are multimodal as a result of the
block autoregressive structure. In comparison to the fully autoregressive prior in [26], our HBA-Prior
is efficient as it requires only O(log(7})) sampling steps.

Analysis of Sampling Time.  From Eq. (6) and Fig. 2] (left), our HBA-Flow model autoregressively
factorizes across the fine components fj, at K scales. From Lemma@ K <log(Th). Ateach scale our
HBA-Flow samples the fine components f;, using split coupling flows, which are easy to parallelize.
Thus, given enough parallel resources, our HBA-Flow model requires maximum K < log(7})
i.e. O(log(T})) sampling steps and is significantly more efficient compared to fully autoregressive
approaches e.g.VideoFlow [26], which require O(T}) steps.

4 [Experiments

We evaluate our approach for trajectory prediction on two challenging real world datasets — Stanford
Drone [34] and Intersection Drone [6]. These datasets contain trajectories of traffic participants
including pedestrians, bicycles, cars recorded from an aerial platform. The distribution of likely future
trajectories is highly multimodal due to the complexity of the traffic scenarios e.g.at intersections.
We are primarily interested in measuring the match of the learned distribution to the true distribution.
Therefore, we follow [4} 3, 28] [31]] and use Euclidean error of the top 10% of samples (predictions)
and the (negative) conditional log-likelihood (-CLL) metrics. The Euclidean error of the top 10%
of samples measures the coverage of all modes of the target distribution and is relatively robust to
random guessing as shown in [4]. We provide architecture details in the appendix.



Table 1: Five fold cross validation on the Stanford Drone dataset. Lower is better for all metrics.
Visual refers to additional conditioning on the last observed frame. Top: state of the art, Middle:
Baselines and ablations, Bottom: Our HBA-Flow.

Method Visual Er@lIsec Er@2sec Er@3sec Er@4sec -CLL  Speed
“Shotgun” [31]| - 0.7 1.7 3.0 4.5 91.6 -
DESIRE-SI-IT4 [28] v 1.2 2.3 34 53 - -
STCNN [31] v 1.2 2.1 33 4.6 - -
BMS-CVAE [3] v 0.8 1.7 3.1 4.6 126.6 58
CF-VAE [4] - 0.7 1.5 2.5 3.6 84.6 47
CF-VAE [4] v 0.7 1.5 24 35 84.1 88
Auto-regressive [26] - 0.7 1.5 2.6 3.7 86.8 134
FloWaveNet [21] - 0.7 1.5 2.5 3.6 84.5 38
FloWaveNet [21] + HWD [2] - 0.7 1.5 2.5 3.6 84.4 38
FloWaveNet [21] v 0.7 1.5 2.4 35 84.1 77
HBA-Flow (Ours) - 0.7 1.5 2.4 34 84.1 41

HBA-Flow + Prior (Ours) - 0.7 14 2.3 33 83.4 43
HBA-Flow + Prior (Ours)
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4.1 Stanford Drone

We use the standard five-fold cross validation evaluation protocol [4} 3, 128} 131] and predict the
trajectory up to 4 seconds into the future. We use the Euclidean error of the top 10% of predicted
trajectories at the standard (1/5) resolution using 50 samples and the CLL metric in Table [I} We
additionally report sampling time for a batch of 128 samples in milliseconds. We compare our
HBA-Flow model to the following state-of-the-art models: The handcrafted “Shotgun” model
[31]], the conditional VAE based models of [3l 14, 28] and the autoregressive STCNN model [31].
We additionally include the various exact inference baselines for modeling trajectory sequences:
the autoregressive flow model of VideoFlow [26], FloWaveNet [21] (without our Haar wavelet
based block autoregressive structure), FloWaveNet [21] with the Haar wavelet downsampling of
[2] (FloWaveNet + HWD), our HBA-Flow model with a Gaussian prior (without our HBA-Prior).
The FloWaveNet [21]] baselines serves as ideal ablations to measure the effectiveness of our block
autoregressive HBA-Flow model. For fair comparison, we use two scales (levels) K = 2 with eight
non-linear squared split coupling flows [42]] each, for both our HBA-Flow and FloWaveNet [21]]
models. Following [4} 31] we additionally experiment with conditioning on the last observed frame
using a attention based CNN (indicated by “Visual” in Table[T).

We observe from Table [I] that our HBA-Flow model outperforms both state-of-the-art models
and baselines. In particular, our HBA-Flow model outperforms the conditional VAE based mod-
els of [4), 3, 28] in terms of Euclidean distance and -CLL. Further, our HBA-Flow exhibits
competitive sampling speeds. This shows the advantage of exact inference in the context of
generative modeling of trajectories — leading to better match to the groundtruth distribution.
Our HBA-Flow model generates accurate trajectories  Tuple 2: Evaluation on the Stanford Drone
compared to the VideoFlow [26] baseline. This is using the split of [T} 36} 41].

because unlike VideoFlow, errors do not accumulate

in the temporal dimension of HBA-Flow. Our HBA-  Method mADE |  mFDE |
Flow model outperforms the FloWaveNet modell of S CalGAN (18] 72 14
[21] with comparable sampling speeds demonstrating MATF GAN [4]] 225 335
the effectiveness of the coarse-to-fine block autore- SoPhie [36] 16.2 29.3

. . Goal Prediction [11] 15.7 28.1
gressive structure of our HBA-Flow model in captur-  cpiyag @ 12.6 73

ing long-range spatio-temporal dependencies. This
is reflected in the predictive distributions and the top
10% of predictions of our HBA-Flow model in comparison with FloWaveNet [21]] in Fig.[3] The
predictions of our HBA-Flow model are more diverse and can more effectively capture the multi-
modality of the trajectory distributions especially at complex traffic situations e.g.intersections and
crossings. We provide additional examples in the appendix. We also observe in Table [I] that the
addition of Haar wavelet downsampling [2] to FloWaveNets [21] (FloWaveNet + HWD) does not
significantly improve performance. This illustrates that Haar wavelet downsampling as used in [2]
is not effective in case of sequential trajectory data as it is primarily a spatial pooling operation for
image data. Finally, our ablations with Gaussian priors (HBA-Flow) additionally demonstrate the
effectiveness of our HBA-Prior (HBA-Flow + Prior) with improvements with respect to accuracy. We

HBA-Flow + Prior (Ours) 10.8 19.8
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Figure 4: Mean top 10% predictions (Blue - Groudtruth, - FloWaveNet [21], Red - Our
HBA-Flow model) and predictive distributions on Intersection Drone dataset. The predictions of our
HBA-Flow model are more diverse and better capture the modes of the future trajectory distribution.

Table 3: Five fold cross validation on the Intersection Drone dataset.

Method Er@Q lsec Er@2sec Er@3sec Er@d4sec Er @ Ssec -CLL
BMS-CVAE [3] 0.25 0.67 1.14 1.78 2.63 26.7
CF-VAE [4] 0.24 0.55 0.93 1.45 2.21 21.2
FloWaveNet [21] 0.23 0.50 0.85 1.31 1.99 19.8
FloWaveNet [21] + HWD [2] 0.23 0.50 0.84 1.29 1.96 19.5
HBA-Flow + Prior (Ours) 0.19 0.44 0.82 1.21 1.74 17.3

further include a comparison using the evaluation protocol of [34H36| [L1]] in Table 2] Here, only a
single train/test split is used. We follow [4} [11] and use the minimum average displacement error
(mADE) and minimum final displacement error (mFDE) as evaluation metrics. Similar to [4}, [11]]
the minimum is calculated over 20 samples. Our HBA-Flow model outperforms the state-of-the-art
demonstrating the effectiveness of our approach.

4.2 Intersection Drone

We further include experiments on the Intersection Drone dataset [6]. The dataset consists of
trajectories of traffic participants recorded at German intersections. In comparison to the Stanford
Drone dataset, the trajectories in this dataset are typically longer. Moreover, unlike the Stanford
Drone dataset which is recorded at a University Campus, this dataset covers more “typical” traffic
situations. Here, we follow the same evaluation protocol as in Stanford Drone dataset and perform
a five-fold cross validation and evaluate up to 5 seconds into the future. We report the results in
Table 3] We use the strongest baselines from Table [T|for comparison to our HBA-Flow + Prior model
(with our HBA-Prior), with three scales, each having eight non-linear squared split coupling flows
[42]. For fair comparison, we compare with a FloWaveNet [21]] model with three levels and eight
non-linear squared split coupling flows per level. We again observe that our HBA-Flow leads to
much better improvement with respect to accuracy over the FloWaveNet [21]] model. Furthermore,
the performance gap between HBA-Flow and FloWaveNet increases with longer time horizons. This
shows that our approach can better encode spatio-temporal correlations. The qualitative examples
in Fig. @] from both models show that our HBA-Flow model generates diverse trajectories and can
better capture the modes of the future trajectory distribution, thus demonstrating the advantage of
the block autoregressive structure of our HBA-Flow model. We also see that our HBA-Flow model
outperforms the CF-VAE model [4]], illustrating the advantage of exact inference.

5 Conclusion

In this work, we presented a novel block autoregressive HBA-Flow framework taking advantage of
the representational power of autoregressive models and the efficiency of invertible split coupling
flow models. Our approach can better represent the multimodal trajectory distributions capturing
the long range spatio-temporal correlations. Moreover, the block autoregressive structure of our
approach provides for efficient O(log(7')) inference and sampling. We believe that accurate and
computationally efficient invertible models that allow exact likelihood computations and efficient
sampling present a promising direction of research of anticipation problems in autonomous systems.
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Appendix A. Additional Details of Lemma 1

.1 Proof of Lemma 1

Lemma 3. The generalized Haar transformation fipg = fraar © feo is invertible for o € [0,1) and
the determinant of the Jacobian of the transformation fupa = fraar © feo for sequence of length Ty,
withy,, € R is det Jppy = (1 — ) “@7¥/2,

Proof. To compute the Jacobian of fy;,, note that each element of the output fine (f;) and coarse
(cg) trajectories can be expressed in terms of the elements of the input trajectory y. From Eqs. (3)
and (4) in the main paper, the coarse (cy,) trajectories at level k can be expressed as,

¢t = (1 — a)eg + aog

=(1—a) [yi - ypl+a vyt an
=layr + (1 — @)yi, ayp + (L= a)yh, -, ay "+ (1 — a)y, ]

Similarly, the fine (fy) trajectories at level k can be expressed as,

Oz)Ok -+ (a — 1)ek

(1
( ) [yka"'vygk 1]"‘(0‘_1)[3’%,,}’:}"]
[
(1-

12)

(1-a)yi + (@ —1D)yE, (1 —a)yi + (@ = Dyg, -+,
)yt 4 (o — 1)yiF).

We can now rearrange the elements of the output trajectory fr,p, by placing elements from fj, and cy,
in an alternating fashion,

fruva(yr) =fo, e = [(1— @)y, + (o — Dyp, ayp +(1—a)yi, -,

(13)
(1 - )y '+ (a=Dyik, ay ™+ (1 —a)y;*].

As each element yi € R, we can further simplify the output trajectory fs, in terms of the individual
elements in y7. This results in a block diagonal Jacobian J, € R 7x*4 Tk of f,,, of the form,

(l1-a) (a—1) 0 0 0 0 0
! (1-a) 0 0 0 0 0
0 0 (I-a) (a=1) 0 0 0
Jhba — 0 0 OZ (1 — OZ) 0 0 0 (14)
0 0 0 0 0 (1-a) (a—1)
0 0 0 0 0 ! (1-a)

The repeating block in J, repeats (¢-Tx)/2 times as the trajectory is of length T}, and each element
of the trajectory has d dimensions. Therefore, the determinant of the Jacobian J, is (1 — o) "™%/2,

To show that fi,q = fraar © feo 18 invertible, first note that f,, rearranges the elements of the input
trajectory as is thus trivially invertible. Now, note that f,,q; is a linear system. For « € [0, 1) we
see that det Jpp, > 0. Thus, the linear system [}, in Eq. (4) in the main paper is non-singular and
invertible. Thus, f,;, is invertible. O

Appendix B. Architecture and Optimization

Here, we provide additional architectural details of our HBA-Flow model in Fig. 2 (right), in
particular the split coupling flows. The split coupling flows in our HBA-Flow model are based on
those of FloWaveNet [21]. However, as mentioned in the main paper, we employ more powerful
non-linear squared flows [42]] across baselines versus the affine flows used in [21]. The non-causal
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wavenets in the split coupling flows are similar to the ones employed in [21]] with 4 convolutional
layers with 256 filters each. In practice, we do not find it necessary to employ activation normalization
layers along with the more powerful non-linear squared flows. We use identical non-causal wavenets
to learn the parameters of our HBA-Prior.

Finally, note that we train the full HBA-Flow model along with the prior using the AdaMax [22]]
optimizer. The “mixing” parameter « in fp, is learnable, although o = 0.5 also works well in
practice.

Appendix C. Qualitative Results

We provide additional qualitative results on Stanford Drone in Fig. [5|and Intersection Drone in Fig.[6]
comparing to FloWaveNet [21]]. These results further support the results in Figs. 4 and 5 in the
main paper. We again see that the predictions of our HBA-Flow model are more diverse and can
more effectively capture the modes of the trajectory distributions at complex traffic situations like
intersections and crossings. Again, this is further supported by the top 10% of predictions, which are
closer to the groundtruth trajectories.

Mean Top 10% FloWaveNet [21]] HBA-Flow (Ours)
Observed B-GT,  -[21], R - Ours Predictions Predictions

—

[ mggummmmes F [ g i ([ mgg 3 [ g

Figure 5: Mean top 10% predictions (Blue - Groudtruth, - FloWaveNet [21]], Red - Our
HBA-Flow model) and predictive distributions on Stanford Drone dataset. The predictions of our
HBA-Flow model are more diverse and better capture the modes of the future trajectory distribution.
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Mean Top 10% FloWaveNet [21] HBA-Flow (Ours)
Observed B -GT, = -[21], R - Ours Predictions Predictions

Figure 6: Mean top 10% predictions (Blue - Groudtruth, - FloWaveNet [21]], Red - Our
HBA-Flow model) and predictive distributions on Intersection Drone dataset. The predictions of our
HBA-Flow model are more diverse and better capture the modes of the future trajectory distribution.
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