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Abstract

The problem of continuous optimal control (over finite time horizon) is to minimize
a given cost function over the sequence of continuous control variables. The
problem of continuous inverse optimal control is to learn the unknown cost function
from expert demonstrations. In this article, we study this fundamental problem
in the framework of energy-based model, where the observed expert trajectories
are assumed to be random samples from a probability density function defined
as the exponential of the negative cost function up to a normalizing constant.
The parameters of the cost function are learned by maximum likelihood via an
“analysis by synthesis” scheme, which iterates the following two steps: (1) Synthesis
step: sample the synthesized trajectories from the current probability density
using the Langevin dynamics via back-propagation through time. (2) Analysis
step: update the model parameters based on the statistical difference between
the synthesized trajectories and the observed trajectories. Given the fact that an
efficient optimization algorithm is usually available for an optimal control problem,
we also consider a convenient approximation of the above learning method, where
we replace the sampling in the synthesis step by optimization. We demonstrate the
proposed method on autonomous driving tasks, and show that it can learn suitable
cost functions for optimal control.

1 Introduction

The problem of continuous optimal control has been extensively studied. In this paper, we study
the control problem of finite time horizon, where the trajectory is over a finite period of time. In
particular, we focus on the problem of autonomous driving as a concrete example. In continuous
optimal control, the control variables or actions are continuous. The dynamics is known. The cost
function is defined on the trajectory and is usually in the form of the sum of stepwise costs and the
cost of the final state. We call such a cost function Markovian. The continuous optimal control seeks
to minimize the cost function over the sequence of continuous control variables or actions, and many
efficient algorithms have been developed for various optimal control problems [29]. For instance, in
autonomous driving, the iLQR (iterative linear quadratic regulator) algorithm is a commonly used
optimization algorithm [20] [2]. We call such an algorithm the built-in optimization algorithm for the
corresponding control problem.

In applications such as autonomous driving, the dynamics is well defined by the underlying physics
and mechanics. However, it is a much harder problem to design or specify the cost function. One
solution to this problem is to learn the cost function from expert demonstrations by observing their
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sequences of actions. Learning the cost function in this way is called continuous inverse optimal
control problem.

In this article, we study the fundamental problem of continuous inverse optimal control in the
framework of energy-based model. Originated from statistical physics, an energy-based model is a
probability distribution where the probability density function is in the form of exponential of the
negative energy function up to a normalizing constant. Instances with low energies are assumed to be
more likely according to the model. For continuous inverse optimal control, the cost function plays
the role of energy function, and the observed expert sequences are assumed to be random samples
from the energy-based model so that sequences with low costs are more likely to be observed. We
can choose the cost function either as a linear combination of a set of hand-designed features, or a
non-linear and non-markovian neural network. The goal is to learn the parameters of the cost function
from the expert sequences.

The parameters can be learned by the maximum likelihood method in the context of the energy-based
model. The maximum likelihood learning algorithm follows an “analysis by synthesis” scheme,
which iterates the following two steps: (1) Synthesis step: sample the synthesized trajectories from
the current probability distribution using the Langevin dynamics [23]. The gradient computation in
the Langevin dynamics can be conveniently and efficiently carried out by back-propagation through
time. (2) Analysis step: update the model parameters based on the statistical difference between the
synthesized trajectories and the observed trajectories. Such a learning algorithm is very general, and
it can learn complex cost functions such as those defined by the neural networks.

For an optimal control problem where the cost function is of the Markovian form, a built-in opti-
mization algorithm is usually already available, such as the iLQR algorithm for autonomous driving.
In this case, we also consider a convenient modification of the above learning method, where we
change the synthesis step (1) into an optimization step while keeping the analysis step (2) unchanged.
We give justifications for this optimization-based method, although we want to emphasize that the
sampling-based method is still more fundamental and principled, and we treat optimization-based
method as a convenient modification.

We demonstrate the proposed energy-based continuous optimal control methods on autonomous
driving and show that the proposed methods can learn suitable cost functions for optimal control.

2 Contributions and related work

The contributions of our work are as follows. (1) We propose an energy-based method for continuous
inverse optimal control based on Langevin sampling via back-propagation through time. (2) We also
propose an optimization-based method as a convenient approximation. (3) We evaluate the proposed
methods on autonomous driving tasks for both single-agent system and multi-agent system, with both
linear cost function and neural network non-linear cost function.

The following are research themes related to our work.

(1) Maximum entropy framework. Our work follows the maximum entropy framework of [39]
for learning the cost function. Such a framework has also been used previously for generative
modeling of images [38] and Markov logic network [25]. In this framework, the energy function is
a linear combination of hand-designed features. Recently, [31] generalized this framework to deep
version. In these methods, the state spaces are discrete, where dynamic programming schemes can be
employed to calculate the normalizing constant of the energy-based model. In our work, the state
space is continuous, where we use Langevin dynamics via back-propagation through time to sample
trajectories from the learned model. We also propose an optimization-based method where we use
gradient descent or a built-in optimal control algorithm as the inner loop for learning.

(2) ConvNet energy-based models(EBM). Recently, [32], [35], [36], [33] [34], applied energy-
based model to various generative modeling tasks, where the energy functions are parameterized
by ConvNets [17] [15]. Our method is different from ConvNet EBM. The control variables in our
method form a time sequence. In gradient computation for Langevin sampling, back-propagation
through time is used. Also, we propose an optimization-based modification and give justifications.

(3) Inverse reinforcement learning. Most of the inverse reinforcement learning methods [8, 7],
including adversarial learning methods [9], [13], [21], [7], involve learning a policy in addition to
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the cost function. In our work, we do not learn any policy. We only learn a cost function, where
the trajectories are sampled by the Langevin dynamics or obtained by gradient descent or a built-in
optimal control algorithm.

(4) Continuous inverse optimal control (CIOC). The CIOC problem has been studied by [22] and [19].
In [22], the dynamics is linear and the cost function is quadratic, so that the normalizing constant
can be computed by a dynamic programming scheme. In [19], the Laplace approximation is used for
approximation. However, the accuracy of the Laplace approximation is questionable for complex
cost function. In our work, we assume general dynamics and cost function, and we use Langevin
sampling for maximum likelihood learning without resorting to Laplace approximation.

(5) Trajectory prediction. A recent body of research has been devoted to supervised learning for
trajectory prediction [1], [10], [30], [18], [6], [37]. These methods directly predict the coordinates
and they do not consider control and dynamic models. As a result, they cannot be used for inverse
optimal control.

3 Energy-based inverse control

3.1 Optimal control

We study the finite horizon control problem for discrete time t ∈ {1, ..., T}. Let xt be the state at
time t. Let x = (xt, t = 1, ..., T ). Let ut be the continuous control variable or action at time t.
Let u = (ut, t = 1, ..., T ). The dynamics is assumed to be deterministic, xt = f(xt−1, ut), where
f is given, so that u determines x. The trajectory is (x,u) = (xt, ut, t = 1, ..., T ). Let e be the
environment condition. We assume that the recent history h = (xt, ut, t = −k, ..., 0) is known.

The cost function is Cθ(x,u, e, h) where θ consists of the parameters that define the cost function.
Its special case is of the linear form Cθ(x,u, e, h) = 〈θ, φ(x,u, e, h)〉, where φ is a vector of hand-
designed features, and θ is a vector of weights for these features. We can also parametrize Cθ by a
neural network. The problem of optimal control is to find u to minimize Cθ(x,u, e, h) with given e
and h under the known dynamics f . The problem of inverse optimal control is to learn θ from expert
demonstrations D = {(xi,ui, ei, hi), i = 1, ..., n}.

3.2 Energy-based probabilistic model

The energy-based model assumes the following conditional probability density function

pθ(u|e, h) =
1

Zθ(e, h)
exp[−Cθ(x,u, e, h)], (1)

where Zθ(e, h) =
∫
exp[−Cθ(x,u, e, h)]du is the normalizing constant. Recall that x is determined

by u according to the deterministic dynamics, so that we only need to define probability density on u.
The cost function Cθ serves as the energy function. For expert demonstrations D, ui are assumed to
be random samples from pθ(u|ei, hi), so that ui tends to have low cost Cθ(x,u, ei, hi).

3.3 Sampling-based inverse optimal control

We can learn the parameters θ by maximum likelihood. The log-likelihood is

L(θ) =
1

n

n∑
i=1

log pθ(ui|ei, hi). (2)

We can maximize L(θ) by gradient ascent, and the learning gradient is

L′(θ) =
1

n

n∑
i=1

[
Epθ(u|ei,hi)

(
∂

∂θ
Cθ(x,u, ei, hi)

)
− ∂

∂θ
Cθ(xi,ui, ei, hi)

]
, (3)

which follows from the fact that ∂
∂θ logZθ(e, h) = −Epθ(u|e,h)

(
∂
∂θCθ(x,u, ei, hi)

)
.

In order to approximate the above expectation, we can generate multiple random sample ũi ∼
pθ(u|e, h), which generates the sampled trajectory (x̃i, ũi) by unfolding the dynamics. We estimate
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L′(θ) by

L̂′(θ) =
1

n

n∑
i=1

[
∂

∂θ
Cθ(x̃i, ũi, ei, hi)−

∂

∂θ
Cθ(xi,ui, ei, hi)

]
, (4)

which is the stochastic unbiased estimator of L′(θ). Then we can run the gradient ascent algorithm
θτ+1 = θτ + γτ L̂

′(θτ ) to obtain the maximum likelihood estimate of θ, where τ indexes the time
step, γτ is the step size. According to the Robbins-Monroe theory of stochastic approximation [26],
if
∑
τ γτ =∞ and

∑
τ γ

2
τ <∞, the algorithm will converge to a solution of L′(θ) = 0. For each i,

we can also generate multiple copies of (x̃i, ũi) from pθ(u|ei, hi) and average them to approximate
the expectation in (3). A small number is sufficient because the averaging effect takes place over
time.

In linear case, where Cθ(x,u, e, h) = 〈θ, φ(x,u, e, h)〉, we have ∂
∂θCθ(x,u, ei, hi) = φ(x,u, e, h),

making L̂′(θ) = 1
n

∑n
i=1 [φ(x̃i, ũi, ei, hi)− φ(xi,ui, ei, hi)]. It is the statistical difference between

the observed trajectories and synthesized trajectories. At maximum likelihood estimate, the two
match each other.

The synthesis step that samples from pθ(u|e, h) can be accomplished by Langevin dynamics, which
iterates the following steps:

us+1 = us −
δ2

2
C ′θ(xs,us, e, h) + δzs, (5)

where s indexes the time step, C ′θ(x,u, e, h) is the derivative with respect to u. δ is the step size, and
zs ∼ N(0, I) independently over s, where I is the identity matrix of the same dimension as u. The
Langevin dynamics is an inner loop of the learning algorithm.

The gradient term C ′θ(x,u, e, h) = ∂Cθ(x,u, e, h)/∂u is computed via back-propagation through
time, where x can be obtained from u by unrolling the deterministic dynamics. The computation
can be efficiently and conveniently carried out by auto-differentiation on the current deep learning
platforms.

3.4 Optimization-based inverse optimal control

We can remove the noise term in Langevin dynamics (5), to make it a gradient descent process,
us+1 = us − ηC ′θ(xs,us, e, h), and we can still learn the cost function that enables optimal
control. This amounts to modifying the synthesis step into an optimization step. Moreover, a built-in
optimization algorithm is usually already available for minimizing the cost function Cθ(x,u, e, h)
over u. For instance, in autonomous driving, a commonly used algorithm is iLQR. In this case, we
can replace the synthesis step by an optimization step, where, instead of sampling ũi ∼ pθt(u|ei, hi),
we optimize

ũi = argmin
u
Cθ(x,u, ei, hi). (6)

The analysis step remains unchanged. In this paper, we emphasize the sampling-based method, which
is more principled maximum likelihood learning, and we treat the optimization-based method as a
convenient modification. We will evaluate both learning methods in our experiments.

A justification for the optimization-based algorithms in the context of the energy-based model (1) is
to consider its tempered version: pθ(u|e, h) ∝ exp[−Cθ(x,u, e, h)/T ], where T is the temperature.
Then the optimized ũ that minimizes Cθ(x,u, e, h) can be considered the zero-temperature sample,
which is used to approximate the expectation in (3).

3.5 Energy-based inverse optimal control algorithm

Algorithm 1 presents the learning algorithm.

We treat the sampling-based method as a more fundamental and principled method, and the
optimization-based method as a convenient modification. In our experiments, we shall evaluate
both sampling-based method using Langevin dynamics and optimization-based method with gradient
descent (GD) or iLQR as optimizer.
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Algorithm 1 Energy-based inverse optimal control

1: input expert demonstrations D = {(xi,ui, ei, hi),∀i}.
2: output cost function parameters θ, and synthesized or optimized trajectories {(x̃i, ũi),∀i}.
3: Let τ ← 0, initialize θ.
4: repeat
5: Synthesis step or optimization step: synthesizing ũi ∼ pθt(u|ei, hi) by Langevin sampling,

or optimizing ũi = argminu Cθ(x,u, ei, hi), by gradient descent (GD) or iLQR, and then obtain
x̃i, for each i.

6: Analysis step: update θτ+1 = θτ + γτ L̂
′(θτ ), where L̂ is computed according to (4).

7: τ ← τ + 1.
8: until τ = τmax, the number of iterations.

4 Experiments

The code, more results and details can be found at : http://www.stat.ucla.edu/~yifeixu/meioc

4.1 Experimental setup

We evaluate the proposed energy-based inverse control methods on autonomous driving tasks. We
test our methods on two datasets. Massachusetts driving dataset focuses on highways with curved
lanes and static scenes while NGSIM US-101 dataset [5] focuses on rich vehicle interactions. Details
about dataset statistics and preprocessing pipeline can be found in supplementary. We randomly split
each dataset into training and testing sets.

In the task of autonomous driving, the state xt consists of the coordinate, heading angle and velocity
of the car, the control variables ut consists of steering angle and acceleration, the environment e
consists of road condition, speed limit, the curvature of the lane (which is represented by a cubic
polynomial), as well as the coordinates of other vehicles. The trajectories of other vehicles are treated
as known environment states and assumed to remain unchanged while the ego vehicle is moving,
even though the trajectories of other vehicles should be predicted in reality. In this paper, we sidestep
this issue and focus on the inverse control problem.

We first use a linear combination of some hand-designed features as the cost function. The vector
of features φ includes the distance to goal (which is a virtual destination 5 seconds away from the
starting point along the lane), the penalty for the collision with other vehicles, the distance to the
center of the lane, the leading angle difference from the lane, the speed difference to the speed limit,
the L2-norm of the change in controls and the L2-norm of the controls. Feature normalization is
adopted to make sure that each feature has the same scale of magnitude. We also parameterize the
cost function by a neural network in section 4.4.

As to learning, the weight parameters are initialized by a normal distribution. The controls are also
initialized by zeros, which is keeping straight. We normalize the controls, i.e., the steering and
acceleration, because their scales are different. Instead of sampling the controls, we sample their
changes. We set the number of steps of the Langevin dynamics or the gradient descent to be l = 64
and set the step size to be δ = 0.2. The choice of l is a trade-off between computational efficiency
and prediction accuracy. For parameter training, we use the Adam optimizer [14].

We use Root Mean Square Error (RMSE) in meters with respect to each timestep t to measure the

accuracy of prediction, i.e., RMSE(t) =
√

1
N

∑N
i=1 ‖ŷit − yit‖

2, where N is the number of expert
demonstrations, ŷit is the predicted coordinate of the i-th demonstration at time t and yit is the
ground truth coordinate of the i-th demonstration at time t. A small RMSE is desired. As a stochastic
method, our method is also evaluated by average RMSE and minimum RMSE.

4.2 Single-agent control

We first test our methods, including sampling-based and optimization-based ones, on single-agent
control problem. We compare our method with three baseline methods.

• Constant velocity: the simplest baseline with a constant velocity and zero steerings.
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Figure 1: Predicted trajectories for single-agent control. (Green: Predicted trajectories. Red: Ground truths.
Orange: Other vehicles. Gray: Lanes.)

• Generative adversarial imitation learning (GAIL) [13]: The original GAIL method was proposed
for imitation learning. We use the same setting as in [16], which applies GAIL to the task of
modeling human driving behavior. Besides, we change the policy gradient method from Trust
Region Policy Optimization (TRPO) [27] to Proximal Policy Optimization (PPO) [28].

• CIOC with Laplace [19]: We implement this baseline with the same iLQR as that in our model.

We can predict the full trajectories with 64 steps of Langevin dynamics (LD) or gradient descent (GD)
in roughly 0.1 second. Figure 1 displays 2 examples of qualitative results. For each example, 5 graphs
show the positions of all vehicles in the scene as dots after 0 to 4 seconds respectively, along with
the predicted trajectories (the green lines) and the ground truths (the red lines). Table 1 and 2 show
the results for Massachusetts driving dataset and NGSIM US-101 dataset, respectively. In the last
two rows, we provide both average RMSE along with the minimum RMSE for our sampling-based
approach. Our methods achieve substantial improvements compared to baseline methods, such as
CIOC [19] and GAIL, in terms of testing RMSE. We find that the sampling-based methods outperform
the optimization-based methods among our energy-based approaches.

Table 1: Massachusetts driving dataset result.
Method 1s 2s 3s
Constant Velocity 0.340 0.544 0.870
CIOC 0.386 0.617 0.987
ours (iLQR) 0.307 0.491 0.786
ours (GD) 0.257 0.413 0.660
ours (LD) avg 0.255 0.401 0.637
ours (LD) min 0.157 0.354 0.607

Table 2: NGSIM US-101 dataset result.
Method 1s 2s 3s 4s
Constant Velocity 0.569 1.623 3.075 4.919
CIOC 0.503 1.468 2.801 4.530
GAIL 0.367 0.738 1.275 2.360
ours (iLQR) 0.351 0.603 0.969 1.874
ours (GD) 0.318 0.644 1.149 2.138
ours (LD) avg 0.311 0.575 0.880 1.860
ours (LD) min 0.203 0.458 0.801 1.690

The reason why the method “CIOC with Laplace” performs poorly on both two datasets is due to the
fact that its Laplace approximation is not accurate enough for a complex cost function used in the
current tasks. Our models are more genetic and do not make such an approximation. Instead, they
use Langevin sampling for maximum likelihood training. Therefore, our methods can provide more
accurate prediction results.

The problem of GAIL is due to its model complexity. GAIL parameterizes its discriminator, policy
and value function by MLPs. Designing optimal MLP structures of these components for GAIL is
challenging. Our method only needs to design a single architecture for the cost function. Additionally,
our method for optimal control is performed by simulating the trajectory of actions and states
according to the learned cost function taking into account the future information. In contrast, GAIL
relies on its learned policy net for step-wise decision making.

Compared with gradient descent (optimization-based approach), Langevin dynamics-based method
can obtain smaller errors. One reason is that the sampling-based approach rigorously maximizes the
log-likelihood of the expert demonstrations during training, while the optimization-based approach is
just a convenient approximation. The other reason is that the Gaussian noise term in each Langevin
step helps to explore the cost function and avoid sub-optimal solutions.

4.3 Corner case testing with toy examples

Corner cases are important for model evaluation. We construct 6 typical corner cases to test our
model. Figure 2 shows the predicted trajectories by our method for several cases. Figures 2(a) and (b)
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show two cases of sudden braking. In each of the cases, a vehicle (orange) in front of the ego vehicle
(green) is making a sudden brake. In case (a), there are not any other vehicles moving alongside the
ego vehicle, so it is predicted to firstly change the lane, then accelerate past the vehicle in front, and
return to its previous lane and continue its driving. In case (b), two vehicles are moving alongside the
ego vehicle. The predicted trajectory shows that the ego vehicle is going to trigger a brake to avoid a
potential collision accident. Figures 2(c) and (d) show two cases in cut-in situation. In each case,
a vehicle is trying to cut in from the left or right lane. The ego vehicle is predicted to slow down
to ensure the safe cut-in of the other vehicle. Figures 2(e) and (f) show two cases in the large lane
curvature situation, where our model can still perform well to predict reasonable trajectories.

Figure 3 shows the corresponding plots of the predicted controls over time steps. In each plot,
blue lines stand for acceleration and orange lines stand for steering. The dash lines represent the
initialization of the control for Langevin sampling, which is actually the control at the last time step in
the history trajectory. We use 64 Langevin steps to sample the controls from the learned cost function.
We plot the predicted control over time for each Langevin step. The curves with more numbers of
Langevin steps appear darker. Thus, the darkest solid lines are the final predicted control.
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Figure 2: Predicted trajectories in corner cases. (Green : predicted trajectories. Orange : trajectories of other
vehicles. Gray: Lanes.)
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Figure 3: Predicted control through time. (dash lines: initial values of the controls for Langevin sampling. solid
lines: predicted controls over time steps. Blue: control of acceleration. Orange: control of steering.)

In short, this experiment demonstrates that our method is capable of learning a reasonable cost
function to handle corner cases, such as situations of sudden braking, lane cut-in, and making turns in
curved lanes.

4.4 Evaluation of different cost functions

The Neural network is a powerful function approximator. It is capable of approximating any complex
nonlinear function given sufficient training data, and it is also flexible to incorporate prior information,
which in our case are the manually designed features. In this experiment, we replace the linear
cost function in our sampling-based approach with a neural network. Specifically, we design a
cost function by multilayer perceptron (MLP), where we put three layers on top of the vector of
hand-designed features: Cθ(x,u, e, h) = f(φ(x,u, e, h)), where f contains 2 hidden layers and 1
output layer. We also consider using a 1D CNN that takes into account the temporal relationship
inside the trajectory for the cost function. We add four 1D convolutional layers on top of the vector
of hand-designed features, where the kernel size in each layer is 1 × 4. The numbers of channels are
{32, 64, 128, 256} and the numbers of strides are {2, 2, 2, 1} for different layers, respectively. One
fully connected layer with a single kernel is attached at the end.

Table 3 shows the performance of different designs of cost functions. We can see that improvements
can be obtained by using cost functions parameterized by either MLP or CNN. Neural network
provides nonlinear connection layers as a transformation of the original input features. This implies
that there are some internal connections between the features and some temporal connections among
feature vectors at different time steps.

4.5 Multi-agent control

In the setting of single-agent control, the future trajectories of other vehicles are assumed to be known
(e.g., they are predicted by a prediction method) and they remain unchanged no matter how the ego
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Table 3: Performance of models with differ-
ent cost functions.

Method (RMSE) 1s 2s 3s
Linear 0.255 0.401 0.637
MLP 0.237 0.379 0.607
CNN 0.234 0.372 0.572

Table 4: Performance comparison in multi-agent control on
NGSIM US-101 dataset. RMSEs are reported.

Method (RMSE) 1s 2s 3s 4s
Constant Velocity 0.569 1.623 3.075 4.919
PS-GAIL 0.602 1.874 3.144 4.962
ours (multi-agent) 0.365 0.644 1.229 2.262
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Figure 4: Predicted trajectories for multi-agent control. (Green: Predicted trajectories. Red: Ground truths.
Gray: Lanes.)

vehicle moves. We extend our framework to multi-agent setting. In this setting, we simultaneously
control all vehicles in the scene. The controls of other vehicles are used to predict the trajectories of
other vehicles.

Suppose there are K agents, and every agent in the scene can be regarded as a general agent. The
state and control space are Cartesian products of the individual states and controls respectively, i.e.,
X = (xk, k = 1, 2, ...,K),U = (uk, k = 1, 2, ...,K). All the agents share the same dynamic
function, which is xkt = f(xkt−1, u

k
t )∀k = 1, 2, ...,K. The overall cost function are set to be the sum

of each agent Cθ(X,U, e, h) =
∑K
k=0 Cθ(x

k,uk, e, hk). Thus, the conditional probability density
function becomes pθ(U|e, h) = 1

Zθ(e,h)
exp[−Cθ(X,U, e, h)], where Zθ(e, h) is the intractable

normalizing constant.

We compare our method with the following baselines for multi-agent control.

• Constant velocity: The simplest baseline with a constant velocity and zero steerings.
• The parameter sharing GAIL (PS-GAIL) [4] [3]: This method extends single-agent GAIL

and Parameter Sharing Trust Region Policy Optimization (PS-TRPO) [11] to enable imitation
learning in the multi-agent context.

We test our method on the NGSIM US-101 dataset. We use a linear cost function setting for each
agent in this experiment. The maximum number of agents is 64. Figure 4 shows two examples of
the qualitative results, one per row. The first to fifth columns show the positions of all vehicles in
the scene as dots after 0 to 4 seconds respectively, along with the predicted trajectories (the green
lines) and the ground truths (the red lines). Table 4 shows a comparison of performance between our
method and the baselines. Results show that our method can work well in the multi-agent control
scenario.

5 Conclusion

This paper studies the fundamental problem of learning the cost function from expert demonstrations
for continuous optimal control. We study this problem in the framework of energy-based model, and
we propose sampling-based method and optimization-based modification to learn the cost function.

Unlike previous method for continuous inverse control [19], we learn the model by maximum
likelihood using Langevin sampling, without resorting to Laplace approximation. This is a possible
reason for improvement over previous method. The Langevin sampling or MCMC sampling in
general also has the potential to avoid sub-optimal modes.

Our method is generally applicable, and can learn non-linear and non-Markovian cost functions.
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A Appendix: Theoretical understanding

A.1 Moment matching

For simplicity, consider the linear cost function Cθ(x,u, e, h) = 〈θ, φ(x,u, e, h)〉. At the conver-
gence of the optimization-based learning algorithm, which has the same analysis step (2) as the
sampling-based algorithm, we have L̂′(θ) = 0, so that

1

n

n∑
i=1

φ(x̃i, ũi, ei, hi) =
1

n

n∑
i=1

φ(xi,ui, ei, hi), (7)

where the left-hand side is the average of the optimal behaviors obtained by (6), and the right-hand
side is the average of the observed behaviors. We want the optimal behaviors to match the observed
behaviors on average. We can see the above point most clearly in the extreme case where all ei = e
and all hi = h, so that φ(x̃, ũ, e, h) = 1

n

∑n
i=1 φ(xi,ui, e, h), i.e., we want the optimal behavior

under the learned cost function to match the average observed behaviors as far as the features of the
cost function are concerned. Note that the matching is not in terms of raw trajectories but in terms of
the features of the cost function.

A.2 Adversarial learning

We can also justify this optimization-based algorithm outside the context of probabilistic model as
adversarial learning. To this end, we re-think about the inverse optimal control, whose goal is not
to find a probabilistic model for the expert trajectories. Instead, the goal is to find a suitable cost
function for optimal control, where we care about the optimal behavior, not the variabilities of the
observed behaviors. Define the value function

V =
1

n

n∑
i=1

[Cθ(x̃i, ũi, ei, hi)− Cθ(xi,ui, ei, hi)] , (8)

Then L̂′(θ) = ∂
∂θV , so that the analysis step (2) increases V . Thus the optimization step and

the analysis step play an adversarial game maxθminũi,∀i V , where the optimization step seeks to
minimize V by reducing the costs, while the analysis step seeks to increase V by modifying the cost
function. More specifically, the optimization step finds the minima of the cost functions to decrease
V , whereas the analysis step shifts the minima toward the observe trajectories in order to increase V .

B Appendix: Experiment details

B.1 Dataset

Here we provide the detailed dataset information of the two datasets we used in experiments.

(1) Massachusetts driving dataset: This is a private dataset collected from an autonomous vehicle
during repeated trips on a stretch of highway. The dataset includes vehicle states, controls collected
by the hardware on the vehicle, and environment information. This dataset has a realistic driving
scenario, which includes curved lanes and complex static scenes. To solve the problem of noisy
GPS signal, Kalman filtering is used to denoise the data. The number of trajectories is 44,000. Each
trajectory is 4 seconds long with a time interval equal to 0.1 seconds.

(2) NGSIM US-101 [5]: This dataset consists of real highway traffics captured at 10Hz over a time
span of 45 minutes. Compared to Massachusetts driving dataset, NGSIM US-101 contains richer
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vehicle interactions. Each control needs to consider other nearby vehicles. We preprocess the data
by dividing the data into blocks (or scenes), each of which is 50 frames (i.e., 5 seconds) long. For
each block, we treat the first 10 frames as history and the rest 40 frames for prediction.) There are
totally 831 scenes with 96,512 5-second-long vehicle trajectories. No control variables are provided.
Thus, we need to infer the controls of each vehicle given the vehicle states. Assuming the bicycle
model [24] dynamics, we perform an inverse-dynamics optimization using gradient descent to infer
the controls and adjust the positions. The overall Root Mean Square Error (RMSE) between the
ground truth GPS positions and the adjusted ones is 0.97 meters. The preprocessed trajectories have
perfect dynamics with noiseless and smooth control sequences and GPS coordinates.

Figure 5: Statistics comparison between Massachusetts Driving dataset and NGSIM US-101 dataset
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Figure 6: Preprocessed and raw trajectories in NGSIM US-101 dataset. (Green : preprocessed; Red: raw)

We provide a statistical comparison of two datasets. Figure 5 shows histograms of the road curvature,
steering control, and acceleration control, respectively. We can see that Massachusetts driving dataset
has bigger curvatures, while NGSIM US-101 dataset has bigger accelerations.

Figure 6 shows a sample of scene in the preprocessed NGSIM US-101 dataset. There are over 100
vehicles in this scene all moving from left to right. Each dot sequence represents the state trajectory of
one vehicle from time frame 1 to 50. The green dot sequences represent the preprocessed trajectories,
and the red ones represent the raw trajectories.

B.2 Network Structure

Table 5 shows a list of the hand-crafted features defined in section 4.1. They are differentiable feature
extractors and construct the first layers of the networks that parameterize the cost functions, which
are used in our methods (with Langevin, GD, and iLQR) and baselines. Table 6 and 7 are the MLP
and CNN network structures we used in section 4.3, respectively. The network structure in Table 6
only considers information is each time frame, while the one shown in table 7 takes into account the
temporal information. In table 7, the length of trajectory is 40. The numbers of dimensions of x, u
and e are 6, 2, and 29, respectively.

B.3 Training Details

Normalization. For the control values, we normalize each control value to have zero mean and unit
variance. We also normalize each hand-crafted feature by dividing the feature by its mean.

Optimizer. We use Adam optimizer to train our models. All β1 and β2 are set to be 0.5. All model
parameters are initialized by the Kaiming He initialization [12] method. We provide the learning
rates and decay rates for different energy functions below:
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Table 5: A list of hand-crafted features

Distance to the goal point in longitude L2 norm of the accelerating value
Distance to the goal point in latitude L2 norm of the steering value
Distance to the center of the lane Difference to last accelerating value
Difference to the speed limit Difference to last steering value
Difference to the direction of the lane Distance to the nearest obstacle

Table 6: MLP cost function network

Layer Output Size
concat([x, u, e]) 6+2+29
hand-craft feature 10
Linear, LeakyReLU 64
Linear, LeakyReLU 64
Linear 1

Table 7: CNN cost function network

Layer Output Size Stride
concat([x, u, e]) 1 ×40×(6+2+29) -
hand-craft feature 1 ×40×10 -
1×4 Conv1d, LeakyReLU 1 ×19×32 2
1×4 Conv1d, LeakyReLU 1×9×64 2
1×4 Conv1d, LeakyReLU 1×4×128 2
1×4 Conv1d, LeakyReLU 1×1×256 1
Linear 1×1×1 -

• Linear: Learning rate : 0.1; Exponential decay rate : 0.999
• MLP cost function: Learning rate : 0.005; No exponential decay
• CNN cost function: Learning rate : 0.005; Exponential decay rate : 0.999

Langevin Dynamics. To prevent from the exploding gradients problem, we use gradient clipping in
each step for Langevin dynamics (or gradient descent), with a maximum limit equal to 0.1. The step
size of Langevin dynamics is set to be 0.1 and the number of steps is 64. All settings are the same for
the gradient descent setting. In appendix C, we study the influence of different choices of numbers of
Langevin steps and step sizes.

iLQR. In iLQR solver, we apply grid search for the learning rate from 0.001 to 1. The maximum
number of steps is set to be 100. When the difference of controls between two steps is smaller than
0.001, the early stop is triggered. In the experiment, the average number of iLQR steps is around 30.

Training time. We use a mini-batch of size 1,024 during training. For each epoch, we shuffle the
whole training set. That is, in each epoch, the algorithm has a different mini-batch division. The
following lists the running time of each epoch for each model while training on Massachusetts driving
dataset. The training times are recorded in a PC with a CPU i9-9900 and a GPU Tesla P100.

• Linear: It takes around 3 minutes for each epoch, and 40 epochs in total. Training time is
dominated by the number of steps we choose. If we decrease the number of steps to 8, it only
takes 40 seconds per epoch.

• MLP / CNN cost function: It takes around 10 minutes for each epoch, and 40 epochs in total.
• GAIL: GAIL uses a smaller mini-batch size of 64. It takes around 10 minutes for each epoch,

and 40 epochs in total.
• CIOC: It takes around 1 minute for each epoch, and 40 epochs in total.

C Appendix: Influence of hyperparameters

We investigate the influence of different choices of some hyperparameters in training, such as the
number of Langevin steps l and the Langevin step size δ. Figures 7(a) and (b) depict training curves
of the models with different l and δ, respectively. The models are trained on the Massachusetts
driving dataset. Each curve reports the testing average RMSEs over training epochs. For testing, we
use the same l and δ as those in training.

We observe that the learning is quite stable in the sense that the testing errors drop smoothly with an
increasing number of training epochs. Figure 7(c) summarize the final average RMSEs for varying l
and δ. We observe that in general, the testing performance increases as l or δ increases. However, the
more Langevin steps we use, the more time consuming the sampling process is. A trade-off between
accuracy and efficiency should be considered when choosing l and δ.
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We also study, given a trained model, how different choices of l and δ in testing can affect the
performance of the model. Figure 7(d) shows the average RMSEs of trajectories that are sampled
from a learned model by using different numbers of Langevin steps l and step sizes δ. The model we
use is with a linear cost function and trained with l = 64 and δ = 0.1. We observe that: in the testing
stage, using Langevin step sizes smaller than that in the training stage may take more Langevin steps
to converge, while using larger ones may lead to a non-convergence issue. Thus, we suggest using
the same l and δ in both training and testing stages for optimal performance.
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Figure 7: Influence of hyperparameters. (a) a line chart of testing average RMSEs over training epochs for
different numbers of Langevin steps used in training. (b) a line chart of testing average RMSEs over training
epochs for different Langevin step sizes used in training. (c) Influence of different numbers of Langevin steps
and step sizes used in training. (d) Influence of different numbers of Langevin steps and step sizes used in
testing.
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