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Abstract

Normalizing flows have recently emerged as an attractive model for autonomous
vehicle trajectory forecasting. However, a key drawback is that i.i.d. samples
from flow models often do not adequately capture all the modes in the training
distribution. We propose Diversity Sampling for Flow (DSF), a post-hoc method to
improve both the quality and the diversity of samples from a pre-trained flow model.
To achieve these goals, DSF simultaneously draws a set of samples from the flow
model; thus, it can spread the samples out to ensure that they cover all plausible
modes of the underlying distribution. In particular, DSF trains a sampling model to
balance two objectives: (i) the likelihood of the trajectories under the flow model,
and (ii) a goal-based diversity objective. In our experiments, we show sampling
with DSF significantly improves flow-based trajectory forecasters, performing on
par with or better than the current state-of-the-art on the challenging nuScenes
trajectory forecasting benchmark.

1 Introduction

Trajectory forecasting [4, 25, 21, 13, 18, 32, 27, 29] is an important task for autonomous driving. We
focus on normalizing flows [24], a powerful family of generative models that have recently been
applied to this task [26, 27, 28, 1]. However, due to natural biases in the real world, sampling i.i.d
from a flow model’s prior distribution may fail to cover all modes in the trajectory distribution. For
instance, a large majority of cars might travel straight through an intersection, whereas a small fraction
make a turn. As a consequence, an i.i.d. sample from the flow model will most likely travel straight;
however, to ensure safety, we must also account for the minor mode corresponding to turning.

We propose a general, post-hoc approach, called Diversity Sampling for Flow (DSF), for enhancing
the quality and the diversity of samples from a pre-trained flow model. The key idea is that rather than
drawing i.i.d. samples from the flow model, DSF learns a sampling distribution over an entire set of
trajectories, which jointly maximizes two objectives: (i) the likelihood of the trajectories according to
the flow model, and (ii) a goal-based diversity objective that encourages high final spatial separation
among trajectories. Intuitively, these two objectives together encourage a set of forecasts to cover
modes in the underlying trajectory distribution. DSF is simple to implement, requiring fewer than
50 lines of code. On the challenging nuScenes trajectory forecasting benchmark [3], we show that
DSF significantly improves both the accuracy and diversity of samples from flow-based trajectory
forecasters, performing on par with or better than state-of-the-art methods.
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Figure 1: Left: 1: DSF discovers set of paths that cover both modes and are realistic. 2: Optimizing
for only likelihood generates samples that are realistic but miss the minor mode (small star) at the top.
3: Optimizing for only diversity generates samples that may cover both modes but are not realistic.
Right: DSF architecture overview. DSF replaces flow’s original sampling distribution (in red dotted
box) with a learned distribution over set of samples in the latent space. These samples allow the
pre-trained flow model to output a set of diverse and realistic trajectories.

2 Related Work

Diversity Sampling. Prior work on obtaining diverse samples from deep generative models [15,
31, 23, 11, 14, 8, 17, 7] require architectural modifications, and cannot be applied to a pre-trained
model. Improving the diversity of a pre-trained model has also been explored—for example, finding
the M -best solutions in a Bayesian posterior [2], or using deterministic point processes [34, 12, 9].
In contrast, our approach models complex sampling distributions through a neural network-based
sampler. The closest work to ours is DLow [35], a recent post-hoc sampling method designed and
demonstrated for conditional-VAEs (cVAEs) [30]. Similar to our method, DLow also jointly optimizes
for the realism and the diversity of samples from the cVAE. Critically, DSF takes advantage of the
ability of flow models to compute the exact likelihood of a trajectory. This enables gradient-based
training to directly maximize the likelihood under the trajectory distribution rather than relying on
stochastic samples from the distribution. It also permits transductive training without access to any
labeled data. In our experiment, DSF outperforms DLow by significant margins.

3 Problem Setup

Consider the problem of predicting the trajectory of an agent whose 2D position at time t is denoted
as St = (xt, yt). We denote the current time step as t = 0, and the future aggregated state as
S := S1:T ∈ R

T×2. At time t = 0, the agent has access to observation o, which may include
problem-dependent contextual features such as Lidar scans, physical attributes of the vehicle agent
(e.g. velocity, yaw), and the state histories of all agents in the scene. The goal of trajectory forecasting
is to predict S given o, p(S|o). We denote the training dataset as D = {(o,S)}.

Our approach assumes as given, a normalizing flow model fθ that has been pre-trained to learn the
distribution pθ(S|o;D). At a high level, assuming a multivariate Gaussian base sampling distribution
Z ∼ PZ ≡ N (0, I), fθ is a bijective mapping between Z and S, captured by the following forward
and inverse computations of fθ:

S = fθ(Z; o) ∼ pθ(S | o), Z = f−1
θ (S;o) ∼ PZ (1)

To draw one trajectory sample S, we sample Z ∼ PZ and compute S = fθ(Z;o). Furthermore, the
exact likelihood of a trajectory S is given by the change of variables rule:

log pθ(S|o) = log

(

p(Z) ·

∣
∣
∣
∣
det

dfθ

dZ

∣
∣
∣
Z=f−1

θ
(S;o)

∣
∣
∣
∣
1−1

)

, (2)

where the bijective property and standard architectural choices for fθ permit easy computation of the
determinant. We refer readers to Appendix A for a more detailed introduction to flow-based trajectory
forecasting.
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4 Diversity Sampling for Flow

In stochastic settings, it is often necessary to use K > 1 trajectory predictions rather than just one, to
ensure that the samples cover the full range of possible stochastic futures; we assume the number
of predictions K is a given hyperparameter. However, simply drawing K i.i.d. samples from the
flow model fθ may undersample from minor modes and fail to capture all potential outcomes. We
propose an alternative strategy, which we call Diversity Sampling for Flow (DSF), that learns a joint
distribution over K samples {Z1, ...,ZK} in the latent space of fθ. In doing so, it aims to improve
the diversity of the trajectories fθ(Z1), ..., fθ(ZK) while maintaining their plausibility according to
the flow model.

In particular, DSF trains a neural network rψ to transform a Gaussian distribution ǫ ∼ N (0, I) into a
distribution over a set Z := {Z1, ...,ZK} = rψ(ǫ;o) of latent vectors given an observation o. This
set in turn induces a distribution over trajectories S := {S1, ...,SK}, where Sk = fθ(Zk;o) for each
k. Since the distribution is defined over multisets of samples, the individual samples Sk are no longer
independent. Informally, they should be anti-correlated to ensure they cover different modes. We
train rψ to minimize the following loss function:

LDSF(ψ) := NLL(ψ)− λdLd(ψ), (3)

which combines the negative log likelihood (NLL) loss from the flow model and a goal diversity loss
Ld. Figure 1 (Left) provides intuition for these two terms, and we explain them in detail below.

Likelihood Objective. The NLL term is defined as:

NLL(ψ) := − log pθ
(
{fθ(rψ(ǫ;o))}

)
= −

K∑

k=1

log pθ(Sk|o), (4)

where log pθ(Sk|o) is computed as in Equation (2). The NLL loss incentivizes DSF to output a set
of forecasts which all have high likelihood according to the flow model fθ. Since fθ is trained to
maximize the likelihood of the training trajectories D, this selects trajectories that are plausible and
likely to occur. However, this set of forecasts need not be diverse and may easily concentrate around
the major mode in the underlying trajectory distribution if trained without additional supervision, as
in the “most likely” trajectories in Figure 1 (Left).

Diversity Objective. To combat this tendency, the diversity term Ld in Equation (3) incentivizes
diverse trajectory samples that reach different parts of the state space. Specifically, we measure
diversity as the minimum pairwise squared L2 distance between trajectory predictions at the last time
step:

Ld(ψ) := min
i 6=j∈K

‖fθ(Zi)T − fθ(Zj)T ‖
2. (5)

The minimum formulation strongly incentivizes DSF to distribute its samples among different modes
in the distribution, since any two predictions that are close to each other would significantly decrease
Ld. Finally, to train rψ, DSF minimizes LDSF using stochastic gradient descent; it is summarized in
Appendix B. In Appendix C, we also show how to extend DSF for transductive learning.

5 Experiments

We evaluate DSF on the nuScenes autonomous driving dataset [3]. Following prior work [6, 25, 10],
the predictor takes as input the current observation (e.g., Lidar scan) and attributes (e.g., velocity) of
a vehicle, and forecasts this vehicle’s trajectory over the next 6 seconds (i.e., 12 frames).

Models. We train an autoregressive affine flow model (AF) that takes visual inputs as our underlying
flow model [28] for trajectory prediction. On top of AF, we train two variants of DSF. The first is
DSF-AF, the batch version in Algorithm 1. The second is DSF-AF-TD, the transductive version in
Algorithm 2, which we train using small unlabeled minibatches from the test set. Our first baseline is
DLow-AF, which replaces DSF with DLow [35] on top of the AF. Next, since DLow was originally
designed for use with conditional VAEs (cVAEs), we include DLow-CVAE, where we pre-train a
cVAE [30] and train a corresponding DLow model. Our third baseline is MTP-Lidar, which is based
on Multimodal Trajectory Predictions (MTP) [6] as implemented in the nuScenes codebase, but
modified to use Lidar observations to ensure fair comparison with our models. We also include
existing results for state-of-the-art models as reported in [25] (rows with ∗ in Table 1).
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Method Modes minADE1(↓) minADE5(↓) minADE10(↓) minFDE5(↓) minFDE10(↓)

MultiPath∗ [4] 64 5.05 2.32 1.96 – –
MTP∗ [6] 16 4.55 3.32 3.25 – –
CoverNet∗ [25] 232 4.73 2.14 1.72 – –

MTP-Lidar 5, 10 4.68 ± 1.04 2.61 ± 0.17 1.84 ± 0.04 5.80 ± 0.49 3.72 ± 0.07
CVAE N/A 4.20 ± 0.03 2.71 ± 0.03 2.08 ± 0.02 6.20 ± 0.05 4.58 ± 0.05
DLow-CVAE [35] 5, 10 – 2.23 ± 0.13 1.75 ± 0.03 5.00 ± 0.29 3.71 ± 0.08
AF N/A 4.01 ± 0.05 2.86 ± 0.01 2.19 ± 0.03 6.26 ± 0.05 4.49 ± 0.07
DLow-AF 5, 10 – 2.11 ± 0.01 1.78 ± 0.05 4.70 ± 0.03 3.77 ± 0.13
DSF-AF (Ours) 5, 10 – 2.06 ± 0.09 1.66 ± 0.02 4.67 ± 0.25 3.58 ±0.05
DSF-AF-TD (Ours) 5, 10 – 2.06 ± 0.03 1.65 ± 0.02 4.62 ± 0.07 3.50 ± 0.05

Table 1: NuScenes prediction error results (lower is better), including previously reported results
(top), and results of DSF variants and newly implemented baselines (bottom). DSF-based models
produce the most accurate predictions throughout.

Metrics. We report minimum average displacement error minADEK and final displacement error

minFDEK ofK prediction samples Ŝk compared to the ground truth trajectory. To explicitly measure
prediction diversity on nuScenes, we also report the minimum average self-distance minASDK and
minimum final self-distance minFSDK between pairs of predictions samples. See Appendix D for
details.

Quantitative Results. In Table 1, we compare the prediction accuracy of DSF, DSF-TD, and the
baselines described above. DSF and DSF-TD achieve the best overall performance. Comparing AF
to MTP-Lidar, we see that although AF achieves better one-sample prediction performance (i.e.,
minADE1), it performs significantly worse than MTP-Lidar when more predictions are made. This
confirms our hypothesis that i.i.d. samples from a flow model do not adequately capture diverse
modes, causing it to fail to cover the ground truth with good accuracy. However, when AF is
augmented with DSF, it outputs the most accurate sets of predictions. Next, DSF-AF outperforms
DLow-AF, especially at K = 10 samples, showing the advantage of exploiting the exact likelihood
provided by the flow model. Finally, DSF-AF-TD outperforms DSF-AF on all metrics, suggesting
that transductively training DSF produces better predictions through on-the-fly specialization. In
Appendix G, we provide full results on the diversity metrics and show that DSF models achieve the
most diverse of predictions.

Qualitative Results. We illustrate trajectories from DSF and baselines and show that DSF indeed
outputs more diverse and plausible trajectories. See Appendix H for more qualitative results.

DSF (Ours) AF MTP

F
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m
e
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Figure 2: Model trajectory forecasts in nuScenes. K = 5 predicted trajectories are shown in red, and
the true recorded future trajectory from the dataset is shown in green. DSF predicts more diverse and
plausible trajectories than both baselines.

6 Conclusion

We have proposed Diversity Sampling for Flow (DSF), a learned sampling technique for pre-trained
normalizing flow-based trajectory forecasting models. DSF learns a sampling distribution that induces
diverse and plausible trajectory predictions. It is simple to implement, compatible with arbitrary
pretrained flow-based models, and can even be trained on unlabeled data, allowing it to adapt to novel
test instances on the fly. On a challenging trajectory forecasting benchmark, we demonstrate that
DSF consistently achieves state-of-art stochastic trajectory prediction performance.
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A Normalizing Flow Models for Trajectory Forecasting

In this section, we review some preliminaries on normalizing flow based trajectory forecasting models.
We refer readers to [24] for a comprehensive review of normalizing flows.

Normalizing flows learn a bijective mapping between a simple base distribution (e.g. Gaussian) and
complex target data distribution through a series of learnable invertible functions. In this work, we
denote the flow model as fθ, where θ represents its learnable parameters. The base distribution is a
multivariate Gaussian Z ∼ N (0, I) ∈ R

T×2, which factorizes across timesteps and (x, y) coordinates.
Then, the bijective relationship between Z and S is captured by the following forward and inverse
computations of fθ:

S = fθ(Z; o) ∼ pθ(S | o), Z = f−1
θ (S; o) ∼ PZ (6)

We further impose the structural dependency between S and Z to be an invertible autoregressive
function, τθ, between the stepwise relative offset of the trajectory and the corresponding z sample
[28, 10]:

st − st−1 = τθ(zt; z<t)

The flow model can be trained using maximum likelihood. Because τθ is autoregressive (zt does
not depend on any zk where k > t), its Jacobian is a lower-triangular matrix, which admits a simple
log-absolute-determinant form [24]. The negative log-likelihood (NLL) objective is

− log pθ(S; o)

=− log
(

p(Z)
∣
∣det

dfθ

dZ
|Z=f−1

θ
(S;o)

∣
∣
−1

)

=−
( T∑ D∑

log p(Zt,d)−
T∑ D∑

log

∣
∣
∣
∣

∂τθ

∂Zt,d

∣
∣
∣
∣

)

(7)

Once the model is trained, both sampling and exact inference are simple. To draw one trajectory
sample S, we sample Z ∼ PZ and compute S = fθ(Z;o) Additionally, the exact likelihood of

any trajectory S under the model fθ can be computed by first inverting Z = f−1
θ (S; o) and then

computing its transformed log probability via the change of variable formula, as in the second line of
Equation 7.

B DSF Full Algorithm

Algorithm 1 Batch DSF Training

1: Input: Flow fθ, Observation Batch {o}
2: Initialize DSF model rψ
3: for oi ∈ {o} do
4: Sample ǫ ∼ N (0, I)
5: Compute Z1, ...,ZK = rψ(ǫ;oi)
6: Generate predictions fθ(Z1), .., fθ(ZK)
7: Compute losses using Equations 4 & 5
8: end for
9: Perform stochastic gradient descent on ψ to minimize LDSF (Equation 3)

10: Output: Trained DSF model rψ

C DSF Transductive Algorithm

Note that the DSF loss function does not depend on access to any ground truth future trajectories,
and relies only on the pre-trained flow model and unlabeled inputs o. In this sense, DSF is an
unsupervised algorithm. It can therefore be used transductively—i.e., it can adapt on the fly to a given
new observation o through “test-time training” [33, 19]. Given an unlabeled input o, we can train a
DSF model rψ tailored to o. This algorithm, which we call DSF-TD, is summarized in Algorithm 2.
Compared to vanilla “batch” DSF, DSF-TD does not need to be trained offline with a large dataset,
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making it suitable for settings where little or no training data is available—e.g., the training set for
the pre-trained flow model is unavailable. In addition, in some of our experiments, we find DSF-TD
outperforms DSF since it tailors its predictions to the test data.

Algorithm 2 Transductive DSF Training

1: Input: Flow fθ, Context o
2: Initialize DSF model rψ
3: for i=1,... do
4: Sample ǫ ∼ N (0, I)
5: Compute Z1, ...,ZK = rψ(ǫ;o)
6: Transform fθ(Z1), .., fθ(ZK)
7: Compute losses using Equations 4 & 5
8: Update ψ w.r.t gradient of Equation 3
9: end for

10: Compute Z1, ...,ZK = rψ(ǫ;o)
11: Output: S = fθ(Z1), .., fθ(ZK)

D Evaluation Metrics

We report minimum average displacement error minADEK and final displacement error minFDEK

of K prediction samples Ŝk compared to the ground truth trajectories S1, ...,SJ [32, 4, 22]:

minADEK(Ŝ,S) =

∑J

j=1 mini∈K
∑T

t=1‖Ŝi,t − St‖
2

T × J
, minFDEK(Ŝ,S) =

∑J

j=1 mini∈K‖Ŝi,T − ST ‖
2

J

These metrics are widely used in stochastic prediction tasks [32, 13] and tend to reward predicted sets
of trajectories that are both diverse and realistic. In multi-future datasets (J > 1) such as Forking
Paths, these metrics are standalone sufficient to evaluate both the diversity and the plausibility of
model predictions, because a set of predictions that does not adequately cover all futures will naturally
incur high errors. In single-future datasets (J = 1) such as nuScenes, however, they do not explicitly
penalize a predicted set of trajectories that simply repeats trajectories close to the single ground truth
one. To explicitly measure prediction diversity on nuScenes, we also report the minimum average
self-distance minASDK and minimum final self-distance minFSDK between pairs of predictions
samples:

minASDK(Ŝ) = min
i 6=j∈K

1

T

T∑

t=1

‖Ŝi,t − Ŝj,t‖
2, minFSDK(Ŝ) = min

i 6=j∈K
‖Ŝi,T − Ŝj,T ‖

2.

These metrics evaluate the lower bound diversity among a predicted set of trajectories, and they tend
to decrease as K increases since the predictions become more “crowded” around the modes already
covered. Note that minFSD is identical to the diversity term in the DSF objective (Equation (5)).

E DLow Details

Our implementation of DLow utilizes the same architecture as DSF. The main difference is the loss
functions of the two methods. The DLow objective includes three terms:

Reconstruction Loss : Er(ŝ) = min
k∈K

‖ŝk − s‖2

Diversity Loss : Ed(ŝ) =
1

K(K − 1)

∑

i 6=j∈K

exp
(

−
‖ŝi − ŝj‖

2

σd

)

KL Loss : LKL(z) =

K∑

k=1

KL(pψ(zk|o)||p(zk))

(8)

and the whole objective is:

LDLow(ψ) = λrEr + λdEd + λKLLKL

We tune the hyperparameters of DLow and find the following setting to work the best: λd = 0.5, λr =
1, λKL = 1, and σd = 1.
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F NuScenes Experimental Details

F.1 Dataset Details

NuScenes [3] is a large urban autonomous driving dataset. The dataset consists of instances of vehicle
trajectories coupled with their sensor readings, such as front camera images and lidar scans. The
instances are further collected from 1000 distinct traffic scenes, testing forecasting models’ ability to
generalize. Following the official dataset split provided by the nuScenes development kit, we use
32186 instance for training, 8560 instances for validation, and report results on the 9041 instances in
the test set.

F.2 Model Inputs

Model Inputs. All models we implement (AF, CVAE based models and MTP-Lidar) accept the same
set of contextual information

o = {Lidar scans, velocity, acceleration, yaw}

of the predicting vehicle at time t = 0. Below we visualize an example Lidar scan and its histogram
version [27] that is fed into the models.

Figure 3: LiDAR inputs in nuScenes.

The Lidar scans are first processed by a pre-trained MobileNet-v128 [16] to produce visual features.
These features, concatenated with the rest of the raw inputs, are passed through a neural network to
produce input features for the models.
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F.3 Autoregressive Affine Flow Details

Our architecture is adapted from the implementation1 provided in [10]. Here, we describe it in
high level and leave the details to the architecture table provided below. AF consists of first a
visual module that transforms the observation information o into a feature vector h0. Then, h0 is
processed sequentially through a GRU network [5] to produce the per-step conditioner ht of the
affine transformation: ht = GRU(st, ht−1). Finally, we train a neural network (MLP) on top of ht to
produce the modulators µ, σ of the affine transformation:

st − st−1 = τθ(zt; z<t)

= µθ(s1:t−1, φ)
︸ ︷︷ ︸

MLP1(ht)

+ σθ(s1:t−1, φ)
︸ ︷︷ ︸

EXP

(

MLP2(ht)

)

zt
(9)

Table 2: AF Architecture Overview

Attributes Values

Visual Module MobileNet(200 × 200 × 3, 128)
Linear(128+3,64)
Linear(64,64)
Linear(64,64)

Autoregressive Module GRUCell(64)

MLP Module ReLU ◦ Linear(64,32)
Linear(32, 4)

Base Distribution N (0, I)

Table 3: CVAE Architecture Overview

Attributes Values

History Encoder GRU(2, 64)
Visual Module MobileNet(200 × 200 × 3, 128)

Full Input Encoder Linear(128+64+3, 64)
Linear(64, 64)
Linear(64, 64)

Full Output Encoder GRU(2, 64)

Input Output Merger Linear(64+64, 64)
Linear(64, 32+32)

µ, σ R
32,R32

Decoder GRU(2+32+64, 64)
Linear(64, 64)
Linear(64, 32, 2)

F.4 CVAE Details

Our CVAE implementation is adapted from the implementation2 in [35]. It takes the same set of
inputs as our AF model except the addition of a one-frame history input. The history is encoded using
a GRU network of hidden size 64 to produce h0, which is then concatenated with the rest of the inputs.
This concatenated vector is then encoded through a 2-layer fully-connected network. To encode the
future, our CVAE model uses a GRU network of the same architecture as the GRU encoder for the
history. Finally, the encoded input and output (i.e. future) is concatenated and passed through another
2-layer network to give the mean and the variance of the approximate posterior distribution. For the
decoder, we first sample a latent vector z using the reparameterization trick. Then, z is concatenated
with the encoded inputs to condition the per-step GRU roll-out of the reconstructed future. The model
is trained to maximize ELBO.

F.5 DSF Details

DSF rψ is a single multi-layer neural network with K heads, the number of modes pre-specified.
To ensure stable training, we clip the diversity loss to be between [0, 40] for K = 5 and [0, 30] for
K = 10.

1https://github.com/OATML/oatomobile/blob/alpha/oatomobile/torch/networks/
sequence.py

2https://github.com/Khrylx/DLow/blob/master/models/motion_pred.py
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Table 4: DSF Architecture and Hyperparameters Overview

Attributes Values

DSF Architecture Linear(Input Size, 64)
Linear(64,32)
Linear(32, 2 × T × K)

Learning Rate 0.001
λd 1
Diversity function clip value 40/30

F.6 Training Details

We train the “backbone" forecasting models AF, CVAE, MTP-Lidar for 20 epochs with learning
rate 10−3 using Adam [20] optimizer and batch size 64. DSF-AF iterates through the full training
set once, while DSF-AF-TD directly optimizes on the test set with a minibatch size of 64 and 400
adaptation iterations for every minibatch. For all DSF models, we set λd = 1 and do not experiment
with further hyperparameter tuning. DSF training also uses Adam. For all models, we train 5 separate
models using random seeds and report the average and standard deviations in our results.

G Diversity Evaluation Results

We compare the models in terms of their prediction diversity in Table 5. DSF models consistently
outperform the baseline models by a large margin. In particular, they are the only models whose
diversity does not collapse when the number of modes increases from 5 to 10. This shows that DSF
is more “efficient” with its samples, since it does not repeat any trajectories. In contrast, all other
methods produce pairs of very similar predictions when K = 10. Given that DSF also produces
accurate predictions, these results provide strong evidence that DSF is able to simultaneously optimize
accuracy and diversity.

Method
K = 5 K = 10

minASD5 (↑) minFSD5 (↑) minASD10 (↑) minFSD10 (↑)
MTP-Lidar 1.74 ± 0.32 4.31 ± 1.60 0.97 ± 0.15 2.43 ± 0.34

CVAE 1.28 ± 0.03 2.99 ± 0.07 0.57 ± 0.02 1.30 ± 0.04
DLow-CVAE 2.64 ± 0.25 6.38 ± 0.65 1.18 ± 0.16 2.73 ± 0.43

AF 1.58 ± 0.02 3.75 ± 0.04 0.70 ± 0.01 1.63 ± 0.02
DLow-AF 2.56 ± 0.12 6.45 ± 0.24 1.05 ± 0.11 2.55 ± 0.28

DSF-AF (Ours) 3.13 ± 0.18 8.19 ± 0.26 2.11 ± 0.05 6.22 ± 0.09
DSF-AF-TD (Ours) 3.09 ± 0.07 8.15 ± 0.17 1.98 ± 0.03 5.91 ± 0.04

Table 5: NuScenes prediction diversity results. DSF models produce much more diverse predictions
than other methods.
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H Additional Qualitative Results

DSF (Ours) AF MTP

Figure 4: Additional model visualizations. The models from left to right: DSF, AF, and MTP-Lidar.
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