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Abstract

Learning models of multi-agent behavior remains challenging in environments
with a large, varying number of agents and complex interactions. To this end, we
propose a new algorithm named disagreement-regularized imitation of complex
multi-agent interactions (DIMMI) for learning multi-modal distributions over multi-
agent trajectories. DIMMI uses a deep latent variable model to capture highly-
correlated behavior of a large number of agents (5-50) and disagreement-regularized
imitation learning to combat covariate shift. We demonstrate our method on a large
collection of multi-agent driving data (∼160 hrs of driving) comprising a wide
variety of scenarios. We report improvements of 5-50% over alternative methods
when comparing rolled out trajectories to ground truth on common metrics like
displacement error and state occupancy measures. We also demonstrate the superior
performance of our new method qualitatively by examining interpolations in the
latent space, which captures high-level sources of variance such as cautious and
aggressive driving styles.

1 Introduction

Understanding multi-agent interactions is fundamental to automated decision making in social settings
[23]. In this work we focus on settings with a large, varying number of agents that exhibit complex
relationships with each other and their environment and whose intentions are unknown. Many
problems of practical significance fit this description, for example subjects of biological experiments,
pedestrians or vehicles in public spaces, and even players in MMORPGs.

There are numerous challenges to modeling behavior in these settings, but one is the most salient.
When describing a single agent with unknown intentions, a model must capture different responses to
the same observation resulting from different preferences. When multiple agents interact, however,
each agent can have a variety of responses to the chosen actions of each other agent. This results in
an exponential growth of possible outcomes that must be well-represented by the model.

Behavior modeling is often successfully posed as problem of imitation learning (IL), in which we
learn a distribution of actions conditioned on an agent’s observation, called a policy. In complex
environments, learning this distribution often requires inference in a high-dimensional observation
space, which by itself poses a challenge. Unlike other probabilistic models, however, the sequential
setting means that resulting policy must be especially robust to covariate shift, as small errors can
lead agents to poorly covered areas of the data distribution. In multi-agent settings, the problem of
covariate shift can be even more pronounced, as agents also react to each other’s actions.

Generative adversarial imitation learning (GAIL) [11] offers one solution to the problem of covariate
shift. Using a learned classifier for real and generated trajectories, the policy can be corrected by
decreasing the likelihood of actions taken within the environment deemed unlikely by the classifier.
GAIL has been extended to capture multimodality [14, 27] and to settings with a small, fixed number
of agents [24] but is fundamentally difficult to optimize due to its combination of adversarial training
and model-free RL methods.
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The fundamental advantage of GAIL, its ability to identify and correct out-of-distribution (OOD)
trajectories, does not, however, necessitate adversarial training. More recently, appealing alternatives
based on other methods of identifying OOD examples have emerged [5].

In this work we examine how deep latent variable models can be used in tandem with OOD estimates
from model ensembles to learn multimodal distributions over multi-agent behavior. This new
approach is significantly simpler to train than GAIL-based alternatives and is able to capture diverse
preferences without labels. Unlike some previous work in multi-agent IL [24][28], our approach also
scales easily to challenging settings with a large and varying number of agents.

In order to demonstrate our proposed technique, we focus on the domain of driving. Within the
last two years there has been a proliferation of high-quality, public datasets of driving trajectories
obtained from drone footage [30, 3, 13]. Critically, these datasets contain multiagent trajectories with
high levels of interaction in a wide range of environments–such as highway on-ramps, roundabouts,
and uncontrolled intersections. This abundance of examples provides good coverage for imitation
learning and opens the door for the kind of unsupervised pre-training approaches that have driven
recent progress in natural language processing [4, 7].

The primary contributions of this work:

1. We propose a novel algorithm for multi-agent imitation learning in complex environments
with varying number of agents, partial observability, and latent (unobserved) variables

2. We evaluate it on a large-scale dataset with rich semantics. When evaluated against baseline
techniques common in multi-agent driver modeling, our approach shows 5-50% improve-
ment across standard metrics.

We also plan to release the experimental apparatus used here to encourage more research in this area.

2 Related Work

Multi-agent IL Multi-agent GAIL (MA-GAIL) [24] and Multi-agent AIRL (MA-AIRL) [28] are
frameworks for imitation and inverse reinforcement learning in Markov games. Unfortunately, these
algorithms do not easily scale to real-world scenarios as they designed for settings with a small, fixed
number of agents. Attempts have been made to scale MA-GAIL using shared policies [2] and reward
shaping [1], but resulting policies are often unreliable when rolled out in the environment.

IL with latent variables In the single-agent environments, latent variables have been used to learn
multi-modal policies [14, 27] and to perform meta-learning [29]. Our work most closely parallels
[27], which augments GAIL with a VAE-type latent variable model. We, however, opt for a different
type of IL and focus on multi-agent settings.

Multi-agent IL with latent variables There are few works examining the use of latent variable
models for multi-agent IL in the general setting. Much of the existing work focuses on the setting
of driver trajectory modeling and model-based planning for autonomous vehicles. Multiple futures
prediction (MFP) [26] uses an EM-type procedure to learn a distribution over future states of a vehicle
in multi-agent scenarios, assuming a differentiable observation space. Prediction conditioned on goals
(PRECOG) [19] uses a multivariate Gaussian parameterized by an RNN to learn a generative model
of agent states with exact likelihoods. Similarly, multiple probabilistic anchor trajectory hypotheses
(MultiPath) [6], uses a gaussian mixture model parameterized by a ResNet given a rich multi-channel
image as input. Our experimental approach draws on elements of these works, especially [6], but
differs from them in its use of policy corrections from multi-agent rollouts. This difference makes
the above approaches more sensitive to covariate shift when used as generative models in complex
environments.

IL regularized by ensembling Model-predictive policy learning with uncertainty regularization
(MPUR) [10] learns a pixel-space dynamics model for model-based planning in multi-agent driving
scenarios. To capture uncertainty while combating covariate shift, MPUR uses a curiosity penalty
derived from an ensemble of latent variable models. Disagreement-regularized imitation learning
(DRIL) [5] proposes a similar mechanism in the general single-agent setting, correcting a learned
policy based on the variance of ensemble estimates during rollouts in the environment. We adopt the
idea of "disagreement-regularization" in our method, but focus on the setting of multi-agent imitation
learning. Like MPUR we evaluate our method on multi-agent driving scenarios and employ a deep
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latent variable model. Unlike MPUR, however, our method does not require learning a generative
model of video, allowing us to easily use high-resolution, multi-channel observations.

3 Problem Definition

We consider the problem of learning a model of the behavior of a varying number of agents interacting
in a partially observable environment from incomplete logged data.

We have up to N agents interacting over T time steps. At each time step, agent i has state (sit, z
i),

receives observation oit, and takes action ait. Random variables sit, o
i
t, and ait are

known by all agents and to a modeler, while zi is a latent variable only known
to agent i. For example, we might have sit represent the physical position of the
agent, oit a rendering of the its surroundings, and zi the its risk tolerance.

We take the distribution over actions given observations, the joint policy, to be
π(at|ot, z). At each time step, therefore, actions are fully determined by the
timestep’s observation and the latent variables z. The distribution over next states
given current states and actions P (st+1|st,at), is called the transition probability
or dynamics model, and the distribution of observations given states P (ot|st)

is called the observation model. A multiagent trajectory τ is taken to be the sequence of states,
observations, and actions for each agent, τ = {(sit, oit, ait)}1:N1:T . The probability of a trajectory given
unobserved variables z is thus given by

P (τ |z) =

T∏
t=1

P (st+1|st,at)π(at|ot, z)P (ot|st)P (s1)

Varying number of agents In our formulation, we additionally allow that agents enter and exit
the environment at any time. We consider this generalization to
capture the common real-world phenomenon of agents entering
and exiting the recording area of sensors capturing their states.
These changes introduce a "birth-death" cycle in which the num-
ber of modelled agents changes over time. One can conceive
of these scenarios within the framework above by putting the
non-modeled agents of the system in either a "prenatal" state
∅P or a dead state ∅D. Agents in ∅P stochastically transition
to a first recorded state sit0 , and agents in ∅D remain there until
time T . As some agents enter the environment after others leave,
the number of agents increases and decreases stochastically. An example with three agents offset by
one time step is shown to the right. The challenges of multi-agent imitation learning are intensified in
birth-death systems. Because it is not a closed system, each agent cannot be a assigned a fixed policy
a priori. We provide more details and formal description of learning for this setting in the Appendix.

Key assumptions Our focus in this work is modeling
policies and thus we assume P (st+1|st,at), P (ot|st), and
P (s1) are either known a priori or well-approximated. In
environments with well-studied dynamics and sensor mod-
els, these assumptions are reasonable. We further assume
fully factorized environmental dynamics P (st+1|st,at) =∏
i P (sit+1|sit, ait), and conditional independence of the ob-

servation model, P (ot|st) =
∏
i P (oit|st). We additionally

assume that all latent variables zi have an isotropic gaussian
distribution, P (z) = N (0,1) and do not change over time.

Learning from incomplete data Given a set of expert tra-
jectories D sampled from an expert policy πE , the goal is to
learn a parameterized policy distribution πθ(at|ot, z) using
trajectories from D that matches πE without knowledge of
zi.

Directly learning a joint distribution over all agents actions is often infeasible because of difficulties
in representation and sparsity. We therefore factorize the policy over agents at each timestep,
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πθ(at|ot, z) =
∏
i πθ(a

i
t|oit, zi). Given all our independence assumptions, the probability of a

trajectory under the model becomes

P (τ |z) =

T∏
t=1

N∏
i=1

P (sit+1|sit, ait)πθ(ait|oit, zi)P (oit|st)P (s1)

4 Method

Behavior cloning To learn the parameters of the policy from logged data, the most immediate
solution is maximum likelihood estimation (MLE), also known as behavior cloning (BC) in the
setting of IL. With known assignments to z, the optimal parameters are solutions to the objective

max
θ

Eτ ,z∼D[logPθ(τ |z)]

However as assignments to z are unavailable, we can only apply MLE by marginalizing out z:

max
θ

Eτ∼πE [logPθ(τ )], logPθ(τ ) = log

∫
z

Pθ(τ |z)P (z) dz

On its own, logPθ(τ ) is intractable as the integral inside the log cannot be computed analytically. A
common approach, which we adopt here, is to instead optimize a lower bound on the log probability
by introducing a variational approximation of the posterior Qφ(z|o1:T ) [12]:

logPθ(τ ) ≥ Ez∼Qφ(z|o1:T )[logPθ(τ |z)−DKL(Qφ(z|o1:T )‖P (z))]

Although this modified version of BC is able to learn a distribution over the possible values of z
and thereby generate samples from the distribution P (τ ), BC on its own is known to suffer from
compounding errors at test time [20]. BC also under-utilizes dynamics models and environment
simulators which are assumed known in this problem setting. By extrapolating from the training data
to simulated trajectories, useful learning inputs can be created without additional expert supervision.
Rolling out additional trajectories can provide a way of learning from states that do not appear in the
training data but that are likely at test time, thus mitigating covariate shift and compounding errors.

Disagreement-regularization DRIL [5] offers one way to mitigate compounding errors by lever-
aging an environmental simulator. DRIL explores likely states and then lowers the probability of
reaching any that are judged to be out of distribution (OOD) given the training data. To estimate
whether a particular state is OOD, an ensemble of policies, {π}1:K , is learned by bootstrapping [8]
behavior cloning on subsets of the training data. The ensemble is then used to derive a regularization
cost function via the empirical variance of the action probability, π(a|s), over the ensemble

CU (s, a; {π}1:K) =
1

K

K∑
k=1

((
1

K

K∑
k=1

πk(a|s)

)
− πk(a|s)

)2

The authors of [5] also note that normalizing the uncertainty cost aids convergence, putting

Cclip
U (s, a; {π}1:K , q) =

{
1 if CU (s, a; {π}1:K) > q

−1 else
(1)

where q is the β-th percentile of the set

CD = {CU (s, a; {π}1:K) | (s, a) ∼ D}
and β is taken to be a hyperparameter. A final policy is learned through alternating batches of BC
and reinforcement learning minimize Cclip

U . Intuitively, as each model in the ensemble is randomly
initialized, the ensemble’s estimates for points far from the training distribution will be divergent,
causing high variance and heavy regularization.

DRIL was originally designed for imitating optimal policies in fully observable settings, and thus we
must modify it slightly to account for partial observability. In our setting, we take the uncertainty
cost to be

CU (ot, at|z; {π}1:K) =
1

K

K∑
k=1

((
1

K

K∑
k=1

πk(at|ot, z)

)
− πk(at|ot, z)

)2

(2)
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We also use the alternative clipping strategy

Cclip
U (ot, at|z; {π}1:K , q) =

{
1 if CU (ot, at|z; {π}1:K) > q

0 else
(3)

with q taken to be the β-th percentile of the set

CD = {CU (ot, at|z; {π}1:K) | (o1:T , a1:T ) ∼ D, z ∼ Qφ(·|o1:T )} (4)

In contrast with equation (1), we use 0 in equation (3), instead of −1, for typical examples because
we do not want to implicitly bias the model to prefer longer trajectories.

In the remainder of the section, we show how the BC and disagreement regularization methods above
fit together in a unified algorithm for imitation of multi-agent interactions. We call this algorithm
disagreement-regularized imitation of complex multi-agent interactions, or DIMMI in short.

Multi-agent disagreement regularization In multi-agent settings, covariate shift problems can
compound over time and across agents. Rolling out joint trajectories across all agents and performing
disagreement regularization can aid in stabilizing the policy along both axes. In some previous
work [26, 10], policies are learned in multi-agent settings, but rollouts are performed with other
agents independent of the ego-agent’s actions. Learning in this setting introduces false independence
assumptions that biases imitation of ground truth behavior.

To apply our modified formulation of DRIL to multi-agent rollouts, we have to generalize the cost
function in Equation 2. In principle, learning a centralized CU (ot,at|z), would provide the clearest
reward signal with no ambiguity surrounding credit assignment between agents, as in multi-agent
actor-critic methods [15]. However, as our target settings are characterized by large N , learning
and representation in such a model would be very challenging. Instead, we opt for a decentralized
approach, learning a shared but single-agent CU (oit, a

i
t|zi). Given an assignment of z, the policy

regularizer’s objective thus becomes

min
θ

Eτ∼πθ(·|·,z)

[
N∑
i=1

C(τ i|zi; {π}1:K , q)

]
, C(τ i|zi) =

T∑
t=1

Cclip
U (oit, a

i
t|zi; {π}1:K , q)

where trajectories τ are rolled out using the policy and known dynamics/observation models. We
descend on the objective using a Monte-Carlo approximation of the gradient on a batch of {τ i} (such
as using REINFORCE [25] and PPO [21]).

DIMMI In our proposed method, DIMMI, we improve latent variable BC with multi-agent
disagreement regularization. To accomplish this synthesis, we must learn an ensemble of policies,
{πω1(·|o, z), ..., πωk(·|o, z)}, to be used for regularization in addition to the final policy, πθ(·|o, z).
All of these models must share an inference model, Qφ, so that different models for P (τ |z) are
conditioned on the same values. To this end, we break the training procedure into three phases (full
psuedocode shown in Algorithm 1):

Learning the posterior First we must learn a shared posterior inference model, Qφ, that can be
used to train an ensemble of the zi-conditioned policies. To this end, we train a model with behavior
cloning (BC) on the entire dataset, minimizing the loss

LBC(θ, φ) = −Ez∼Qφ(z|o1:T ),τ∼πE(·|z) [logPθ(τ |z)−DKL(Qφ(z|τ )‖P (z))] (5)

Learning the ensemble Sample K subsets of the data, {Dk}, with replacement such that |Dk| =
|D|. Train an ensemble {πω1 , ..., πωK}, by training each πωk to convergence on minωk,φ LBC(ωk, φ).
Calculate q as the β-th percentile of CD (Equation (4)). Take

Cω,q(τ
i|zi) =

T∑
t=1

Cclip
U (oit, a

i
t|zi; {πω1 , ..., πωK}, q)

Learning the final policy To learn the final policy, we train across the entire dataset using
alternating phases of minimization of LBC and the disagreement-regularization loss

LDR(θ;ω, q) = Ez∼P (z),τ∼πθ(·|z)

[
N∑
i=1

Cω,q(τ
i|zi)

]
(6)

These alternating phases ensure every batch of BC is properly regularized as training proceeds.
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Algorithm 1 DIMMI: Disagreement-regularized Imitation of Multi-Agent Interactions

Input: D = {τ}, τ ∼ πE ,
Output: πθ(ait|oit, zi)
Train πθ, Qφ to convergence on D, minθ,φ LBC(θ, φ) from Eq.(5)

for k = 1:K do
Sample Dk from D with replacement, with |Dk| = |D|.
Train πωk on Dk, minωk LBC(ωk, φ) from Eq.(5)

Calculate q from the β-percentile according to (4)

for i = 1:Nepoch do
Sample batch of τE ∼ D, z ∼ Qφ(·|o1:T )
Train πθ on {τE}, minθ LBC(θ, φ) from Eq.(5)
Sample batch τR ∼ πθ(· | s, zi, sit′), in E
Train πθ on {τR}, minθ LDR(θ;ω, q) from Eq.(6)

5 Experiment

5.1 Setup

Large multitask dataset We form our train and test set from the combined trajectories of the
INTERACTION [30], inD [3], and rounD [13]
datasets. We chose not to include the widely
used NGSIM dataset because of well-known is-
sues with data quality [18, 17]. A selection of rep-
resentative scenarios from our aggregate dataset
are shown to the right. All together, the data com-
prise more than 6 million (state, action) pairs or
approximately 160 hours of driving. We initialize
our model by training jointly across all scenarios
with a vanilla MLE objective (without z). Given
the diversity of tasks represented in the training
data, this pre-training phase can be viewed as an
implicit form of multitask learning over scenar-
ios. As some scenarios are over-represented in
the aggregated training data, performance can be
improved by fine-tuning on an individual scenario.

Goal states In the setting of multiagent driving, we posit there are two largely independent sources
of uncertainty in an agent’s actions to an outsider: high-level planning, such as left or right turns at
an intersection, and low-level control decisions conditioned on these plans, for example the decision
to proceed or yield at any intersection before turning. Though we could model both sources of
uncertainty, in this work we choose to direct our attention to the latter (actions conditioned on goals).
To do this, we include a distance future location of the vehicle as part an agents observation (details in
Appendix). One highly important use case for such a model is log replay for validation of autonomous
vehicles, during which other vehicles have recorded goal states but must be simulated with alternative
responses to tested planner.

Observation space We render agent states and road semantics into 6-channel images similar that
in [6] (details in Appendix). This rendering preserves key geometric information in the state space
and also ensures invariance to agent indexing.

Dynamics model A kinematic bicycle model converts steering and acceleration inputs, β, a, from
the model into updates to the vehicle state: [ẋ, ẏ, ψ̇, v̇] = [v cos(ψ + β), v sin(ψ + β), v

l/2 sin(β), a]

Model architecture We extract visual features from the 6-channel images using a ResNet34
network [9, 16]. Our inference network uses the final hidden states of a BiRNN [22] over these visual
features. Our policy combines the visual features and latent variable, zi, and calculates the actions
using a fully connected network.
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Method mink ∆ mink χ
2(πθ, πE)× 10−4

avg. final v IAD DHW TTC BFS

resnet 4.08 12.52 25 51 73 3.1 1400
resnet-rnn 4.25 13.1 31 53 82 3.6 1900

resnet-gmm 3.98 12.30 27 47 63 2.8 1200
deep-latent-discrete 4.03 12.81 24 45 56 2.4 1100

deep-latent-continuous 3.87 10.34 24 45 55 2.3 1100

DIMMI-sa 3.76 10.29 23 32 50 1.7 450
DIMMI-ma 3.75 10.31 23 31 48 1.5 420

Table 1: We compare binned χ2 distance between rollouts and demonstrations with respect to the
velocity (v), inter-agent distance (IAD), distance headway (DHW), time-to-collision (TTC) and bad
final state (BFS). For all metrics, smaller is better.

5.2 Evaluation metrics and baselines

Baseline models We baseline our approach against two unimodal models without regulariza-
tion (resnet, resnet-rnn), three multimodal models without regularization (resnet-gmm, deep-latent-
discrete, deep-latent-continuous), and compare them with two versions of our proposed method
(DIMMI-*). Unimodal models exhibit only a single predominant action in response to a given
observation, while multimodal models capture multiple kinds of responses.

We carefully chose these models to parallel the design of state-of-the-art multi-agent driver models
and adapt them to our slightly modified setting. The “resnet” model is simply a resnet parameterizing
a isotropic gaussian, trained using MLE. The “resnet-rnn” is the same as the above model with the
addition of an autoregressive RNN, evoking the architecture of the ESP model from [19]. The “resnet-
gmm” model is a resnet parametrizing a GMM, evoking [6]. “deep-latent-discrete” is a discrete latent
variable model using the EM-type algorithm of [26] for learning. “deep-latent-continuous” is our
proposed latent variable model without disagreement regularization. “DIMMI-sa” is a variant of
DIMMI in which other agents are simply rolled out from logged data and thus are unresponsive
to the model, and “DIMMI-ma” denotes the fully multi-agent variant of the algorithm. We do not
compare with MA-GAIL [24] and MA-AIRL [28] because they require the number of agents to be
fixed. Details of all baseline models are provided in the appendix.

Displacement statistics Displacement statistics simply measure the average or final distance (l2)
between simulated trajectories and ground truth given a shared starting point. In the case of generative
models, ground truth might correspond to one of many possible modes of the distribution, and
thus displacement is measured over k draws and the min value is considered, denoted mink ∆. In
multi-agent settings, this shortcoming becomes more pronounced, as individual modes are replaced
with multi-agent modes. For this reason, we also examine state occupancy statistics.

State occupancy statistics We take a few metrics about agent states to be reflective of the emergent
features. In particular, we examine speed of vehicle: (v), inter-agent distance (IAD), distance headway
(DHW), time-to-collision (TTC), and bad final state (BFS). Detailed explanations of these metrics are
given in the Appendix. In order to gauge the similarity between emergent features in expert and rolled
out trajectories, we calculate the χ2 value (calculation details in Appendix) between the histogram
of values in the expert trajectories, τ ∼ πE , and the histogram of values in rolled out trajectories,
τ ∼ πθ. We use χ2 values here because they are a natural way to measure discrepancy due to chance.
As with displacement error calculations, we also calculate the values mink to account for variability
in the ground truth distribution. This allows us to compare the statistics of the trajectories more
holistically than displacement statistics as the behavior of entire distributions is concerned.

5.3 Results

Quantitative evaluations Table 1 shows results for displacement and state occupancy metrics.
We see that accounting for multi-modality (as in resnet-gmm, deep-latent-discrete, deep-latent-
continuous) greatly reduces both displacement error and the chi-squared values. Notably, DIMMI
also slightly reduces displacement error and significantly improves chi-squared values. By inspecting
trajectories we can see that this is accomplished primarily by reducing the rate of collisions (affecting
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Figure 1: An example of the diverse behavior learned by the model. Grey blocks represent future
state of vehicle given current velocity. Top: blue car at center proceeds through intersection. Bottom:
blue car at center yields to green car in moving top to bottom through the intersection.

Figure 2: A spectrum of observations ranked by associated CU . Grey blocks represent future state of
vehicle given current velocity. The ego car is at the center of each frame. At the left, there are typical
observations, and at the right there are state far from the data distribution, such as driving off-road.

IAD, DHW, and TTC) and off-road driving. Because DIMMI-ma can better capture how cars respond
to each other when rolled out, it is able to more accurately model the distances between vehicles and
avoid bad final states than DIMMI-sa.

Qualitative evaluations Figure 1 shows two example trajectories rolled out from a DIMMI model
with latent variables z1 and z2 = −z1. Not only are the two trajectories different conditioned on the
same goal and start locations of all vehicles, but also the difference is intuitive. In the first example,
the blue car drives through the intersection without yielding to an oncoming car (top green), and in
the second example it acts more cautiously. This result is very impressive, as it shows the model
is capable of not just obeying the rules of the road but also capturing styles of driving behavior.
Equivalent diversity and accuracy cannot easily be accomplished in other current IL models.

Figure 2 shows example observations ranked by their associated cost CU under a learned DIMMI
ensemble. We see that the CU estimates can successfully differentiate between banal states, like a
full stop behind another car, and unusual states, like driving off-road or on a collision course with
other cars.

Example videos To provide more examples from a wider variety of scenarios, we provide videos
at the following url: http://anonjohn256.github.io.

6 Conclusion

We investigated the use of latent variable models and disagreement-regularization for imitating multi-
agent interactions. Drawing on previous work, we proposed a novel algorithm for learning models in
the regime of a large varying number of agents. To demonstrate the effectiveness of the algorithm,
we aggregated a diverse collection of driving data (that contains around 160 hours of driving data)
and trained different types of models (unimodal, multimodal, model with latent variables) at scale.
Evaluated on this dataset, our approach outperformed baselines significantly in terms of displacement
and state occupancy statistics, and we show that the latent variables learned by our model is able to
control qualities like driver aggressiveness. In future work, we are interested in considering DIMMI
in other domains such as air traffic modeling as well as exploring new approaches to interpret and
explain the demonstrated and learned behavior via unsupervised learning.
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Appendix

Problem Definition

Birth-death formalism We introduce a formalism that is useful for modeling “birth-death” pro-
cesses with a varying number of agents. We concern ourselves with finite intervals of the birth-death
process, which contain a bounded number of unique agents.

In this setting, we assume there are N agents that are part of the process and that the state space S is
S1× · · · ×SN , where each Si is an agent-specific state space. We augment the state space by adding
a discrete ontological state per agent ∅i with ∅i ∈ {∅P ,∅A,∅D}, and a null state, s∅, to each Si.
Here ∅P is a prenatal state, ∅A an alive state and ∅D a death state. This yields a new state space
S± = (S1 ∪ {s∅})× · · · × (SN ∪ {s∅})×∅1 × · · · ×∅N .

We also add a null observation to each observation setOi = Oi∪{o∅} and a null action to each action
setAi = Ai∪{a∅}. In this setting the state transition dynamics T : S±×A1×· · ·×AN 7→ P(S±)
is the product of (T+, T ), T−), where T+ is “birth” process, T− is a “death” process, and T ) is the
dynamics model over states of alive agents. T+ and T− govern the dynamics of {∅i}, while T ) and
T+ govern the dynamics of {Si ∪ {s∅}}. The data generating process can thus be described by the
following phases:

1. Initialization Sample s1 ∈ S± ∼ P (s1). The only constraint on P (s1) is

∃i , ∅i1 = ∅D =⇒ P (s1) = 0

where ∅it is taken to be the ontological state of the i-th agent at time t. All agents in state s1 are
thus either prenatal or alive, and those that are prenatal have si1 = s∅.

2. Agents receive observations Observations, ot ∼ P (ot|st). One constraint operates on
P (ot|st),

∃i, sti = s∅, o
t
i 6= o∅ =⇒ P (ot|st) = 0

i.e. unborn or dead agents receive null observations.
3. Agents take actions The set of actions is sampled from π(at|ot). We take as part of the setting

that
∃i , oit = o∅, a

i
t 6= a∅ =⇒ P (at|ot) = 0

and thus any unborn or dead agents take null actions.
4. Agents are born T+ is a joint transition distribution over all agents describing transitions to

and from ∅P . These transitions follow a few intuitive constraints by default:

∃i , ∅it 6= ∅P ,∅it+1 = ∅P =⇒ P (st+1|st,at) = 0

∃i , ∅it = ∅P ,∅it+1 = ∅D =⇒ P (st+1|st,at) = 0

∀i , ∅it 6= ∅P ,∅it+1 6= ∅P =⇒ P (st+1|st,at) = 1

In other words, T+ only allows transitions from prenatal to alive states and only affects transitions
to or from prenatal states.

5. Alive agents transition For sit, a
i
t with ∅it = ∅A, transition to the next state st+1 ∼

T )(st+1|st,at). The only constraint on T ) is

∀i , ∅it 6= ∅A,∅it+1 6= ∅A =⇒ P (st+1|st,at) = 1

This is the transition model of a standard POMDP.
6. Agents die T− describes transitions to and from ∅D and encodes the following constraints by

default:

∃i , ∅it = ∅D,∅it+1 = ∅A =⇒ P (st+1|st,at) = 0

∀i , ∅it 6= ∅D,∅it+1 6= ∅D =⇒ P (st+1|st,at) = 1

∃i , sit+1 6= s∅ =⇒ P (st+1|st,at) = 0

Non-default parameters of T− define the death conditions for an agent.

11



Figure 3: Renderings for all of the scenarios in the training data, using track files and open street map
files from [30], [3], and [13].

Experiments – Inputs

Training scenarios Figure 3 shows a visualization of all the scenarios used in the training data.
The impressive diversity of this aggregated dataset aids the generalization capabilities of the model
and leads to latent variables with high-level structure, like aggressive vs. passive preferences.

All the scenarios are sampled at 10 Hz or 8 Hz, with approximately 6 million unique timestamps (160
hrs) collectively, counting each agents individually.

Agent types There are 4 classes of agents (divided by size) considered in the dataset, with the
name of each sub-type as provided in the original dataset:

1. Pedestrians: “person”, “pedestrian”
2. Motorcycles (FHWA class 1) and bicycles: “motorcycle”, “bicycle”
3. Passenger cars (FHWA class 2): “car”
4. Large vehicles (FHWA class 3-13): “bus”, “trailer”, “truck”, “truck-bus”, “van”

Policies for class 3 and 4 agents are learned by our model, while agents for class 1 and 2 are rolled
out from logs.

Goal states Goal locations are calculated as the closest posi-
tion of the vehicle that is more than 45 meters away. We chose
this distance to be at the edge of the vehicle’s field-of-view. The
field-of-view was chosen to capture relevant road features, and
thus the goal naturally captures intermediate steps like right-
hand turns while leaving interactions with other agents up to
the policy.

Observation representation Our chosen observation repre-
sentation is key to the success of our model. We take inspiration
from [6] and create a 6-channel image comprising road seman-
tics, agent states, and an goal location, projected to inertial
reference frame of the modeled vehicle:
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1. Stop and yield lines
2. Lane and traffic flow markings
3. Road edges and curbs
4. Current bounding boxes of vehicles (as closed shapes)
5. Projected bounding boxes of vehicles given current speed 1 sec in future (as closed shapes)
6. Future goal location rendered as small circle

Road markings are obtained from OpenStreetMap (OSM) format maps available with the datasets,
along with vehicle types and sizes. Bounding boxes are created from the center location, length, and
width of agents from class 3 and 4. Pedestrians are taken to have length and width of 0.75 meters,
while class 2 agents have length 1.75 meters and width 0.75 meters.

Because speeds are encoded in our representation, the observation can, in practice, be used without
stacking multiple frames.

Experiments – Models

Assumed distributions We assumed knowledge of P (ot|st), P (st+1|st,at), and P (s1). In our
experimental setting P (ot|st) and P (st+1|st,at) are deterministic and given by the observation
model above and the kinematic bicycle model introduced in Section 5. P (s1) is taken to be the
empirical distribution in the training dataset. In rollouts, agent start states are thus taken to be the
start states of held-out trajectories.

Baseline models We create baselines inspired by PRECOG [19], Multiple Futures Prediction
(MFP) [26], and MultiPath [6], adapting them to our setting where there is a pixel-space input, a
goal location and no conditioning on a fixed number of past states in the trajectory (as is common in
single-agent trajectory prediction tasks).

All of these models use neural network models to parameterize a gaussian distribution/s, N (µθ,Σθ),
over the next state of the vehicle. The algorithms differ largely in input representation and modeling
of uncertainty.

1. PRECOG PRECOG-ESP uses an RNN to generate (µθ,Σθ) for each time step and agent
autoregressively. Uncertainty is captured by the density of the unimodal normal distribution
independently at each timestep. As a comparable baseline we take an RNN encoding (µθ,Σθ)
that takes outputs of our feature-extracting resnet as input.

2. MFP MFP maps a sequences of past states X to a distribution over targets Y , Pθ(Y |X), using
discrete latent variable Z ∈ {1, ..., k}, with loss function:

L(θ,D) = logPθ(Y |X) = log

(∑
Z

Pθ(Z|Y,X) log
Pθ(Y,Z|X)

Pθ(Z|Y,X)

)
This loss function is maximized using an EM-type procedure, updating θt on loss∑

Z

Pθt−1(Z|Y,X) logPθt(Y |Z,X) +DKL(Pθt−1(Z|Y,X)||Pθt(Z|X))

where marginalization is performed exactly over the discrete Z.

In our setting, we take the stepwise loss to be∑
zi

Pθt−1(zi|oit, si1:T ) logPθt(s
i
t+1:T |zi, oit, si1:t) +DKL(Pθt−1

(zi|oit, si1:T )||Pθt(zi|oit, si1:t))

Sequences of states are encoded using an RNN and combined with observation encodings from
our resnet.

3. MultiPath MultiPath factorizes trajectory likelihood as

P (si1:T |oi1) =

K∑
k=1

Pθ(a
k|oi1)

T∏
t=1

P (sit|ak, oi1)
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where {ak} are a set of prelearned “anchor” trajectories, ak = {s1:T }, that are representative of
high-level agent intentions. With these prelearned anchors, a Gaussian mixture model (GMM) can
be learned using a hard-assignment learning algorithm in which each trajectory is assigned to its
nearest anchor in distance, and class probabilities Pθ(ak|oi1) and offsets from the anchor (µθ,Σθ)
are learned through MLE. The parameters of the probabilistic model are output by a resnet.

Inspired by MultiPath’s approach, we learn a GMM from prefit anchor means with parameters
output by our same resnet model.

DIMMI details We provide further details to facilitate reproducing our experimental results. These
detail are broken down into sections for clarity,

1. Pretraining In order to learn useful visual features for use in many models, we train a resnet34
on the entire training dataset with mean squared error from ground truth actions.

BC hyperparameters
parameter value

lr 1e-3
lr schedule cosine
batch size 64

2. Latent variable models In the latent variable models, the convolutional layers of the resnet
are preserved, and a new fully connected layer is learned output an observation “encoding”. In
the inference network, this encoding is mapped to a distribution over the latent variable, and in
the action model, it is mapped to a distribution over the actions. For training the RNN inference
model, we downsampling encodings in time to decrease the difficulty of backpropagation through
time.

VAE hyperparameters
parameter value

encoding dim 128
action hidden dim 512

latent dim 8
rnn hidden dim 128

downsample rate 4
grad clip 10

lr 1e-3
lr scheduler cosine
batch size 16

3. Regularization To regularize the policy, we must train an ensemble and optimize the policy
against this ensemble with RL. For our experiments, we used vanilla policy gradient optimization
with a baseline. Exploration can be achieve through maximizing entropy of the output model
when action are non-deterministic given the latent variable and observation. When they are
deterministic, we use parameter noise to ensure exploration.

Ensemble hyperparameters:
parameter value

k 5
q 0.95

RL hyperparameters
parameter value

lr 5e-4
batch size 256

Experiments – Evaluation

Evaluation dataset Because of limited time, we performed quantitative evaluations using held-out
trajectories from on a subset of the training scenarios, namely 2 roundabout and 2 intersection
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scenarios with dense traffic. These scenarios were chosen because they were challenging but not the
most computationally intensive–so multiple iterations of each experiment could easily be run.

Evaluation metrics For our state-occupancy metrics we cal-
culated: speed (v), inter-agent distance (IAD), distance head-
way (DHW), time-to-collision (TTC), and bad final state (BFS).
Speed was calculated as expected. IAD at time t was taken to
be

N∑
i=1

N∑
j=1

d(i, j) 1[d(i, j) < D]

d(i, j, t) =
√

(xi − xj)2 + (yi − yj)2

The DHW and TTC calculations are shown in the figure to the
right. DHW is taken to be

N∑
i=1

N∑
j=1

d∗(i, j) 1
[
d(i, j) < D, |ωij | <

π

4

]

ωij = arctan

(
yi − yj

xi − xj

)
− φj

d∗(i, j) =
√

(f(xi, φi)− f(xj , φj))2 + (f(yi, φi)− yj)2

f(xi, φi) = xi +
li

2
cos(φi)

f(yi, φi) = yi +
li

2
sin(φi)

and TTC is
N∑
i=1

N∑
j=1

d∗(i, j)

v
1

[
d(i, j) < D, |ωij | <

π

4

]
Lastly, BFS is given by

N∑
i=1

crash(i)

crash(i) =


1 bboxi intersects bboxj , i 6= j

1 centerlinei intersects road border
0 else
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