
DepthNet Nano: A Highly Compact Self-Normalizing
Neural Network for Monocular Depth Estimation

Linda Wang, Mahmoud Famouri, and Alexander Wong
Department of Systems Design Engineering, University of Waterloo, Canada

Waterloo Artificial Intelligence Institute, Canada
DarwinAI Corp., Canada

{linda.wang, alexander.wong}@uwaterloo.ca

Abstract

Depth estimation is an active area of research in the field of computer vision, and
has garnered significant interest due to its rising demand in autonomous driving
applications. A particularly challenging problem in this area is monocular depth
estimation, where the goal is to infer depth from a single image. An effective
strategy that has shown considerable promise in recent years for tackling this
problem is the utilization of deep convolutional neural networks. Despite these
successes, the memory and computational requirements of such networks have
made widespread deployment in embedded scenarios very challenging. In this
study, we introduce DepthNet Nano, a highly compact self normalizing network
for monocular depth estimation designed using a human machine collaborative
design strategy, where principled network design prototyping based on encoder-
decoder design principles are coupled with machine-driven design exploration. The
result is a compact deep neural network with highly customized macroarchitecture
and microarchitecture designs, as well as self-normalizing characteristics, that are
highly tailored for the task of embedded depth estimation. The proposed DepthNet
Nano possesses a highly efficient network architecture (e.g., 24× smaller and 42×
fewer MAC operations than Alhashim et al.), while still achieving comparable
performance with state-of-the-art networks on the KITTI dataset. Furthermore,
experiments on inference speed and energy efficiency on a Jetson AGX Xavier
embedded module further illustrate the efficacy of DepthNet Nano at different
power budgets (e.g., ∼14 FPS and >0.46 images/sec/watt at 384× 1280 at a 30W
power budget on KITTI).

1 Introduction

The task of estimating depth from 2D images is crucial for 3D scene understanding in many au-
tonomous driving applications. Recently, monocular depth estimation, where a dense depth map
is obtained from a single image, as shown in Figure 1, has gained traction. Compared to depth
estimation from stereo images or video sequence, monocular depth estimation is an ill-posed problem,
which means there are more than one possible unique solution. To tackle this ill-posed problem, one
method that has shown promise is deep convolutional neural networks (DCNNs).

These DCNNs learn deep features to estimate a depth for each pixel. Most of the recent developments
have focused on an encoder-decoder architecture with very powerful deep neural network backbone
macroarchitecture designs, such as VGG, ResNet and DenseNet [1, 2, 3], to learn deep features.
However, these current deep neural networks for monocular depth estimation are large and difficult
to deploy and run in edge scenarios such as autonomous vehicles. In addition to possessing very high
network architecture complexity, these current deep neural networks have high computation time and

Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: Monocular depth estimation. Top: RGB image (from KITTI dataset), Middle: Corre-
sponding ground-truth dense depth map. Bottom: Estimated dense depth map by Depth-Net Nano
(designed using the human-machine collaborative design strategy).

low energy efficiency, which makes them difficult to deploy for mission-critical scenarios such as
self-driving cars, where reaction time is crucial for driver safety.

Taking inspiration from recent work in efficient object detection, where large backbone architectures
are replaced with more efficient backbone network architectures, such as MobileNetV2 [4], Wofk et
al. [5] used smaller backbone architectures (e.g., ResNet-16 and MobileNet) in order to decrease the
number of parameters and run-time necessary to operate on embedded devices. To further reduce
the network size and inference runtime, network pruning was applied [6]. While the resulting
depth estimation networks achieved significant improvements in terms of inference speed, the depth
estimation performance was significantly lower and not comparable with current state of the art.

Taking a different direction than manual architecture selection strategies and network pruning
strategies, human-machine collaborative design strategies [7] has shown recent success in designing
highly compact DCNNs by coupling principled network design prototyping and machine-driven
design exploration based on human-specified design requirements and constraints. In particular, such
strategies have been demonstrated to be quite effective at designing efficient deep neural networks
well suited for various perception tasks, such as object detection, image classification, and semantic
segmentation [8, 7].

In this study, we explore a human-machine collaborative design strategy to design highly compact
deep convolutional neural networks for the task of monocular depth estimation on the edge. More
specifically, we leverage encoder-decoder design principles that were found to be effective in current
state of the art monocular depth estimation to create DepthNet Nano, a highly compact network with
highly customized module-level macroarchitecture and microarchitecture designs tailored specifically
for embedded depth estimation. In Figure 2, we show that DepthNet Nano is significantly smaller
and faster than current state of the art depth estimation networks while maintaining a comparable
accuracy on the KITTI benchmark dataset.

The paper is organized as follows. Section 2 provides a detailed description of the human-machine
collaborative design strategy leveraged in this study to create DepthNet Nano. Section 3 provides a
detailed description and discussion of interesting characteristics of the resulting architecture design
of DepthNet Nano. Section 4 presents and discusses the results from the quantitative and qualitative
experiments conducted to study the efficacy of DepthNet Nano when compared to state-of-the-art
depth estimation networks. Finally, Section 5 draws conclusions and discusses future directions.

2

Figure 2: Accuracy vs. MACs and number of parameters comparison of various depth estimation
networks. The size of the point represents the number of parameters in the depth estimation network.
Top left represents high accuracy and high efficiency.

2 Methods

In this study, we leverage a human-machine collaborative design strategy to design DepthNet Nano, a
highly compact DCNN tailored for monocular depth estimation under edge scenarios. The human-
machine collaborative design strategy comprises of two main design stages: i) principled network
design prototyping, and ii) machine-driven design exploration.

2.1 Principled Network Design Prototyping

The network design prototyping stage is the initial design stage, where we create an initial network
design prototype (denoted as ϕ) based on human-driven design principles to guide the machine-driven
design exploration stage. In this study, an initial network design prototype was constructed based on
densely-connected encoder-decoder architecture design principles [2], which has been demonstrated
to be quite successful in achieving high-resolution monocular depth estimation.

A standout characteristic of the densely-connected encoder-decoder architecture is the leveraging
of a large number of direct connections between not only encoder layers, but also between encoder
and decoder layers. Below is a detailed description of the design principles leveraged in constructing
the initial network design prototype. It is very important to note that the actual macroarchitecture
and microarchitecture designs of the individual modules and layers in the final DepthNet Nano
network architecture, as well as the number of network modules, are left for the machine-driven
design exploration stage to decide in an automatic manner based on both human-specified design
requirements and constraints catered to edge device scenarios with limited computational and memory
capabilities.

2.1.1 Encoder-Decoder Architecture

In this study, the initial network design prototypes possess an encoder-decoder architecture that is
designed for dense depth map generation. The encoder layers in such an architecture are designed to
learn a multitude of low to mid level features for characterizing an input scene. Next, the decoder
layers are designed to merge and upsample the features learned from the encoder layers to recover
a dense depth map. The decoder layers consist of upsampling blocks followed by a concatenation
and two convolutional operations. Finally, the encoder-decoder architecture leveraged by the initial
network design prototypes follows the decoder layers with a 3 × 3 convolutional layer at the end,
which is designed to produce the final dense depth map.

2.1.2 Encoder-Encoder and Encoder-Decoder Skip Connections

In general, as the number of layers increases, the network accuracy improves because each layer
is learning deeper features. However, He et al. [9] found that a 56-layer deep convolutional neural
network has higher training and test error than a 26-layer CNN deep convolutional neural network
introduced a fundamental building block, the residual block, to alleviate training of deep neural
networks. The residual block adds a previous layer to the current layer. By adding information
from previous layers, the network can learn residuals or errors between a previous layer and the
current one. Extending upon this idea of skip connections, densely-connected network architectures

3

consists of a large number of skip connections between different layers. More specifically, instead of
adding the previous layer as an identity function, densely-connected architectures concatenate outputs
from previous layers to the current layer. This is found to alleviate the vanishing gradient problem,
strengthen feature propagation and feature reuse [10]. A such, the introduction of encoder-encoder
skip connections into a deep encoder-decoder architecture can improve the training process and
improve network performance.

Furthermore, in the case of encoder-decoder architectures, as the layers in the encoder get deeper,
higher level features are learned; however, the resolution of the feature maps get progressively lower.
As such, the input to the decoder is of low resolution. Since the purpose of the decoder network is to
upsample the features learned from the encoder, the resulting depth map image would also have of
low resolution.

To overcome the low resolution problem, an effective strategy is the leveraging of skip connections
between encoder and decoder layers within an encoder-decoder architecture. Such encoder-decoder
skip connections merge high resolution feature maps from the encoder layers to the features in the
decoder layers, resulting in a more detailed decoder output.

2.2 Machine-driven Design Exploration

The machine-driven design exploration stage takes in the given data, initial network design prototype
ϕ, and human-specified design requirements and constraints, which are designed specifically around
edge scenarios with limited computational and memory capabilities.

Using the initial network design prototype ϕ described in the previous section, as well as human
specified design requirements, a machine-driven design exploration is leveraged in the form of
generative synthesis [7] to determine macroarchitecture and microarchitecture designs for depth
estimation on edge devices. The process of generative synthesis is capable of determining the optimal
network macroarchitecture and microarchitecture design that satisfy the human-specified constraints.
This is achieved by learning generative machines that can generate deep neural networks that meet
the specified constraints. To learn the optimal generator, generative synthesis is formulated as a
constrained optimization problem, defined in Equation 1, where given a set of seeds S , a generator G
can generate networks {Ns|s ∈ S} that maximize a universal performance function U , while also
satisfying constraints defined in an indicator function 1r(·).

G = max
G
U(G(s)) subject to 1r(G(s)) = 1,∀s ∈ S (1)

The generative synthesis process is guided by both the initial prototype ϕ and human-specified
constraints. To guide the process towards learning generative machines that generate highly efficient
and compact depth estimation networks for edge devices, an indicator function 1r(·) is configured so
that the generated networks are within the human-specified constraints. In this study, for generating a
highly efficient and compact depth estimation network tailored for KITTI, the indicator function 1r(·)
was set up for this case such that: i) δ1 accuracy ≥ 0.89 on KITTI, and ii) architectural complexity
≤ 2M parameters. The δ1 accuracy and network architecture complexity conditions in the indicator
function 1r(·) are set such that the δ1 accuracy of the resulting DepthNet Nano network exceeds
to that of Alhashim et al. [2], a popular, high-performance deep convolutional neural network for
monocular depth estimation for KITTI, while having more than 20× fewer parameters.

Finally, in this study, the universal performance function U leveraged in Eq. 1 is NetScore [11], a
quantitative performance metric designed for assessing the balance between accuracy, computational
complexity, network architecture complexity of a deep neural network. The NetScore metric is
defined as

Ω(N) = 20 log
(a(N)κ

p(N)βr(N)γ

)
(2)

where for this study, a(N) is the combination of δ1 accuracy and absolute relative error, p(N) is the
number of parameters in the network,m(N) is the number of multiply-accumulate (MAC) operations,
and κ, β, γ control the the influence of accuracy, architectural complexity and computational
complexity, respectively. For this study, κ is set to 0.7, β and γ are both set to 0.15 to put an emphasis
on accuracy while maintaining balance with architectural complexity and computational complexity.

4

Figure 3: DepthNet Nano Architecture. The network architecture exhibits high macroarchitecture
and microarchitecture heterogeneity with a mix of PBEP and EP modules, as well as individual
7×7, 3×3, and pointwise convolution layers. Finally, the network architecture possesses a very deep
densely-connected self-normalization macroarchitecture, which has not been previously explored.
Microarchitecture details for each individual layer can be found in Appendix.

3 DepthNet Nano Architectural Design

The network architecture of the proposed DepthNet Nano, which is illustrated in Fig. 3 and has
several interesting characteristics that are discussed in detail below.

3.1 Self-Normalization Macroarchitecture

The first interesting characteristic of the DepthNet Nano architecture is its self-normalizing property
within a very deep densely-connected network architecture, which has not been previously explored.
More specifically, rather than leveraging popular activation functions such as Rectifier Linear Units
(ReLU) that are more commonly found in depth estimation networks, the proposed DepthNet Nano
architecture heavily leverages Scaled Exponential Linear Units (SELU) [12] as the only form of
activation within the network architecture, which can be defined as

selu(x) = λ

{
x if x > 0

αexp(x)− α if x ≤ 0
(3)

One of the key advantages of SELUs is their self-normalizing properties that makes learning more
robust for deep neural networks. More specifically, since the activations in each layer of the network
are close to zero mean and unit variance, as the data is propagated through, it will converge towards
zero mean and unit variance. The self-normalizing property is achieved with SELUs by decreasing
the variance for negative inputs and increasing the variance for positive inputs. To achieve zero mean
and unit variance, the amount of decrease for very negative inputs and the amount of increase for
near zero values are greater than other inputs. The result is a self-normalizing neural network that is
able to achieve high depth estimation accuracy while being extremely efficient and possessing very
low network architecture complexity despite high network inter-connectivity.

3.2 Densely Connected Projection BatchNorm Expansion Projection Macroarchitecture

Another interesting characteristic of the DepthNet Nano architecture is the densely connected projec-
tion batchnorm expansion projection (PBEP) module, which are leveraged heavily in the encoding
layers of the network architecture (see Fig. 3). Compared to the expansion projection (EP) modules
leveraged extensively in the decoding layers of the network architecture (see Fig. 3), which have
been seen in other literature on efficient network architectures [4, 13, 14], PBEP has an additional
projection layer that decreases the number of channels of the previous layer before expanding the
layer for depth-wise convolution. PBEP macroarchitecture consists of:

5

Table 1: Performance on KITTI. All networks are evaluated using a pre-defined center cropping [15].
Best results in bold.

Model Input Size MACs [G] Params [M] higher is better lower is better
δ1 < 1.25 δ2 < 1.252 δ3 < 1.253 Abs Rel Sq Rel RMSE RMSE log

Fu et al. [1] 385× 513 258 99.8 0.932 0.984 0.994 0.072 0.307 2.727 0.120
Alhashim et al. [2] 384× 1280 196 42.8 0.886 0.965 0.986 0.093 0.589 4.170 0.171

DepthNet Nano 384× 1280 4.66 1.75 0.894 0.978 0.994 0.103 0.511 3.916 0.150

1. A projection layer, where the output channels of the previous layer are projected to a lower
dimensionality in this layer using 1× 1 convolutions.

2. A batch normalization layer that normalizes the output of a previous layer to improve the
stability of the network.

3. An expansion layer, where 1 × 1 convolutions are leveraged to expand the output of the
batch normalization layer to a higher dimensionality.

4. A depth-wise convolution layer, where spatial convolutions with a different filter are applied
to each of the individual output channels of the expansion layer.

5. A projection layer with 1 × 1 convolutions that projects the output channels from the
depth-wise convolution layer to a lower dimensionality.

The use of densely connected PBEP macroarchitectures reduces the architectural and computational
complexity of the DepthNet Nano architecture while maintaining high model expressiveness and
producing high quality depth estimations.

3.3 Macroarchitecture and Microarchitecture Heterogeneity

Unlike hand-crafted architectures, the generated macroarchitecture and microarchitecture within the
network can differ greatly from layer to layer. There are a mix of different type of modules, such as
PBEP and EP modules, as well as individual 7× 7, 3× 3 and 1× 1 convolution layers. In addition,
the same module type has vastly different microarchitectures since each module is catered specifically
for the needs of the task (see Appendix for microarchitecture details for each layer). For instance,
each PBEP and EP module have different numbers of channels to represent the learned features and a
different multiplicity for the channel expansion layer.

The benefit of high macroarchitecture and microarchitecture heterogeneity in DepthNet Nano network
architecture is that it enables each component of the network architecture to be uniquely tailored to
achieve a very strong balance between architectural and computation complexity while maintaining
model expressiveness. The architectural diversity in DepthNet Nano demonstrates the advantage of
leveraging a human-collaborative design strategy as it would be difficult for a human designer, or other
design exploration methods to customize a network architecture to the same level of architectural
granularity.

4 Experimentation Results

To demonstrate the efficacy of the proposed DepthNet Nano network designed using the human-
machine collaborative design strategy, we examine its network architecture complexity, depth estima-
tion performance, and computational cost on the KITTI benchmark dataset.

4.1 Dataset and Implementation Details

In this study, we leverage the KITTI dataset, which contains 2D outdoor scenes and corresponding
ground-truth lidar points captured using a Velodyne HDL-64E [16]. Since this study requires dense
input depth maps, 23158 lidar scans were inpainted using Levin et al’s colorization method [17], as
consistent with other studies. For this study, using the same procedure as previous literature, the
network was trained on 23158 color images and their corresponding dense depth maps, and tested
on 697 images from 29 scenes split by Eigen et al. [15]. For testing, the depth predictions for are
evaluated on a pre-defined center cropping by Eigen [15].

The proposed DepthNet Nano was implemented using the TensorFlow open source platform for
machine learning. The training scheme leveraged in this study was that outlined in [2]. The ADAM

6

Table 2: KITTI Inference. All networks are evaluated on a Jetson AGX Xavier embedded module.
Best results in bold.

Model MACs
[G] δ1

30W
[FPS]

15W
[FPS]

30W
[images/s

watt]
15W

[images/s
watt]

Alhashim et al. [2] 196 0.886 3.00 1.65 0.100 0.110
DepthNet Nano 4.66 0.894 13.92 7.70 0.464 0.513

optimizer [18] was leveraged with a learning rate of 0.00005 and parameter values β1 = 0.9 and
β2 = 0.999.

4.2 Performance Evaluation Metrics

Each tested network in this study is evaluated using several error and accuracy metrics that were used
in prior works [2, 15, 1, 3]. More specifically, the following performance metrics were leveraged in
this study:

• relative absolute error (Abs Rel): 1
N

∑N
i=1

|yi−ŷi|
ŷi

• relative squared error (Sq Rel): 1
N

∑N
i=1

(yi−ŷi)2
ŷi

• root mean squared error (rmse):
√

1
N

∑N
i=1(yi − ŷi)2

• log rmse (rmse log):
√

1
N

∑N
i=1(log(yi)− log(ŷi))2

• average log error (Log10): 1
N

∑N
i=1 |log(yi)− log(ŷi)|

• δi accuracy: % of yi s.t. max(yiŷi ,
ŷi
yi

) = δ < thr for thr = 1.25, 1.252, 1.253

where yi is a pixel in predicted depth image, ŷi is a pixel in the ground-truth depth image and N is
the total number of pixels in the depth image.

Finally, evaluating the real-world performance of the proposed DepthNet Nano in a realistic embedded
scenario, we performed inference speed and power efficiency evaluations on a Jetson AGX embedded
module at two different power budgets: 1) 30W and 2) 15W. For inference speed, we computed the
framerate (FPS), while for power efficiency we computed the number of images processes per sec per
watt (i.e., images/sec/watt).

4.3 Quantitative Analysis

To study the efficacy of human-machine collaborative design, we evaluate DepthNet Nano alongside
state-of-the-art depth estimation networks on performance metrics defined in Section 4.2, network
architecture complexity, and computational complexity on the KITTI datasets, as shown in Table 1,
respectively. Since this study targets high quality depth estimation, only state-of-the-art networks in
literature with δ1 accuracies greater than 0.88 are considered.

Performance and complexity. It was observed that DepthNet Nano had significantly lower architec-
ture complexity and computational complexity compared to the tested state-of-the-art networks. For
example, DepthNet Nano has >24× fewer parameters and requires >42× fewer multiply-accumulate
operations (MACs) for inference than [2]. Furtherore, despite the much lower architectural and
computatinal complexity, DepthNet Nano was able to achieve higher δ1, δ2 and δ3 accuracies
than [2].

Speed and energy efficiency. The inference speed of DepthNet Nano and [2] are compared on
a Jetson AGX Xavier embedded module in Table 2. For KITTI, DepthNet Nano was more than
4.6× faster and more energy efficient than Alhashim et al. [2] at both 30W and 15W power budgets.
These quantitative results demonstrate that the proposed DepthNet Nano networks, created using
a human-machine collaborative design strategy, can achieve a strong balance between accuracy,
network architecture complexity, and computational complexity that makes it very well suited for
embedded depth estimation for edge scenarios such as autonomous driving.

7

Figure 4: Visualized results on KITTI dataset. (Left to right) input RGB image, ground truth, and
depth estimations from Alhashim et al. [2] and DepthNet Nano. DepthNet Nano was able to produce
high-quality depth estimations despite requiring 42× fewer MAC operations than Alhashim et al. [2].

4.4 Qualitative Analysis

In additional to quantitatively evaluating the performance DepthNet Nano, a qualitative analysis is
also conducted to present areas that may be not be evaluated by the error metrics. Figure 4 shows
examples from the KITTI dataset. Each RGB image has a corresponding ground-truth dense depth
map and predicted dense depth maps from [2] and DepthNet Nano. It can be observed that the dense
depth maps produced by DepthNet Nano are visually comparable to that produced by [2], despite
DepthNet Nano requiring 42× fewer MAC operations. This observation further reinforces the strong
balance between accuracy, network architecture complexity, and computational complexity achieved
by the proposed DepthNet Nano that makes it very well suited for embedded depth estimation for
edge scenarios such as autonomous driving.

5 Conclusion

In this study, we introduced DepthNet Nano, a highly compact self normalizing network that is tailored
for embedded monocular depth estimation and designed using a human machine collaborative design
strategy. By coupling human-driven principled network design prototyping and machine-driven
design exploration, the resulting DepthNet Nano network architecture exhibited highly customized
macroarchitecture and microarchitecture designs, as well as self-normalizing characteristics that
provide a strong balance between architecture complexity, computational complexity, and depth
estimation performance. Experimental results on the KITTI benchmark dataset demonstrated that
the proposed DepthNet Nano possesses a significantly more architecturally and computationally
efficient network architecture compared with state-of-the-art networks while achieving comparable
performance. Furthermore, experiments demonstrated that DepthNet Nano had significantly faster
inference speeds and energy efficiency on the Jetson AGX Xavier embedded module. For future
work, we plan to explore strategies for incorporating temporal information into the DepthNet Nano
architecture in a way that improves performance while maintaining low architecture and computational
complexity.

References
[1] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal regression network for monocular

depth estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2002–2011.

[2] I. Alhashim and P. Wonka, “High quality monocular depth estimation via transfer learning,” arXiv preprint
arXiv:1812.11941, 2018.

8

[3] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper depth prediction with fully
convolutional residual networks,” in 2016 Fourth international conference on 3D vision (3DV). IEEE,
2016, pp. 239–248.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and
linear bottlenecks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[5] D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, “Fastdepth: Fast monocular depth estimation on
embedded systems,” arXiv preprint arXiv:1903.03273, 2019.

[6] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, and H. Adam, “Netadapt: Platform-
aware neural network adaptation for mobile applications,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 285–300.

[7] A. Wong, M. J. Shafiee, B. Chwyl, and F. Li, “Ferminets: Learning generative machines to generate
efficient neural networks via generative synthesis,” arXiv preprint arXiv:1809.05989, 2018.

[8] A. Wong, M. Famuori, M. J. Shafiee, F. Li, B. Chwyl, and J. Chung, “Yolo nano: a highly compact you
only look once convolutional neural network for object detection,” arXiv preprint arXiv:1910.01271, 2019.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.

[11] A. Wong, “Netscore: Towards universal metrics for large-scale performance analysis of deep neural net-
works for practical on-device edge usage,” in International Conference on Image Analysis and Recognition.
Springer, 2019, pp. 15–26.

[12] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural networks,” in Advances
in neural information processing systems, 2017, pp. 971–980.

[13] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet: Platform-aware neural architecture
search for mobile,” arXiv preprint arXiv:1807.11626, 2018.

[14] X. Chu, B. Zhang, R. Xu, and J. Li, “Fairnas: Rethinking evaluation fairness of weight sharing neural
architecture search,” arXiv preprint arXiv:1907.01845, 2019.

[15] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single image using a multi-scale deep
network,” in Advances in neural information processing systems, 2014, pp. 2366–2374.

[16] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,”
in 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–3361.

[17] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,” in ACM SIGGRAPH 2004 Papers,
2004, pp. 689–694.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,
2017.

9

Appendix

Microarchitecture details

The microarchitecture details for each layer of the proposed DepthNet Nano is shown in Table 3.

Table 3: DepthNet Nano microarchitecture details.

Layer Size
input 384× 1280× 3

conv7× 7-pool 192× 640× 14
PBEP 1.1 96× 320× 13
PBEP 1.2 96× 320× 15
PBEP 1.3 96× 320× 18
PBEP 1.4 96× 320× 13

... ...
PBEP 1.6 96× 320× 17

conv1× 1-pool 48× 160× 30
PBEP 2.1 48× 160× 9
PBEP 2.2 48× 160× 13
PBEP 2.3 48× 160× 13
PBEP 2.4 48× 160× 18

... ...
PBEP 2.12 48× 160× 19

conv1× 1-pool 24× 80× 79
PBEP 3.1 24× 80× 13
PBEP 3.2 24× 80× 14
PBEP 3.3 24× 80× 18
PBEP 3.4 24× 80× 15

... ...
PBEP 3.32 24× 80× 14

conv1× 1-pool 12× 40× 117
PBEP 4.1 12× 40× 17
PBEP 4.2 12× 40× 13
PBEP 4.3 12× 40× 14
PBEP 4.4 12× 40× 12

... ...
PBEP 4.32 12× 40× 11
conv1× 1 12× 40× 176
upconv 1A 24× 80× 86
upconv 1B 24× 80× 112
upconv 2A 48× 160× 47
upconv 2B 48× 160× 48
upconv 3A 96× 320× 28
upconv 3B 96× 320× 25
upconv 4A 192× 640× 17
upconv 4B 192× 640× 24
conv3× 3 192× 640× 1

output 384× 1280× 1

10

	Introduction
	Methods
	Principled Network Design Prototyping
	Encoder-Decoder Architecture
	Encoder-Encoder and Encoder-Decoder Skip Connections

	Machine-driven Design Exploration

	DepthNet Nano Architectural Design
	Self-Normalization Macroarchitecture
	Densely Connected Projection BatchNorm Expansion Projection Macroarchitecture
	Macroarchitecture and Microarchitecture Heterogeneity

	Experimentation Results
	Dataset and Implementation Details
	Performance Evaluation Metrics
	Quantitative Analysis
	Qualitative Analysis

	Conclusion

