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Abstract

Autonomous driving is a complex task that is difficult to cast into algorithms.
Therefore, researchers turn to deep neural networks that map front-facing camera
data stream to the associated driving commands. The learned driving policy can be
conditioned to respond to navigational commands, thus the vehicle can take specific
turns in intersections to reach a destination. Such visual input-based technique is
demonstrated to drive efficiently when deployed on the same training environments.
Nevertheless, performance dramatically decreases in new environments and is not
consistent against varying weather conditions. In this work, a proposed model
copes with such two challenges by fusing laser scanner input with the camera.
On CARLA urban driving benchmark, our model improves autonomous driving
success rate and average distance traveled towards destination on all driving tasks
and environments combinations, while it’s trained on automatically recorded traces.
Generalization success rate improves by 52% and weather consistency improved
by around four times.

1 Introduction

Road traffic crashes is a major world unsolved problem. The 2018 Global Status Report of the
World Health Organization (WHO) reported an estimated 1.35 million yearly deaths due to road
traffic crashes worldwide [27]. In addition, 10 million people sustain non-fatal injuries or become
disabled as a result of road crashes yearly [27]. In addition, roadway crashes cause a huge property
damage, and have substantial negative economic and social effects [23]. With approximately 90% of
accidents being due to human errors [26], autonomous vehicles will play a vital role to save human
lives and property damage. In addition, it promises far greater mobility for the elderly and people
with disabilities. Energy consumption could be reduced in transportation by as much as 90% [8] with
less traffic congestion and associated air pollution [3].

Despite the recent advances to achieve such promising vision, it is safe to believe that fully au-
tonomous navigation in complex environments is still decades away [15], the problem is far from
solved [13]. CARLA [7] is a widely used open-source simulator for autonomous car development
focused on creating realistic virtual environment for automotive industry. Many contributors con-
stantly improve it, which makes it a comprehensive tool for simulating real world scenarios. In
[7], CARLA urban driving benchmark is introduced to benchmark the state-of-the-art Conditional
Imitation Learning (CIL) approach [6] with modular pipeline and Reinforcement Learning-based
approaches. The benchmark demonstrated that the CIL model is responsive to high-level navigational
commands and drives efficiently when tested on the same training environments. However, perfor-
mance rabidly decreases and does not generalize in new towns and, additionally, is not consistent
against varying weather conditions. To cope with such two challenges, in this work, our proposed
model extends the CIL model by fusing laser scanner input with the camera. On CARLA benchmark,

Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.



our model improves driving success rate in new towns by 52% and weather consistency by 3.9 times.
It performs significantly better than the CIL model [6] in all the different combinations of tasks and
environmental setups, though being trained on driving traces recorded automatically, unlike the CIL
model that is trained on data collected by a human driver.

2 Related Work

The majority of literature approaches to autonomous driving are composed of multiple different
models [15] [7], e.g., detection [12] (drivable free space [10], lanes’ markings [18], or pedestrians
[21]), tracking of driving scene objects [4], motion planning [14], collision avoidance [9], mapping
[28], and more models [15]. Then the results from these components are then combined in a rule-
based module that produces the vehicle driving actions [7]. Such mediated perception approach relies
on scene understanding [12] on a level that might add redundant information and useless complexity
to an already difficult task of autonomous driving; a small portion of the detected objects are relevant
to driving decisions. It also requires robust solutions to open challenges in scene understanding and
expensive data annotation [12]. Direct perception is another approach [5] that learns a mapping
from input camera image to several meaningful affordance indicators of driving situation, then a
rule-based controller translates them into driving actions. The indicators are chosen via heuristics and
the controller design is as expensive as the case with the mediated perception rule-based module [29].

As an alternative to the mediated perception approach, the end-to-end approach directly maps input
sensory data to driving actions via deep machine learning regression. It aims to optimize all of the
aforementioned sub-problems simultaneously and eventually lead to better performance and smaller
systems. The first end-to-end work was done by Pomerleau [24] in 1989 that used a multilayer
perceptron (MLP). Afterwards, the computational power dramatically increased thanks to massive
parallelization in modern GPU’s in combination with modern deep artificial neural network concepts
like Convolutional Neural Networks (CNN) [20]. Those advances allowed for having more successful
methods that use CNN for end-to-end learning of autonomous vehicles steering [1] [11] [15] [2]. The
major drawback in this approach is that the vehicle cannot be guided to take a specific turn at an
upcoming intersection. Conditional Imitation Learning (CIL) [7] [6] overcomes such limitation by
training, on top of a perception CNN, multiple different command-conditional modules ("branches")
predicting driving commands for each possible navigational command.

3 Proposed Model

3.1 Network Architecture

Our model extends the CIL model [6] by fusing a LiDAR (laser scanner, acronym of Light Detection
And Ranging) sensor input with the camera. The strengths aspects for each sensor can compensate
for the weaknesses of the other. The accurate LiDAR range information resolve the camera depth
perception ambiguity, while camera’s dense angular resolution compensates LiDAR sparsity. Also,
LiDAR is less sensitive to ambient lighting and weather conditions [16]. Our proposed network
is end-to-end trainable, given input sensory data, the vehicle driving commands are predicted, in
addition to predicted vehicle speed. The predicted speed is used to avoid vehicle unnecessary stopping,
we deliberately increase the predicted throttle if the vehicle is stopping while the predicted speed
value is above a pre-determined threshold.

Figure 1 shows our proposed network architecture. The network takes the high-level navigational
command C as an input, alongside image coming from a front-facing camera, LiDAR pointcloud,
and a measurements vector. All inputs are processed independently. The currently observed RGB
image coming from the camera is fed into 8 convolutional layers, and the associated LiDAR full scan
pointcloud is encoded to a grayscale image using Polar Grid View (PGV) representation as descried
later in subsection 3.2 then fed into 4 convolutional layers. The RGB image size is 200× 88 pixels
resolution, and the PGV grayscale image is 90× 32 pixels resolution, where the second dimension
represents the utilized LiDAR number of layers. We use a ReLU activation function [22] in all hidden
layers, and a linear activation for the output layers. Figure 1 describes the number of neurons per
layer, and for the convolutional layers describes kernel sizes and the used padding as well. Batch
normalization is applied after all the convolutional layers, and we apply 50% dropout [25] after
fully-connected hidden layers, and apply 20% dropout after convolutional layers.
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Figure 1: Proposed Network Architecture

The measurement vector is composed of vehicle speed. The speed, throttle, and brake values are
scaled between 0 and 1, according to minimum and maximum possible values. The steering wheel
angle is scaled between -1 and 1, with extreme values corresponding to full left and full right. The
camera RGB images and the LiDAR PGV images are normalized to be in the range of [0, 1]. For
each output branch corresponding to a navigational high-level command, driving actions a are three-
dimensional vectors that include steering wheel angle s, throttle t, and braking b; a = [s, t, b]. Given
ground-truth actions ag and speeds vg, and predicted actions a and speeds v, the loss function L is
defined as follows:

L = λs ‖s− sg‖2 + λt ‖t− tg‖2

+λb ‖b− bg‖2 + λv ‖v − vg‖2 ,
(1)

where λs, λt, λb, and λv are empirically set to 0.5, 0.2, 0.15, and 0.15 respectively. The model is
trained using Adam optimizer [19] with β1 = 0.7, β2 = 0.85, and initial learning rate of 0.0002, and
it’s multiplied by 0.5 every 10 epochs. We used mini-batches of 120 samples, where each min-batch
has the same number of samples for each high-level navigational command C. Half of the images in
every mini-batch are augmented as described later in subsection 3.3.

3.2 LiDAR Polar Grid View

As in figure 1, the currently observed LiDAR pointcloud is encoded to a grayscale image using Polar
Grid View representation (PGV). Figure 2 shows a sample camera RGB image, the corresponding
LiDAR pointcloud full scan top view projection, and the generated PGV which provides a 2D dense
proximity spherical representation of the environment. Each LiDAR layer is associated with a PGV
row, and each beam is associated with a single PGV column based on its horizontal angle. A PGV
pixel holds the average depth values for all LiDAR beams that are associated with it.

We provide a linear-time algorithm for PGV generation in Algorithm 1. After each of steps 2 and 3 in
the algorithm, a small constant angle can be added to make θunique and φunique represent segments
centers instead of edges.
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Figure 2: (a) Sample RGB camera image. (b) Corresponding LiDAR pointcloud top view projection.
(c) Generated PGV from the LiDAR pointcloud. Three objects are matched in the figures: a vehicle,
a bicyclist, and a light pole.

Algorithm 1: LiDAR Polar Grid View (PGV) linear-time algorithm
Input: Lists x , y, and z: LiDAR full scan Cartesian pointcloud in sensor local coordinate system
Parameters: N : LiDAR number of layers

u_val: value for unreflected LiDAR beams
FoVU and FoVL: LiDAR vertical field of view
θres: horizontal resolution of the produced PGV

Output: V : Grayscale image representing the PGV

1 (ρ, θ, φ) = cart2polar(x, y, z) // Convert from Cartesian to Polar Coordinates

// Allocate empty map
2 allocate a list θunique in [0◦, 180◦) with step θres // [0◦, 180◦) for front-facing pointcloud
3 allocate a list φunique in [FoVU , FoVL) with step (FoVL − FoVU )/N
4 allocate matrix V of values u_val and size length(φunique)× length(θunique)

5 foreach V i,j ∈ V do
6 targetφ = |φ− φunique[i]| ≤ (FoVU − FoVL)/2N
7 targetθ = |θ − θunique[j]| ≤ θstep/2
8 valuesρ = ρ[targetφ & targetθ]

9 if length(valuesρ) > 0 then V i,j = mean(valuesρ)

3.3 Training Dataset

The original CIL model is trained on a dataset collected by a human driver using CARLA simulator.
The driver uses a signal to record his intent when approaching intersections [6], such a signal is
used as the ground-truth navigational high-level command. In contrast, our model is trained on data
that is automatically recorded using two different methods. The first data collection method relies
on CARLA simulator autopilot feature. In each data collection episode, the episode time duration,
weather set, traffic and pedestrians density, vehicle starting position are randomly chosen. The
ego-vehicle purposelessly follows lane and takes random turning decisions in intersections and avoid
obstacles until the episode duration ends. After each episode, the navigational high-level command
is generated by looking-ahead in future frames to determine the turn the vehicle decided to take as
described in Algorithm 2. In the algorithm description, x and y are lists of ego-vehicle x and y world
coordinates ordered by timestamp, and intersections is a list of town intersections. The threshold t
is the minimum absolute change in vehicle x and y coordinates when taking right or left turns in an
intersection, we empirically set it to 15 meters. The inside function returns True only if the passed
x and y world coordinates to the function lie within the passed intersection s; i.e.; within a circle
having a predetermined radius value (empirically set to 30 meters) from the intersection center point.
The algorithm has linear-time complexity in relation to the number of data samples. Horizontal arrow
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symbols in the algorithm description indicate appending to a list, and indexing lists with s, m, and
e retrieves list start, middle, and end items respectively. In the second data collection method, we
used a route planner and PID controllers. Each episode a random pair of ego-vehicle source and
destination are chosen, then the modular pipeline system introduced in [7] is used to avoid obstacles
and follow waypoints by making use of simulator privileged information.

Algorithm 2: High-level command generation algorithm
Input: Lists x , y, intersections
Parameters: Threshold t indicating minimum absolute change in vehicle coordinates when taking a turn
Output: List cmds of high level command per timestamp

1 allocate empty list cmds & i = 0
2 while i < count(x) do
3 allocate 2 empty lists x_in and y_in

// Check if within intersection
4 for s in intersections do
5 while inside(s, x[i], y[i]) do
6 (x_in, y_in)← (x[i], y[i]) & i = i+ 1
7 if i ≥ count(x) then break
8 if x_in list is not empty then break

// Assign high-level commands
9 if x_in list is not empty then

10 if (|x_in[s]− x_in[e]| > t) & (|y_in[s]− y_in[e]| > t) then
11 if

(x_in[e]−x_in[s])∗(y_in[m]−y_in[s])−(y_in[e]−y_in[s])∗(x_in[m]−x_in[s])) ≥ 0
then

12 cmd = ”GoLeft”

13 else cmd = ”GoRight”

14 else cmd = ”GoStraight”
15 for x_in times do cmds← cmd

16 else
17 cmds← ”FollowLane” & i = i+ 1

As in [6], temporally-correlated noise is injected into the steering during training. The noise simulates
gradual drift away from the desired trajectory, then the vehicle is let to recover from these perturbations
to provide the network with examples of recovery from unexpected disturbances. During model
training, online data augmentation is applied on half of the mini-batch images before feeding them
to the network. To augment an image, it is passed through a pipeline of a sequential series of
augmentation methods. Each augmentation method in the pipeline has a predefined probability
of occurrence which defines the percentage of augmented images having that method existing in
their augmentation pipeline. In addition, each augmentation method has stochastic parameters to
let each image be augmented differently. As an example, when adding Gaussian noise, for each
image to be augmented, the Gaussian noise variance is sampled from a parameterized uniform
probability distribution. Two different types of data augmentation methods are adopted. The first type
is for photometric transformations: changing brightness, lighting conditions, and applying additive
white Gaussian noise and Gaussian blurring [17]. The second type is for geometric transformations:
horizontal flipping. In the case of horizontal flipping, the sign of the ground-truth steering wheel
angle is flipped as well.

4 Experimental Results

We adopt the experimental setup of the CARLA urban driving benchmark [7] to evaluate the proposed
model. The benchmark is conducted in two different towns, one town is used for training data
collection, while the other one is kept unseen during training. The parameters for the PID controllers
we used during training data recording are tuned in the training town. Four autonomous driving tasks
are included; "straight", "Single Turn", and "Navigation", where the route towards the destination
in each task has no turns, single turn, more than one turn respectively, and finally in the "Dynamic
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Table 1: CARLA urban driving benchmark [7] is composed of 48 experiment sets to evaluate a model;
24 sets for the training town (used during model training) and the same for the testing town. Each set
represents a combination of a driving task, a town, and a weather condition, as shown in the table,
and is composed of 25 test scenarios. "S", "O", "N", and "DN" stand for "straight", "one (single)
turn", "navigation", and "dynamic navigation" tasks respectively.

Experiment ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Task S O N DN S O N DN S O N DN S O N DN S O N DN S O N DN

Weather
Condition

Clear
Afternoon

(Train)

Wet
Noon

(Train)

Wet Cloudy
Noon
(Test)

Hard Rain
Noon

(Train)

Clear
Sunset
(Train)

Soft Rain
Sunset
(Test)

Navigation" task there are random moving vehicles and pedestrians. For each combination of a task,
a town, and a weather set, testing is conducted over 25 different test scenarios having predefined start
and destination locations, this gives a total of 1200 test scenarios for each model under test. Table 1
describes the benchmark experiments for one town. In each test scenario, the objective is to reach
a given destination goal location before a predetermined deadline. The deadline is set to the time
needed to reach the goal along the optimal route at a low speed of 10 km/h.

4.1 Success Rate and Distance to Destination

Table 2 benchmarks the proposed model before and after LiDAR fusion with the state-of-the-art CIL
model [6] on the CARLA urban driving benchmark [7]. The table reports the autonomous driving
success rate on different tasks and test conditions, and the average percentage of distance to goal
travelled is available between parentheses. The latter metric provides valuable insight that cannot be
inferred from success rate. It is not included in the original benchmark, thus we include the results
we record from deploying the CIL pre-trained model in [6].

Table 2: Autonomous Driving success rate average percentage, the average percentage of distance to
goal travelled is between parentheses.

Task Model

Percentages of average
success rate and distance to goal

Training town New town
Training
weathers

New
weathers

Training
weathers

New
weathers

Straight

Camera, [7] results 95 (-) 98 (-) 97 (-) 80 (-)

Camera, [7] pre-trained 99 (97.2) 100 (100) 89 (90.4) 92 (92.7)

Camera (our data) 100 (100) 100 (100) 99 (95.7) 100 (100)

Camera + LiDAR 100 (100) 100 (100) 100 (100) 100 (100)

Single
Turn

Camera, [7] results 89 (-) 90 (-) 59 (-) 48 (-)

Camera, [7] pre-trained 88 (82.7) 94 (85.5) 56 (54.8) 74 (60.6)

Camera (our data) 97 (97.3) 98 (97.7) 57 (56.1) 72 (67.2)

Camera + LiDAR 100 (100) 100 (100) 92 (90.0) 92 (91.5)

Navigation

Camera, [7] results 86 (-) 84 (-) 40 (-) 44 (-)

Camera, [7] pre-trained 78 (88.6) 84 (89.3) 35 (9.7) 58 (45.4)

Camera (our data) 87 (91.1) 88 (92.5) 33 (16.9) 34 (16.9)

Camera + LiDAR 92 (92.7) 92 (92.7) 68 (77.0) 68 (76.9)

Dynamic
Navigation

Camera, [7] results 83 (-) 82 (-) 38 (-) 42 (-)

Camera, [7] pre-trained 80 (88.3) 74 (81.5) 28 (17.4) 54 (35.1)

Camera (our data) 84 (91.0) 82 (87.3) 26 (9.5) 30 (29.4)

Camera + LiDAR 86 (93.0) 86 (92.9) 53 (37.5) 64 (59.9)

Table 2 results confirms that our model performs significantly better than the CIL model [6] in
all the different combinations of tasks and environmental setups. The results demonstrate that our
model improves autonomous driving success rate by 52% when deployed on new towns (town 2) and
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weather conditions unseen during training. The learned driving policy consistency against varying
weather conditions improved by around 3.9 times.

5 Conclusion

In this work, we extended the state-of-the-art CIL model by fusing laser scanner input with camera,
which led to improving autonomous driving performance in terms of generalization to environments
that are unseen during training and making performance consistent against varying weather conditions.
Our model utilizes a dataset of driving traces recorded automatically, unlike CIL model that is trained
on data that is manually collected by a human driver. On the CARLA urban driving benchmark, our
model is demonstrated to performs significantly better than state-of-the-art models in all the different
combinations of tasks and environmental setups. It significantly improves generalization, in terms of
autonomous driving success rate, by 52% and improves consistency against varying weathers by four
times. The average distance to goal travelled on all autonomous driving tasks and driving conditions
and the collisions rates are significantly improved.
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