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Abstract

Interpreting machine learning models is challenging but crucial for ensuring the
safety of deep networks in autonomous driving systems. Due to the prevalence
of deep learning based perception models in autonomous vehicles, accurately
interpreting their predictions is crucial. While a variety of such methods have
been proposed, most are shown to lack robustness. Yet, little has been done to
provide certificates for interpretability robustness. Taking a step in this direction,
we present CORGI, short for Certifiably prOvable Robustness Guarantees for
Interpretability mapping. CORGI is an algorithm that takes in an input image and
gives a certifiable lower bound for the robustness of the top k pixels of its CAM
interpretability map. We show the effectiveness of CORGI via a case study on
traffic sign data, certifying lower bounds on the minimum adversarial perturbation
not far from (4-5x) state-of-the-art attack methods.

1 Introduction

Deep neural networks are commonplace in safety-critical instances such as real-world autonomous
driving systems. However, a major issue surrounding these networks is that they lack robustness to
adversarial perturbations [19]. Under visually imperceptible perturbations, well-trained models can
easily be fooled into confidently making predictions for an incorrect class, even in the black-box
setting when the adversary does not even have access to the network architecture [8]. In the past few
years, we have seen a series of increasingly stronger attacks against neural networks (Fast Gradient
Sign Method [7], Projected Gradient Descent [10], Carlini-Wagner [3]).

A dual view of robustness research has focused on providing provable defenses against these attacks.
For a neural network NN and some input image x, attacks aim to find an adversarial example x′ such
that NN(x) 6= NN(x′) and ‖x − x′‖∞ = ε is as small as possible. In contrast, the goal of these
provable defenses is to provide a certifiable radius r that would guarantee that NN(x) = NN(x′)
for all ‖x− x′‖∞ ≤ r. While being able to determine the maximum certificate r∗ would provide us
optimal levels of safety, doing so, even under an approximation ratio, has been shown to be hard [21].
However, various approaches have been used to come close to this goal, such as semidefinite
programming [12], mixed-integer programming [20], and linear bounding of activation functions [2].
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Figure 1: An image in the GTSRB dataset under 3 different attack radii. Shown are the original and
perturbed images, CAM maps, and the top-k CAM pixel positions (k = 15). Under our CORGI
certificate, all top-k pixels remain identical.

A frightening concern is that while deep neural networks make incorrect predictions on adversarial
examples, they leave little to no insight towards what went wrong. As autonomous vehicle systems
are comprised of deep neural networks for perception systems [4], being able to interpret their
predictions is crucial in establishing trust and understanding between humans and these systems.
This issue has given rise to many interpretability methods including CAM [25], GradCAM [13],
Integrated Gradients [18], SmoothGrad [16], and DeepLIFT [14]. All of these methods generate an
interpretability map for each image showing the effect of each input pixel on the overall prediction.

Unfortunately, recent work has shown that these interpretability methods are also prone to adversarial
perturbations [24] [1] [6]. All three works successfully generate visually imperceptible perturbations
for which the network correctly classifies the image, but shows a nonsensical interpretability map.
While providing certifiable guarantees for adversarial attacks on a neural network classifiers has been
thoroughly studied [15], [22], little has been done to certify robustness for interpretability methods.

The most relevant work to ours is [11], which certifies interpretability on a modification of Smooth-
Grad. While we follow their example and use the top-k metric for interpretability, our work focuses
on CAM, a well-established visual intepretability algorithm that not only provides input attribution
importance, but also visually localizes class-discriminative regions. CAM is better suited for au-
tonomous vehicle applications, where being able to cleanly distinguish similar road signs is essential
for accident prevention. For example, as shown in Figure 1, the CAM map shows that the neural
network is seeing the white stripe in the no entry sign, which is unique to that class. In addition,
while computation of SmoothGrad requires a backward pass for each test image, CAM only requires
a forward pass. Given the importance of interpretability methods like CAM, we propose an algorithm
for the interpretability robustness of CAM, as being able to guarantee a certain degree of safety is
imperative for our trust in autonomous driving systems.

Our paper contains the following contributions:

• We present CORGI (Certifiably prOvable Robustness Guarantees for Interpretability map-
ping), the first algorithm giving a lower bound on the interpretability robustness for CAM.

• We provide two verifiable theoretical guarantees with corresponding experiments for an
exact top-k metric and relaxed top-k metric, as well as a third theoretical result in terms of
the Lipschitz constant of the neural network.

• We empirically compare our CORGI lower bounds to Ghorbani’s attack method’s upper
bounds [6] on the GTSRB traffic [17] dataset, showing that on average, our CORGI lower
bounds are only a factor of 4-5x away from current attack upper bounds.
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2 Background and Notation

In this section, we introduce our notation, explain how CAM interpretability maps are generated, and
describe the attack algorithm [6] we use as an complementary upper bound.

2.1 Notation

For a neural network, input image x ∈ Rd×d, and arbitrary class c, let Ic(x) ∈ Rs×s be the
interpretability map for input image x and class c generated by CAM (described in Section 2.2). In
this work, we are interested in the CAM map only for the predicted class, so we will often drop the c
and write I(x), understood to mean the interpretability map of input image x for its predicted class.

In addition, let I(x)1, I(x)2, · · · , I(x)s2 ∈ R be the values of the individual pixels of I(x), and
σ1, σ2, · · · , σs2 be a permutation of 1, 2, · · · , s2 such that I(x)σ1

≥ I(x)σ2
≥ · · · ≥ I(x)σs2

.
Therefore, the σi’s denotes indices of the pixels in sorted order. For ease of notation, we will use
I(x)σi interchangeably with I(x)[i] to denote the value of the ith largest pixel of the interpretability
map, with σi being the position of that pixel in the original map.

2.2 Class Activation Mapping

One popular technique used to generate interpretability maps for deep neural networks is known
as class activation mapping [25]. A class activation map (CAM) is a 2-dimensional heatmap that
explains a neural network’s prediction on an image by highlighting the parts of that image contributing
to its prediction. A major advantage of CAM is that they can visually localize class-discriminative
regions, which helps in understanding how a network distinguishes between similar classes.

CAM only provides an interpretability map for convolutional neural network architectures with
their last convolutional layer followed by a global average pooling layer and a fully connected layer.
Formally, consider such a network with last convolutional layer output of size s× s× f , where s× s
is the size of the map, and f is the number of filters. Fix an input image, and let fkx,y ∈ R represent
the value of spatial location (x, y) of filter k in the last convolutional layer. Let F k ∈ R be the output
of the kth filter after the global average pooling layer,

F k =
∑

1≤x,y≤s

fkx,y

Now, let w ∈ Rk be the weights of the fully connected layer connected to the predicted class, which
we denote as c. Therefore, the input to the final softmax is

∑
k w

c
kF

k, where wck are weights that
intuitively capture the importance of feature map k for the predicted class c. As a notational note, we
will sometimes write this as wk when it is clear that c is the predicted class. The class activation map
for class c, M c ∈ Rs×s, is computed as a weighted average of these feature maps:

M c
x,y =

∑
k

wckf
k
x,y

2.3 Iterative Feature Importance Attack

One property that we would like interpretability maps to have is that the top-k largest pixels still
remain fairly large under small perturbations. Denoting by σi the position of the ith largest pixel
in I(x) and σ′i likewise in I(x+ ε), we would like {σ1, σ2, · · · , σk} = {σ′1, σ′2, · · · , σ′k}. In other
words, we want the k largest pixels of the original image to remain the k largest pixels in the perturbed
image. A good attack would then ensure the number of σi’s that appear in {σ′1, σ′2, · · · , σ′k} is small.

The iterative feature importance attack [6] intuitively attacks features maps under the top-k metric by
finding a perturbation minimizing the sum of the values of the original top-k pixel positions in the new
image. Given an input image x, their attack first considers B = {σ1, σ2, · · · , σk}, the top-k pixel
locations in I(x). They then run projected FGSM (fast-gradient sign method) [7] to minimize the
objective

∑
i∈B I(y)i or equivalently, to maximize D(x, y) = −

∑
i∈B I(y)i. In ReLU networks,

however, where ∇yD(x, yi−1) is piecewise-constant, we first replace the ReLU with a softplus as
the original paper does. Therefore, I(·) is actually the interpretability map of the softplus network
rather than the original ReLU network.
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However, we make a small modification of their algorithm: at the end, instead of returning the y with
the largest dissimilarity, we return the y such that I(x) and I(y) have the least number of top-k pixels
in common, as this is what CORGI certifies for. The algorithm is as follows:

Algorithm 1 Gradient-based top-k interpretability map attack [6]

1: procedure TOP-K ATTACK(x, ε, I(·), k)
2: Define B = {σ1, σ2, · · · , σk} to be the top-k pixel locations of I(x)
3: Define D(x, y) = −

∑
i∈B I(y)i (dissimilarity metric between interpretability maps of x, y)

4: Initialize y0 = x
5: for i = 1, · · · , P do
6: yi = yi−1 + α · sign(∇yD(x, yi−1))
7: If necessary, clip yi to satisfy |yi − x|∞ ≤ ε
8: end for
9: return y ∈ {y0, · · · , yP } such that I(x) and I(y) have the least number of top-k pixels in

common
10: end procedure

3 CORGI: A Framework for Certifiable Interpretability Robustness

In this section, we present CORGI, a framework which provides a lower bound r for the minimum
adversarial attack radius r∗. When the interpretability attack method described in Section 2.3 is
successful and returns an adversarial example ‖x′ − x‖∞ = ε, ε is then an upper bound for r∗. In
contrast, we give a lower bound certificate r such that for perturbed images x′ with ‖x−x′‖∞ ≤ r, the
set of top-k pixel positions of the original CAM map does not change. In other words, if {σ′i} denotes
the top k pixel positions of the CAM map I(x′), then {σ1, · · · , σk} = {σ′1, · · · , σ′k}. Note that the
ordering of these pixel positions does not necessarily need to be the same, just that the unordered set
stay constant. One subtlety to mention is that our CORGI bound does not guarantee that the classifier
itself is robust. However, we can take the minimum of our CORGI bound and the robustness bound to
give a certificate that classification and interpretation are both accurate. Empirically, however, robust
interpretability seems to be a more challenging task than robust classification, and we observed that
CORGI bounds are almost always smaller than robustness bounds.

CORGI builds off of the CNN-Cert framework [2], which provides efficient layer-wise bounds on
convolutional neural networks. At a high level, CORGI operates in 2 stages. First, it uses CNN-Cert
to give lower and upper bounds L(δ), R(δ) ∈ Rs×s on the CAM map:

L(δ)i,j , min
‖x′−x‖∞≤δ

I(x′)i,j , U(δ)i,j , max
‖x′−x‖∞≤δ

I(x′)i,j

Now, observe that guaranteed top-k interpretability robustness under perturbations of radius at most
r implies robustness under any smaller perturbation radius r′ ≤ r. Therefore, in the second stage,
CORGI uses binary search to find the largest radius r that it is able to accurately certify, giving us a
lower bound certificate on interpretability robustness.

3.1 Upper and Lower Bounding CAM Values with CNN-Cert

Given a neural network and an input, CNN-Cert is a framework that is able to lower and upper bound
all of the layers of a neural network under a maximum perturbation radius δ. We use CNN-Cert
as a subroutine to lower and upper bound CAM maps. First, we lower and upper bound the last
convolutional layer output. Let lk(δ), uk(δ) ∈ Rs×s denote the bounds of the kth filter of the
last convolutional layer output fk, so that lk(δ)i,j ≤ fk(x′)i,j ≤ uk(δ)i,j for all pixels (i, j) and
perturbed images x′ with ‖x′ − x‖∞ ≤ δ. We then combine these lower/upper bounds with the
known weights wk of the fully connected layer to bound the CAM. To see how to do this, observe
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that for all ‖x′ − x‖∞ ≤ δ,

I(x′)i,j =
∑
k

wkf
k(x′)i,j

=
∑

k,wk<0

wkf
k(x′)i,j +

∑
k,wk>0

wkf
k(x′)i,j

≥
∑

k,wk<0

wkuk(δ)i,j +
∑

k,wk>0

wklk(δ)i,j , L(δ)i,j (1)

Similarly, we have

I(x′)i,j ≤
∑

k,wk<0

wklk(δ)i,j +
∑

k,wk>0

wkuk(δ)i,j , U(δ)i,j (2)

Therefore, with these definitions of L(δ), U(δ) ∈ Rs×s, we then have, for all ‖x′ − x‖∞ ≤ δ, we
now have an upper and lower bound on each pixel of the CAM map:

L(δ)i,j ≤ I(x′)i,j ≤ U(δ)i,j (3)

3.2 Testing for Certifiability

The next stage of CORGI aims to find the largest perturbation radius that can be certified with the
bounds in Eq. 3. For a fixed input image x and a perturbation size δ, a perturbed image x′ with
‖x− x′‖∞ ≤ δ will have the same top-k pixels if and only if

min
k′∈1,2,··· ,k

I(x′)σk′ ≥ max
k′∈k+1,··· ,s2

I(x′)σk′ (4)

We will find a condition that ensures that Eq. 4 holds. First, observe that since I(x′)σk
≥ L(δ)σk

for
all σk,

min
k′∈1,2,··· ,k

I(x′)σk′ ≥ min
k′∈1,2,··· ,k

L(δ)σk′ (5)

Similarly, for the upper bound,

max
k′∈k+1,··· ,s2

U(δ)σk′ ≥ max
k′∈k+1,··· ,s2

I(x′)σk′ (6)

Eq. 5 and 6 then give rise to our theorem for certified CAM interpretability:

Theorem 3.2 (CAM Interpretability Certificate) Let x ∈ Rs×s be a fixed input image, δ ∈ R≥0
be a fixed maximum perturbation size, k ∈ Z≥1, and L(δ), R(δ) be CAM map bounds as computed
in Eq. 1. Then, for all x′ such that ‖x− x′‖∞ ≤ δ, if

min
k′∈1,2,··· ,k

L(δ)σk′ ≥ max
k′∈k+1,··· ,s2

U(δ)σk′ (7)

then δ is a certified lower bound of r∗. In other words, the top-k pixel positions of the CAM map
I(x′) must be the same as those in the original CAM map I(x).

Proof This theorem follows since Eq. 4 follows directly from Eq. 5, 6, and the hypothesis Eq. 7:

min
k′∈1,2,··· ,k

I(x′)σk′ ≥ min
k′∈1,2,··· ,k

L(δ)σk′ ≥ max
k′∈k+1,··· ,s2

U(δ)σk′ ≥ max
k′∈k+1,··· ,s2

I(x′)σk′ (8)

As a remark, observe that for δ = 0, the inequality is obviously true because CNN-Cert will
return the values of the network at the original input, so L(0) = I(x) = U(0), and I(x)[k] =
mink′∈1,2,··· ,k L(0)σk′ ≥ maxk′∈k+1,··· ,s2 U(0)σk′ = I(x)[k+1] by definition.

Now, notice that since the lower and upper bounds of CNN-Cert are monotonic in δ, if δ′ ≤ δ, then
L(δ)i,j ≤ L(δ′)i,j and U(δ′)i,j ≤ U(δ)i,j , so that L(δ)σi ≤ L(δ′)σi and U(δ′)σi ≤ U(δ)σi for all
1 ≤ i ≤ s2. Therefore, if Eq. 7 is satisfied for some δ, then it is also satisfied for all δ′ ≥ δ. We can
then binary search for the smallest certifiable radius.
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Algorithm 2 CORGI

1: procedure CORGI(x, f(·), k)
2: Use f to compute the interpretability map I(x)
3: Let σ1, σ2, · · · , σs2 be the indices of I(x)’s pixels from largest to smallest
4: Initialize δl ← 0, δu ← 1
5: for i = 1, · · · , P do
6: δm ← (δl + δu)/2
7: Run CNN-Cert(x, δm) to get lk(δm), uk(δm), last convolutional output layer bounds
8: Compute L(δm), U(δm) from lk(δm), uk(δm), and f ’s weights wk (Eq. 1, 2)
9: if Eq. 7 holds (which means δm is a certificate) then

10: δu ← δm
11: else
12: δl ← δm
13: end if
14: end for
15: return δu (an lower bound on the certificate)
16: end procedure

3.3 A More Relaxed Interpretability Guarantee

While requiring that the top-k pixel positions remain the same is a nice condition to have, sometimes
it will be enough for the top-k pixel positions to remain relatively large in the perturbed image
without remaining in the top-k. If I(x)[k] is very close in value to I(x)[k+1], requiring that the
original top-k pixels {σ1, · · · , σk} be the same as the perturbed top-k pixels {σ′1, · · · , σ′k} may
be a strong condition. In this case, even if a perturbation swapped the relative values of pixels σk
and σk+1 causing I(x + δ)σk

< I(x + δ)σk+1
, the interpretability map would still remain fairly

accurate. Therefore, we relax the original condition and instead only require that {σ1, · · · , σk} ⊆
{σ′1, · · · , σ′k2}, for some k2 ≥ k. Intuitively, this says that the top-k pixel positions of the original
image must remain in the top-k2 pixel positions of the perturbed image. Note that k2 = k corresponds
to our original requirement that the top-k pixel positions remain the same under perturbation.

The algorithm for this scenario remains very similar to that in Section 3.2, and the crux is once again
checking whether or not we can certify top-k interpretability robustness for a given δ. As before, we
first compute L(δ), U(δ) as in Section 3.1. Now, define τ1, · · · , τs2−k to be an ordering of all pixel
positions in S = {1, 2, · · · , s2} \ {σ1, σ2, . . . , σk} satisfying U(δ)τ1 ≥ U(δ)τ2 ≥ · · · ≥ U(δ)τs2−k

,
and for notational simplicity define U(δ){k} = U(δ)τk . U(δ){k} then denotes the kth largest upper
bound of all the pixels that weren’t originally in the top-k of I(x). Similarly, define U(δ)[k] to be
the kth largest pixel value in U(δ) (no longer restricted on S) and I(x′)[k]to be the kth largest pixel
value in the interpretability map I(x′). We can then prove a theorem analogous to Theorem 3.2:

Theorem 3.3 (Relaxed CAM Interpretability Certificate) Let x ∈ Rs×s be a fixed input image,
δ ∈ R≥0 be a fixed maximum perturbation size, k, k2 ∈ Z≥1 such that k2 ≥ k, and L(δ), R(δ) be
CAM map bounds as computed in Eq. 1. Then, for all x′ such that ‖x− x′‖∞ ≤ δ, if

min
k′∈1,2,··· ,k

L(δ)σk′ ≥ U(δ){k2−k+1} (9)

then under all perturbations of size at most δ, the top-k pixel positions of the original CAM map I(x)
are in the top k2 pixel positions of the CAM map I(x′).

The proof is very similar to that of Theorem 3.2 and is deferred to the appendix. Using this theorem,
we can simply run the same binary search as described in the previous section. The only modification
that must be made to the original algorithm is that we must now check Eq. 9 instead of Eq. 7 in line 8
of CORGI.

4 Experiments

Dataset and Model We use the German Traffic Sign Recognition Benchmark (GTSRB) [17], a
large, lifelike database of over 50000 48 × 48 × 3 traffic signs in 43 classes. We train a small
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convolutional neural network of four convolutional layers with 8, 8, 16, and 16 filters, a global
average pooling layer, and a fully connected layer (as required by CAM).

Interpretability Attack First, we ran CORGI with k = 15 on a sample "no entry" sign to get
a certified radius of r = 0.0009. We first implemented a the attack algorithm (Algorithm 1) with
P = 300 and α = ε/10. Figure 1 shows the attack algorithm’s perturbations on both r and two larger
values of ε. The perturbed images, CAM maps, and top-k maps are shown. Note that within our
CORGI bound, all the top-k pixels remain the same.

Comparing CORGI Bounds to Interpretability Attack Bounds By running binary search on
the interpretability attack algorithm, we can find the maximum ε that yields a successful top-k attack,
giving us an upper bound on the best certificate r∗. Since CORGI is currently the first framework
that provides interpretability robustness certificates for CAM, we compare CORGI’s certificates with
complementary upper bounds generated by the iterative feature importance attack. To do so, we
sampled 100 random images from each of two classes, class 17 ("no entry") and class 12 ("priority
road"). Figure 2a shows two samples of each image.

Figure 2b shows both the CORGI lower bound and attack upper bound for each of the 200 images.
For ease of comparison, the images in each class were sorted by their CORGI lower bound. For each
of the 200 images, we also calculated the ratio ε/r, where ε is the minimum perturbation radius found
by the attack, and r is the maximum CORGI certifiable radius (Figure 2c). There were a few outliers
in both classes, where the attack bound was abnormally large. The figure removes these outliers and
only plots samples for which the gap was under 20. The resulting figure consists of 99/100 class
12 samples and 92/100 of the class 17 samples. the majority of the ratios were fairly small, with a
median of 5.0 for class 17 and 4.7 for class 12. This signifies that for this network, CORGI bounds
are only 4-5 times larger than attack bounds, and therefore from the optimal perturbation r∗. We
show additional examples of CORGI vs attack bounds for 5 other classes in the appendix.

(a) (b) (c)

Figure 2: (a) Sample images and CAM maps from class 12 (priority road) and class 17 (no entry). (b)
Comparison of CORGI lower bounds and attack bounds for 100 random samples for each class. (c)
Histogram of the ratio of attack upper bounds to CORGI lower bounds, with a median of 4.7 for class
12 and 5.0 for class 17.

Effectively choosing values of k for interpretability maps As people seek to produce accurate
and descriptive interpretability maps, one important question is how k should be chosen to faithfully
represent the important regions of an input image. If k is too small, then the top-k CAM map may
not fully capture the salient regions. If k is too large, then we might capture noise pixels that were
not pertinent to the model’s prediction. Figure 3(a) shows a sample image and it’s top-k CAM map
with increasing k values.

One natural way to evaluate a specific value of k is to consider I(x)[k] − I(x)[k+1], which we call
the CAM gap for position k. Intuitively, if for some k, I(x)[k] and I(x)[k+1] are close, then only
a small perturbation should be needed for I(x)[k] and I(x)[k+1] to swap places. Since the kth and
(k + 1)st largest pixel might not be well distinguished enough, that value of k might be a poor
choice. We would also expect that such a k would be easily attacked, and more generally, that top-k
interpretability maps for values of k with a larger CAM gap will require a larger perturbation to
successfully attack.
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We varied k from 1 to 50 in order to see how the CAM map gap was correlated to the performance
of both our algorithm and the attack. Figure 3b demonstrates that as the CAM gap increases, the
CORGI certificates and attack bounds both increase. This captures the intuition that the larger the
CAM gap for a value k, the more robust the top-k CAM interpretability map will be.

(a) (b) (c)

Figure 3: (a) The top-k CAM map for an image with increasing values of k from 5 to 70. (b) Both
CORGI certificates and attack bounds are highly correlated with the CAM gap, meaning that choosing
a k with a large CAM gap leads to better interpretability robustness. (c) Relaxed CORGI bounds as a
function of k2, the maximum position of an original top-k pixel in the perturbed image.

Relaxing the top-k condition We ran the modified CORGI algorithm given in Section 3.3 for a
fixed image and fixed k. We varied the threshold k2 to see how increasing k2 would affect CORGI’s
bound. The results are shown in Figure 3c. For k2 ≈ k, increasing k2 by just a small amount is able
to strengthen our certificate by quite a bit. However, as k2 becomes larger, the CORGI bounds begin
to level off. We believe that this occurs because

5 Conclusions and Future Work

We have presented CORGI, the first certifiable interpretability robustness for CAM. By using CNN-
Cert to compute last layer convolutional output bounds, CORGI is able to efficiently provide a
certificate r ≤ r∗. Through comparing our bounds with upper bounds generated by the iterative
feature importance attack algorithm, CORGI provides bounds that are not far from certifiable upper
bounds and acts as a solid baseline for future work in interpretability robustness.

A limitation of CORGI is that it only performs well for small networks. Even for small networks,
CORGI takes about 1 minute per image. GTSRB images are significantly lower in resolution than
images seen by autonomous vehicles, and networks used in the area are generally much larger, so
CORGI does not yet scale to real-world applications. The main accuracy bottleneck of CORGI lies
in the absence of fast and tight bounds for large convolutional neural networks. Therefore, improving
both layer-wide network bounds and interpretability bounds for larger networks is a crucial direction
to explore.

We have not yet addressed certifiable robustness for other interpretability methods past CAM, such as
DeepLIFT, Integrated Gradients, and GradCAM. Since CAM is a bit restrictive in the architectures
that it is able to handle and requires a global average pooling layer following convolutional layers,
developing bounds for these other interpretability algorithms will expand the class of models for
which we can develop certificates.
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8 Appendix

8.1 Model and Experimental Details

The architecture of our neural network is shown below. Note that the CAM map is a weighted average
of the 16 filters in the last convolutional layer, so has shape 24× 24. The test accuracy of our network
is around 92%. Ghorbani’s attack algorithm was run with P = 300 steps and α = ε/10. Increasing
P did not have a significant impact on the effectiveness of the attack.

Input (48× 48× 3)
Conv with 8 filters (48× 48× 8)

ReLU
Conv with 8 filters (48× 48× 8)

ReLU
Max Pool (24× 24× 8)

Dropout (0.2)
Conv with 16 filters (24× 24× 16)

ReLU
Conv with 16 filters (24× 24× 16)

ReLU
Global Average Pooling (16)

Dense (43)

8.2 Relaxed CAM Certificate

In this section, we give the proof of Theorems 3.3 in our main work.

Theorem 3.3 (Relaxed CAM Interpretability Certificate) Let x ∈ Rs×s be a fixed input image,
δ ∈ R≥0 be a fixed maximum perturbation size, k, k2 ∈ Z≥1 such that k2 ≥ k, and L(δ), R(δ) be
CAM map bounds as computed in Eq. 1. Then, for all x′ such that ‖x− x′‖∞ ≤ δ, if

min
k′∈1,2,··· ,k

L(δ)σk′ ≥ U(δ){k2−k+1} (10)

then under all perturbations of size at most δ, the top-k pixel positions of the original CAM map I(x)
are in the top k2 pixel positions of the CAM map I(x′).

Proof The proof is very similar to that of Theorem 3.2. We have the following chain of inequalities:

min
k′∈1,2,··· ,k

I(x′)σk′

(1)

≥ min
k′∈1,2,··· ,k

L(δ)σk′

(2)

≥ U(δ){k2−k+1}
(3)
= U(δ)[k2+1]

(4)

≥ I(x′)[k2+1]

(1) comes from Eq. 3, (2) comes from the hypothesis, and (4) is an implication of Eq. 1. To see why
(3) holds, note that the hypothesis guarantees that U(δ)σ1

, · · · , U(δ)σk
≥ U(δ){k2−k+1}, which

means that the (k2 +1)st largest pixel value of U(δ) must be equal to the (k2− k+1)st largest value
of U(δ) without considering the σi’s.

8.3 Lipschitz Constant CAM Certificate

In this section, we give a different theoretical bound directly based on the Lipschitz constant of a
neural network.

First, recall the definition of a locally Lipschitz function:

Definition 3.4.1: A function f : Rd → R is L-locally Lipschitz in a region S ⊆ Rd if for all
x, y ∈ S, we have |f(x)− f(y)|1 ≤ L‖x− y‖∞. The smallest L for which this inequality is true is
called the local Lipschitz constant of f in a region S.

We can then guarantee the following certificate, the proof of which will be deferred to the Appendix.

11



Theorem 8.3 (Lipschitz-Based CAM Interpretability Certificate) Let x ∈ Rs×s be a fixed
input image, I(·) : Rn×n → Rs×s be the CAM interpretability mapping function, k ∈ Z≥1, and
{σi}1≤i≤k denote the top-k pixels of the input image I(x). For 1 ≤ i ≤ k, k + 1 ≤ p ≤ s2, define
g
(i)
p (x) , I(x)σi

− I(x)p, and let L(i)
p (δ) be the local Lipschitz constant of the function g(i)p in some

region S = {x′|δ ≥ ‖x− x′‖∞} for some δ ∈ R. Finally, let

r = min
k+1≤p≤s2

(
min

1≤i≤k

g
(i)
p (x)

L
(i)
p (δ)

)

Then, for all x such that

‖x− x′‖∞ ≤ r

the set of top-k pixels of I(x) will be identical to that of I(x′) as long as δ is chosen such that δ ≥ r.
In other words, r is a certified radius for top-k interpretability.

Proof Note that in order to have the top-k pixel positions of I(x) be identical to that of I(x′), we
must have, for all 1 ≤ i ≤ k and k + 1 ≤ p ≤ s2,

g(i)p (x′) = I(x′)σi
− I(x′)p ≥ 0

This is essentially a restatement of Eq. 4. By the definition of the Lipschitz constant, for any ε such
that ‖ε‖∞ < δ, we have

|g(i)p (x+ ε)− g(i)p (x)|1 ≤ L(i)
p (δ)‖ε‖∞

⇒ g(i)p (x)− L(i)
p (δ)‖ε‖∞ ≤ g(i)p (x+ ε)

Observe that if ‖ε‖∞ ≤
g(i)p (x)

L
(i)
p (δ)

, then g(i)p (x+ ε) ≥ 0. Therefore, if

‖ε‖∞ ≤ min
k+1≤p≤s2

(
min

1≤i≤k

g
(i)
p (x)

L
(i)
p (δ)

)

then g(i)p (x + ε) ≥ 0 for all 1 ≤ i ≤ k, k + 1 ≤ p ≤ s2, which is precisely the condition that the
top-k pixels of I(x) are identical to the top-k pixels of I(x+ ε) under ‖ε‖∞ ≤ r.

In its essence, CORGI provides certificates by relying on CNN-Cert to derive bounds on the inter-
pretability maps and then ensuring that the lower bound of I(x′)σi

is larger than the upper bound
of the other pixels. For larger networks like AlexNet and ResNets, however, CNN-Cert’s bounds
are often from known attack bounds [2], and are suspected to be loose. Therefore, Theorem 8.3
provides a more straightforward approach by directly operating on the Lipschitz constant of the
function g(i)p . Therefore, for tight estimates of the Lipschitz constant, we expect this bound to
outperform CORGI. However, Lipschitz constant estimation is currently still a nascent and young
area of research [9] [23] [5]. Therefore, as current methods for estimating Lipschitz constants are
either very loose or run very slowly, we will not give an empirical analysis of this approach.

8.4 Additional Image Examples

We show two more examples of images, CORGI bounds, and CAM maps similar to Figure 1.

8.5 Additional CORGI Examples

We show a comparison between attack and CORGI bounds for 5 additional classes, similar to that
of Figure 2. For each of the 5 classes, 100 test images were random chosen and evaluated. The
distribution of ratios is similar for all of the classes, suggesting that CORGI performs fairly uniformly
throughout the entire testing distribution.
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Figure 4: GTSRB images under 3 different attack radii. Shown are the original and perturbed images,
CAM maps, and the top-k CAM pixel positions.

Figure 5: Comparison of CORGI vs attack bounds for 5 additional classes.
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