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Abstract

In the recent years, many methods demonstrated the ability of neural networks to
learn depth and pose changes in a sequence of images, using only self-supervision
as the training signal. Whilst the networks achieve good performance, the often
over-looked detail is that due to the inherent ambiguity of monocular vision they
predict depth up to a unknown scaling factor. The scaling factor is then typically
obtained from the LiDAR ground truth at test time, which severely limits practical
applications of these methods.
In this paper, we show that incorporating prior information about the camera
configuration and the environment, we can remove the scale ambiguity and predict
depth directly, still using the self-supervised formulation and not relying on any
additional sensors.

1 Introduction

Depth estimation is an important computer vision problem with applications in robotics, autonomous
driving, augmented reality and scene understanding Poggi et al. [2018], Zhou et al. [2017], Fu et al.
[2018], Yang et al. [2019], Madhu Babu et al. [2018]. Of particular theoretical and practical interest
is estimating depth from a single RGB image, also known as monocular depth estimation. When
multiple views are available, depth can be inferred from geometric principles by triangulating image
correspondences; however, when only a single view is available, triangulation is not possible and
the problem is ill posed. Despite this difficulty, reliable and accurate monocular depth estimation is
critical for safety in many applications, with autonomous vehicles being a prime example.

Notably, humans are perfectly able to drive a car with just one eye, suggesting that they can infer
depth well enough even from a single view. However, doing so requires prior information on the
visual appearance and real-world sizes of typical scene elements, which can then be used to estimate
the distance of known objects from the camera. In machine vision, this prior can be learned from
2D images labelled with ground-truth 3D information, extracted from a different sensing modality
such as a LiDAR. When using additional sensors is impractical, self-supervised learning can be
used instead Godard et al. [2017, 2019], Zhou et al. [2017], Mancini et al. [2016]. In self-supervised

learning, certain relations or consistency of inputs, rather than ground truth labels, are exploited to
train the system. In depth estimation, one typically uses the consistency between subsequent video
frames or between stereo image pairs Godard et al. [2017], Zhou et al. [2017].

Whilst recent self-supervised monocular depth estimation methods achieve impressive performance,
approaching fully-supervised systems, they all share an important practical limitation which limits
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their usefulness in real-world applications. Since reconstructing 3D geometry from images has an
inherent scale ambiguity Faugeras et al. [2001], and since self-supervised methods only use visual
inputs for training Godard et al. [2017, 2019], they do not predict the depth map dI directly, but
rather a scaled version �(I) of it relate to the true depth by an unknown scaling factor ↵I , in the
sense that dI = ↵I�(I). For evaluation, the scaling factor ↵I is not predicted but calculated at test

time from the ground truth, usually as the the ratio between the median of the predicted depth values
and the median of the ground-truth depth values. Furthermore, a different scaling factor is computed
for each test image individually Godard et al. [2017]. However, in practical applications ground
truth 3D data is not available to calibrate the system, especially in production. Thus, the problem is
how to calibrate self-supervised depth estimation in order to obtain a physically-accurate prediction,
without requiring the use of additional sensors. In this paper, we show that, in a driving scenario,
this problem can indeed be solved reliably, robustly and efficiently assuming only knowledge of the
camera intrinsics and a very limited amount of additional prior information on the geometry of the
system. The output of our technique is a properly calibrated depth map, expressed in meters. The
method is applicable to any self-supervised training paradigm and does not require any additional 3D
ground truth at training or testing time. This is different from previous monocular depth estimation
methods which discounting the scale ambiguity at test time, or use additional senors to remove
it Guizilini et al. [2020]. Thus, we make two key contributions in this paper. First, we bring to the
attention of the computer vision community the problem of calibrating self-supervised monocular
depth estimation systems without resorting to additional sensors such as LiDARs. This is of clear
importance if we wish these systems to be of direct practical value. Furthermore, we analyze to
what extent the state-of-the-art existing methods depend on the availability of such data. Second, we
propose a simple and yet very efficient calibration technique that does not make use of any additional
sensors, especially of a complex and expensive nature such as a LiDAR. Instead, our method is
‘vision closed’ at training as well as a test time, in the sense that, just like self-supervised monocular
depth estimation methods, it only requires images as input. The only additional information required
for calibration is the approximate knowledge of a single constant which is trivially obtained from the
construction of the system. The rest of the paper is structured as follows. In section 2 we give an
overview of the state of the art, in section 3 our method is presented. Experimental validation is given
in section 4 and the paper is concluded in section 5.

2 Previous Work

Depth Estimation. Because of the scale ambiguity inherent to predicting the depth from a single
image, monocular depth estimation is an ill-posed problem and other (prior) knowledge has to be
incorporated to remove the ambiguity. Scharstein et al. [2002] and more recently Flynn et al. [2016]
use classical geometry to extract point-to-point matches between images and use triangulation to
estimate depth.

The emergence of deep learning re-formulated the problem as a dense scene segmentation problem,
where each image pixel is directly assigned a real value corresponding to the depth. A deep network
is then trained to predict depth using supervision either from LiDAR, a RGB-D camera or a stereo
pair. Eigen and Fergus [2015] regress depth in multiple scales, refining the depth maps from low to
high spatial resolution. Xie et al. [2016] improve network architecture by adding skip connections,
so that the network can also benefit from high resolution information. Laina et al. [2016] use de-
convolutional segments to refine depth in a coarse-to-fine manner Garg et al. [2016], Kuznietsov
et al. [2017], while Garg et al. [2016] use CRFs to improve fine details. Fu et al. [2018] introduced a
novel discretized depth representation, which modifies the typical regression task into a classification
problem, and using a novel loss function (ordinal regression) they significantly improve accuracy.
More recently, Lee et al. [2019] use local planar guidance layers to improve performance. In practice,
there are indeed other modalities/sensors that can be used to get depth — such as LiDAR, radar or
a stereo camera pair. They all however have their own limitations: LiDARs are quite sensitive to
weather Bijelic et al. [2018], the depth maps are sparse which may not be enough for far-away or
small objects and they have low refresh rate. Similarly, radars suffer from reflections and interference
and they struggle to detect small or slowly-moving objects rad. Stereo is very sensitive to precise
calibration and the two cameras can become misaligned over time, greatly reducing the depth map
accuracy. Generalizing, there is a clear need for redundancy — a moving autonomous vehicle or a
robot in urban environment cannot simply stop working if for example one of the cameras becomes
occluded by dirt or if the weather is not perfect, as that would be potentially very unsafe. By having a
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Figure 1: Scaling factor inferred from LiDAR ground truth for every image in the KITTI test subset,
as used in Godard et al. [2019]

reliable monocular method, this can be used in sensor fusion or as a fallback method, thus improving
the overall safety of the system.

Self-Supervised Methods. The main struggle for the monocular depth methods is the requirement
of vasts amounts of training data. The ground truth is typically captured by LiDARs, but this is
expensive especially if large variety of driving scenarios and countries has to be covered, and the
output is only a sparse point cloud. To alleviate the requirement of having expensive ground truth,
recently there has been a surge in interest in unsupervised methods for depth map prediction. Xie
et al. [2016] used stereo images in training discrete values for VR and 3D video applications and
Garg et al. [2016] extended this approach to continuous values. More recently, Godard et al. [2017]
added a left-right depth consistency and Zhou et al. [2017] generalized the approach to monocular
sequences at training time, by predicting pose change between two sequential video frames. The
sequential nature of the data however introduced some new challenges especially for non-stationary
objects, which was addressed in Godard et al. [2019], that incorporates a loss which automatically
excludes pixels which have become occluded or which correspond to moving objects. Similarly,
Casser et al. [2019a] decompose the image into rigid and non-rigid component, thus reducing the
re-projection error. All the above methods Godard et al. [2017, 2019] however share the same
weakness which severely limits their applicability — the depth estimate is not calibrated, unlike the
supervised methods Fu et al. [2018]. In other words, the depth values of self-supervised methods
are not in meters but in some arbitrary unit, which moreover differs frame by frame (see fig. 1), and
therefore these methods cannot be directly used to reason about the surrounding 3D world.

3 Method

In this section, we first describe the self-supervised training paradigm used by state-of-the-art
monocular depth estimation methods Godard et al. [2017, 2019]. Then, we discuss how current
methods deal with the issue of scale ambiguity by accessing ground truth 3D information at test
time. Finally, we detail how basic prior information on a vehicle-mounted can be used to calibrate
self-supervised depth map predictions to produce depth map with a correct physical scaling without
requiring the acquisition of 3D or other information by means of additional sensors.

3.1 Self-supervised Depth Estimation

Given a pair of subsequent video frames It and It+1 captured by a moving camera, under mild
conditions such as Lambertian reflection, the image It is (approximately) a warp (deformed version)
of image It+1 Hartley and Zisserman [2004]. Moreover, the warp depends only on the geometry

and motion of the scene, captured by the depth map Dt and the viewpoint change (Rt, T t). In other
words, we can write It ⇡ W(It+1, Dt, Rt, Tt,K), where W is a warp Jaderberg et al. [2015] which
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depends only on the depth Dt, the viewpoint change (Rt, Tt), and the camera intrinsics K (which
we assume known and constant).

The equation above provides a constraint that can be used to self-supervise a monocular depth
estimation network � from knowledge of the video frames It and It+1 alone. In more detail, we
task two networks � and  to predict respectively the depth Dt = �(It) from the first image and
the motion (Rt, Tt) =  (It, It+1) from the pair of images so as to correctly warp It+1 into It, thus
establishing the expected visual consistency (see fig. 2). This is done by minimizing the appearance
loss between the original It and the synthesized image Ît = W(It+1, Dt, Rt, Tt,K):

L(It, It+1) = ↵Ep(I
t, Ît) + Edis(I

t, Ît) (1)

Ît = W(It+1;Dt, Rt, Tt,K), Dt = �(I
t), (Rt, Tt) =  (I

t, It+1) (2)
The photometric loss term Ep in eq. (1) is the SSIM loss Wang et al. [2004], Zhao et al. [2016], whilst
the Edis term enforces smoothness Godard et al. [2017]. The whole network is trained end-to-end
using standard back-propagation.

An analysis of the warp operator W Jaderberg et al. [2015] shows that the operator is invariant to
multiplying the depth and the translation parameters by a constant ↵:

W(I;D,R, T,K) = W(I;↵D,R,↵T,K) ↵ 2 R. (3)
This shows that the network can only learn depth and translation up to an undetermined scaling factor
↵; in particular, there is no reason for the learned scale to corresponds to the true physical scale of the
scene. As a matter of fact, the model is not even forced to learn a scaling factor consistently across
different pairs of frames (It, It+1), which we show in empirically is in fact not the case. In particular,
fig. 1 shows that the variation in scaling factor for different frames can be up to a factor of two.

3.2 Ground Truth Data used to Scale Depth at Test Time

Since the scale of the predicted depth �(It) is arbitrary, its use in downstream tasks that require
a physical understanding of the scene (e.g. in robotics) impossible. Equally, all benchmarks for
depth estimation Geiger et al. [2012] also require measurements in real units (meters), and therefore
the depth map predictions �(It) cannot be assessed directly against these benchmarks. Instead,
the common approach is to just marginalize out the scale at test time, finding the factor that best
matches the predicted and ground-truth depth for each test image independently Godard et al. [2017],
Casser et al. [2019b], Luo et al. [2018a], Godard et al. [2019]. Since this ground-truth information
is obtained via a sensors such as a LiDAR, this is equivalent to calibrating the method against an
additional sensor, which is not a realistic setup.

More formally, given an image I , the network outputs prediction a �(I) which is transformed to the
final depth estimate as dI = ↵I�(I) where:

↵I =
median d

gt
I

median�(I)
(4)

where d
gt
I is the ground-truth depth map, usually created by projecting sparse LiDAR points onto the

image plane, projected with the same viewpoint as the input image I .1

1Both images are masked such that the scaling factor is only calculated on points where the LiDAR has read
data

Depth Map
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Figure 2: Self-supervised monocular depth estimation pipeline Godard et al. [2017, 2019]
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Input image I Raw output �(I) Restricted to road pixels

Parametric fit

Figure 3: Road model estimation. First we take the uncalibrated depth of the input image, combined
with scene segmentation to extract only depth values belonging to the road. After further refinement,
we project the points into 3D and fit a plane to them

3.3 Road Model Estimation

In order to remove the need for LiDAR ground truth at test time, we exploit prior knowledge of the
environment and of the camera setup, especially the camera height. Because cars drive on roads and
we know that the camera is at certain height above the road, we can exploit this constraint to calibrate
the depth map to real-world values.

In order to do so, we first need to automatically estimate a road model in every test image. In order
to account for the fact that many roads are not perfectly flat, more typically they slope up/down or
are higher on one side than the other, or that the car tilts during acceleration and deceleration, we
estimate the pitch and roll of the road by fitting a plane to the raw depth map. We only use values for
pixels that are classified as road by a pre-trained semantic segmentation model Zhou et al. [2018],
and whose |X| and Z co-ordinate2 is below a certain threshold (see Section 4.3).

We then fit these points using Least Median of Squares regression Rousseeuw [1984] to get the road
plane estimate in the 3D world a1X + a2Y + a3Z + c = 0. We know that the 3D point on the road
right below the camera has the co-ordinate [0,�h, 0], where h is the camera height, and therefore we
can infer the following relation for the scaling factor

↵I =
c

h
(5)

Compared to eq. (4), the scaling factor eq. (5) now only relies on the visual information, and therefore
can be obtained without any LiDAR input.

4 Experiments

In this section, we compare our calibration method (Ours) to: (1) the un-calibrated outputs of
the network D = �(I) (Raw); (2) computing a per-frame calibration factor using eq. (4) with

2The world co-ordinates X,Z to filter out pixels above the threshold are obtained using camera intrinsics
and assuming the road is perfectly flat, i.e. Y = �h
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Figure 4: Qualitative depth estimation examples from the KITTI dataset (inverse depth shown).
Monodepth2 Godard et al. [2019] output values (Raw Output) are scaled by comparing the output to
the ground truth for every test image (GT Scale). Using a single scaling factor from the training set
(Single Scale) is significantly worse. Using road model (ours) to estimate the scaling factor achieves
significantly better results. All images use the same color coding.

access to the 3D ground-truth (GT Scaling); and (3) the same as (2), but by computing a single
scaling factor from either all the training or testing frames (GT Single Scaling). After a qualitative
and quantitative comparison with these techniques and state-of-the-art monocular depth estimation
networks (both supervised and unsupervised), we ablate our method, showing the importance of the
various components, and study sensitivity to its parameters.

Implementation details. In all our experiments, we used the Godard et al. [2019] pre-trained
model. In line with prior work, we use the Eigen and Fergus [2015] data split of KITTI dataset Geiger
et al. [2012].

4.1 Qualitative comparison

We first look at the optimal scaling factor determined via GT Scaling via access to the ground-truth at
test time (section 3.2, Godard et al. [2017, 2019], Zhou et al. [2017]). As is observable in Figure 1,
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Method Abs Rel Sq Rel RMSE RMSE log � < 1.25 � < 1.252 � < 1.253

(a) GT Single Scaling (training set) 0.125 0.942 5.045 0.208 0.84 0.953 0.979
(b) GT Single Scaling (testing set) 0.126 0.952 4.999 0.204 0.848 0.954 0.98
(c) Fixed road plane 0.132 1.073 5.035 0.203 0.86 0.954 0.977
(d) Ours 0.113 0.916 4.974 0.199 0.857 0.945 0.968

Table 1: Comparison of different depth map scaling methods on the KITTI testing subset.

the factor selected by GT Scaling varies wildly even in a single video sequence. This is illustrated in
fig. 4 for two different input images. GT Scaling chooses factor 19.63 for the left image vs GT Single
Scaling (median on the training set) of 30.462. This means that, for this image, the network predicts
a depth map where objects are 50% farther away than for the median case. The image to the right is
the opposite, as GT Scaling determines the best factor to be 40.55, so objects are predicted to be 33%
than the median case. Given these differences, it is clear that there is no single scaling factor that
results in a good fit for all test frames; hence, below we find it unsurprising that using a single scaling
factor over the entire test set (GT Single Scaling) produces inaccurate results overall.

By comparison, our scaling technique predicts scaling factors of 19.63 and 36.4 for the two images
respectively, which are close to the output of GT Scaling. Hence, our system produces results
significantly closer to the per-frame GT Scaling factors than GT Single Scaling while having no

access to ground-truth (LiDAR) 3D information at training or test time. This useful for autonomous
vehicles that wish to adapt to scenes where it frequently drives rather than examples in a training set
as is done in McCraith et al. [2020].

4.2 Quantitative comparison

Method Train GT@Test Abs Rel Sq Rel RMSE RMSE log � < 1.25 � < 1.252 � < 1.253

Eigen and Fergus [2015] D 7 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Liu et al. [2015] D 7 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Klodt and Vedaldi [2018] D*M 7 0.166 1.490 5.998 — 0.778 0.919 0.966
Nath Kundu et al. [2018] D* 7 0.167 1.257 5.578 0.237 0.771 0.922 0.971
Kuznietsov et al. [2017] DS 7 0.113 0.741 4.621 0.189 0.862 0.960 0.986
Yang et al. [2018a] D*S 7 0.097 0.734 4.442 0.187 0.888 0.958 0.980
Luo et al. [2018b] DS 7 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Guo et al. [2018] DS 7 0.096 0.641 4.095 0.168 0.892 0.967 0.986
Fu et al. [2018] D 7 0.072 0.307 2.727 0.120 0.932 0.984 0.994
Zhou et al. [2017]† M 3 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang et al. [2018c] M 3 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian et al. [2018] M 3 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Yin and Shi [2018]† M 3 0.149 1.060 5.567 0.226 0.796 0.935 0.975
Wang et al. [2018] M 3 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Zou et al. [2018] M 3 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Yang et al. [2018b] M 3 0.162 1.352 6.276 0.252 — — —
Ranjan et al. [2019] M 3 0.148 1.149 5.464 0.226 0.815 0.935 0.973
Luo et al. [2018a] M 3 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Casser et al. [2019b] M 3 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Godard et al. [2019] M 3 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Ours M 7 0.113 0.916 4.974 0.199 0.857 0.945 0.968

Table 2: Depth estimation accuracy on the KITTI test set. D — Depth supervision, D* — Auxiliary
depth supervision, M — Self-supervised mono, GT@Test — uses elements of LiDAR ground truth at
test time, † — Newer results from GitHub,+ pp — With post-processing. For red metrics, the lower
is better; for blue metrics, the higher is better. Best results in each category are in bold; second-best
underlined
First, in table 1 we contrast our method (d) to GT Single Scaling, fixing the scaling factor using
respectively the training and testing subset of the data (a) and (b). We note that our approach is
substantially better than both (0.113 vs � 0.125 AbsRel). This is because, while GT Single Scaling
has access to 3D ground-truth, it uses a fixed scaling factor for all frames, and, as shown above,
no single scaling factor can work well. Remarkably, our method is comparable to GT Scaling as

well (the latter corresponds to the penultimate row of table 2), matching it, in particular, in the Abs
Rel metric, despite the fact that GT Scaling chooses the best possible scaling factor for each frame
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Length Abs Rel Sq Rel RMSE RMSE log � < 1.25 � < 1.252 � < 1.253

6 0.338 2.857 7.47 0.353 0.068 0.132 0.155
10 0.12 0.968 5.013 0.202 0.838 0.933 0.957
15 0.116 0.942 5 0.2 0.853 0.944 0.968
20 0.115 0.932 4.986 0.2 0.856 0.945 0.968
25 0.117 0.956 5.002 0.201 0.856 0.944 0.969
30 0.114 0.926 4.98 0.199 0.856 0.945 0.968
40 0.116 0.933 4.985 0.2 0.856 0.946 0.971
60 0.115 0.928 4.979 0.2 0.857 0.947 0.971
80 0.116 0.941 4.99 0.2 0.857 0.945 0.97

Table 3: Road model distance (length) ablation

Width (m) Abs Rel Sq Rel RMSE RMSE log � < 1.25 � < 1.252 � < 1.253

0.5 0.119 0.944 5.02 0.206 0.838 0.932 0.957
1 0.116 0.926 4.989 0.201 0.845 0.937 0.961
2 0.114 0.918 4.981 0.2 0.856 0.944 0.968
3 0.113 0.916 4.974 0.199 0.857 0.945 0.968
4 0.115 0.936 4.99 0.2 0.856 0.945 0.968
5 0.114 0.923 4.974 0.199 0.858 0.946 0.97

10 0.116 0.933 4.986 0.2 0.855 0.946 0.969
15 0.116 0.933 4.987 0.2 0.855 0.946 0.969

Table 4: Road model width ablation. Points are considered to create the model if |X| < Width and
the distance is below 30 meters.

individually against the ground-truth. From the same table, we see that this is obtained against a
model, Monodepth V2, which is state-of-the-art, resulting for the first time in excellent calibrated

self-supervised monocular depth estimation from vision alone.

4.3 Ablation and tuning

Road model. Recall that our method is based on estimating the full 3 DoF of the ground plane.
First, we test whether this is necessary. In order to do so, we assume instead that the plane is exactly
horizontal and at the fixed canonical height below the camera. Then, we use the fixed plane to generate
a pseudo-LiDAR map for the road pixels and use GT Scaling against those pseudo-ground-truth
values (instead of the actual GT value) in order to determine the scaling factor for each frame. A
similar fixed pseudo-LiDAR plane was also used, for example, in Choe et al. [2019] in order to
perform 3D object detection. The result of this is shown in table 1 row (c): the fact that this simple
fixed-plane model ignores the tendency of real roads to have inclines and declines as well as the
cameras ability to have non-negligible pitch and roll during regular car motion which greatly effects
it’s depth prediction in the far range.

Tuning. Next, we assess the sensitivity of our methods to various parameters and determine their
optimal values. In section 3.3 we first take to varying the maximum distance of points on the road we
use for the plane fitting. Similar to Man et al. [2019] we find that using points predicted to be under
30 meters from our camera works best for fitting our ground plane as seen in table 4. In a similar
fashion we explore the maximum left-right distance from which we consider points from our fit.
Typical roads are between 2.75 and 3.75 meters wide so it is within reason that only points within 3m
left of right of the car work best with a gradual drop off in performance above this and an insufficient
number of points below. Note that the method is not overly sensitive to a specific parameter setting,
likely due to the use of robust estimator.

5 Conclusion

In this paper, we highlighted the limitation of self-supervised depth estimation methods and their
reliance on LiDAR data at test time. We additionally showed how to overcome this issue by
incorporating prior information about camera configuration and the environment, and we achieved
comparable performance to the state of the art through vision only, without relying on any additional
sensors.
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