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Abstract

Deep neural networks (DNNs) have achieved huge successes in many autonomous
driving tasks. However, existing deep neural networks are computationally and
memory expensive, making it difficult to be deployed on embedded systems with
limited processing power and low memory resources. In this work, a detailed
network structured pruning study is conducted for autonomous driving tasks, in-
cluding object detection, skin semantic segmentation and steering angle prediction.
This study considers the network performance for different algorithms at different
pruning sparsity levels. We conclude this paper by comparing and discussing the
experimental results and proposing the recommended structured pruning algorithms
for these tasks.

1 Introduction

Autonomous Vehicles are expected to significantly reduce accidents [1]. Autonomous Vehicles
systems have two main approaches, the end-to-end approach, where the deep network predicts the
driving signals directly from raw sensor data, and the pipeline approach where the deep networks are
components of a larger system. Despite the notable successes of Deep neural networks, the existing
models are computationally expensive and memory intensive. Deployment of these models on low
memory target devices or for applications with strict latency requirements such as autonomous driving
is a challenging task. Therefore, a natural solution is to reduce the size of these models and accelerate
them significantly without decreasing the performance. During the past few years, huge progress
has been made in this area. Network Quantization compresses the original network by reducing the
number of bits used to represent the model’s weights, for example from 32-bit floating point numbers
to 16-bit [2], or int 8-bit [3], or even binary weights represented as 1-bit [4]. This results in a smaller
model size and faster computation, usually with marginal or negligible effect on the performance
of the model. Pruning, on the other hand, works by removing weights within a model that have a
minor impact on its predictions. This makes pruning a useful technique for reducing model size.
Optimal Brain Damage (OBD) [5] was introduced as a technique for reducing the size of a network
by selectively deleting weights, where the saliency for each weight is computed using a diagonal
Hessian approximation, and the low-saliency parameters are removed, and the network is retrained.
More recently, magnitude-based weight pruning methods have become more popular for network
pruning. In [6], a method is proposed for pruning redundant connections and retraining the network
to fine tune the weights of the remaining connections. Deep compression method was proposed
in [7], where the network is pruned by learning only the important weights, then the weights are
quantized, and finally Huffman coding is applied. Convolutional neural networks (CNNs) are widely
used in computer vision tasks such as classification, object detection and segmentation. Large CNNs
with 10s or 100s layers enabled state of the art performance for computer vision tasks. However,
deployment of such networks is challenging. In this work, we review one of the most effective
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compression methods for deep neural networks which is structured pruning. Structured pruning
removes entire channels or filters completely from the network, instead of removing individual
weights, this method does not require any special hardware. This paper is organized as follows:
First we discuss different algorithms for applying structured pruning on CNNs: l1 Filter pruning [8],
filter pruning via Geometric Median (FPGM) [9], Taylor pruning [10]. Then, these algorithms are
applied on different applications related to autonomous driving. LiDAR sensor Object detection and
camera sensor skin semantic segmentation for autonomous driving pipeline approach, steering angle
prediction for camera sensor end-to-end approach. Finally, we conclude this work by comparing and
discussing the pruning sparsity levels and the corresponding performance.

2 Structured Pruning methods

In this section, the structured pruning methods are described briefly.

l1 Filter Pruning: Magnitude-based pruning of weights reduces the number of parameters from fully
connected layers, but it is not suitable for reducing the required computation cost in convolutional
layers. l1 Filter [8] is a structured pruning algorithm that prunes the filters of a CNN network
with the smallest l1 norm of the weights. Accordingly, by removing whole filters along with their
corresponding feature maps, the computation costs are reduced significantly. This approach does not
result in sparse connectivity patterns. To prune m filters from the ith convolutional layer, for each
filter Fi,j , the sum of its absolute kernel weights is calculated and the filters are sorted accordingly.
Then, the m filters with the smallest sum values are pruned. The kernels in the next convolutional
layer corresponding to the pruned feature maps are also removed. Finally, a new kernel matrix is
created for both the ith and i+ 1th layers, and the remaining kernel weights are copied to the new
model.

FPGM: In the norm-based methods, it is assumed that smaller norm filters are less important and
accordingly, filters with the largest norm are kept, others are pruned. In contrast, the Filter Pruning
via Geometric Median (FPGM) [9] proposed a method that prunes filters with redundant information
in the network. Accordingly, instead of pruning filters with relatively less contribution, FPGM prunes
the most replaceable filters containing redundant information, by calculating the Geometric Median
of the filters in the same layer. FPGM explicitly considers the mutual relations between filters and
shows to achieve good performances when norm-based methods fail.

Taylor Pruning: Taylor First order pruning (TaylorFO) [10] is a pruning criterion which iteratively
removes the least important set of filters from the model. However, instead of the estimating the
importance of a filter as the squared difference in loss after removing a filter from the network,
which is extremely expensive for large networks, this pruning criterion approximates it with a Taylor
expansion, making this pruning criterion more practical and easier to implement. The importance of
a filter can be defined as Im = (E(D,W )− E(D,W |wm = 0))2 where W is the neural network
parameters, D is the dataset, E is the error function, Wm is the weight of filter m and Im is the
importance of filter m. This criteria proposed an approximation as Im = (gmwm)2 Where gm is the
gradient of the error function E with respect to the weight of filter Wm.

3 Experimental setup

In this section, the details of the experiments are described. The experiments are conduced across
three different applications: LiDAR based object detection, skin semantic segmentation and front
camera based steering angle prediction. Automated Gradual Pruning(AGP) [11] is a scheduling
algorithm for pruning filters in deep neural networks where the network is trained to gradually
increase the sparsity while allowing it to recover from any induced loss in accuracy. A binary mask,
that determines which of the weights participate in the forward execution, is added for every layer
chosen to be pruned. The AGP algorithm removes filters starting from an initial sparsity to a final
sparsity level over a number of pruning steps, starting at training epoch, where the binary masks are
updated at a pruning frequency. In all of the following experiments, the AGP scheduling, where the
initial sparsity is 0, staring epoch is 50 and update frequency is 1. Finally, in order to inspect the
effect of pruning on the performance, three pruning sparsity levels are considered at 70%, 80% and
90%. All the pruning algorithms are applied across all the mentioned applications. Ending epoch
for object detection is 100, for skin semantic segmentation is 90 and for steering angle prediction is
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Figure 1: Comparison of the performance on the test data for pruning algorithms with different
sparsity levels

100. In this work, Neural Network Intelligence (NNI) [12] toolkit is used for model pruning. For all
of the experiments the number of FLOPS is estimated using the NNI tooklit, the toolkit identifies
the remaining filters according to its mask, which does not take into consideration the pruned input
channels. Accordingly, the estimated FLOPS are larger than the expected.

Object detection is one of the most important computer vision tasks for autonomous driving. LiDAR
sensors enable capturing a 3D point cloud representation of the environment with accurate distance
measures, which is crucial for reliable perception and safety considerations. In this application, we
choose a one-shot object detector, adapted from YOLO3D [13], to produce oriented bounding boxes
and the corresponding class labels in the 2D Bird Eye View (BEV). KITTI dataset [14] is used for the
object detection experiments, where it contains LiDAR BEV images from different driving scenarios.
For simplicity, a single but common class from the dataset is used which is the car class. This dataset
contains 8k training images and 1.4k test images.

Semantic Segmentation is another important computer vision task where the output is pixel-wise
classification of the input image. Semantic Segmentation provides a simpler abstraction of the
environment in terms of the predefined classes. In this application skin semantic segmentation is
conducted as an example of semantic segmentation task, that can be applied for pedestrians and
interior monitoring including the passengers and the driver. This task can be used for higher level
applications such as gesture recognition and activity recognition. In this experiment, UNet [15] is
used with ResNet101 [16] as backbone. Moreover, three classes are considered, the first class is skin
class that corresponds to the exposed skin of a person. The second class is clothes class that a person
is wearing. The third class is the background. Two datasets are used for the skin segmentation task.
The first dataset is MHP dataset [17] that contains multiple persons captured in real-world scenes
with pixel-level semantic annotations. For our application we reduced the 58 classes to the three
classes. This dataset contains 15k training images and 5k test images. The second dataset is CIHP
dataset [18] that contains images with semantic annotations of 19 human-part labels, captured from a
different range of viewpoints. Similarly, all of these 19 classes are reduced to the three classes. This
dataset contains 28k training images and 5k test images.

Steering angle prediction is one of the classical applications of autonomous vehicles where it is
usually based on the front camera image. We follow the Nvidia’s self driving car convolutional neural
network architecture [19], used to predict the steering angles for a self-driving car directly from the
raw pixels of a front camera. For this application, a publicly available dataset [20] is used where it
contains images recorded from a car dashcam with labeled steering angles. This dataset contains
36.4k training images and 9k test images.

4 Results

Object Detection: After pruning the object detection network using l1, FPGM and TaylorFO
algorithms at different sparsity levels of 70%, 80% and 90%, as shown in the Figure 1a, the best
performing pruning algorithm is the FPGM that gives mean average precision (mAP) of 0.9067,
0.8825 and 0.766 respectively, where the baseline mAP without pruning is 0.928. The baseline model
has 9.2B FLOPS, while the pruned models have relative FLOPS corresponding to the sparsity levels.
To visualize the effect of the pruning using different pruning algorithms and different sparsity levels
on the performance, figure 2 shows ground truth samples and the corresponding outputs. As expected,
at 70% sparsity, most of the pruned networks detect objects that are visually almost identical to the
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Figure 2: Visual samples for LiDAR object detection.
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Figure 3: Visual samples for skin semantic segmentation.

ground truth. However, as the sparsity level is increased, the number of false positives increases in
many cases, leading to decreased mAP.

Skin Segmentation: After pruning the network, as shown in Figure 1b, the best performing pruning
algorithm is the TaylorFO that gives mean intersection over union (mIOU) of 0.7934, 0.6985 and
0.4242 respectively, where the mIOU without pruning is 0.8032. The baseline model has 53.3B
FLOPS. As depicted in Figure 3, we can see an overlay for the segmentation mask with two different
colors, green for skin class and blue for the clothes class. At 70% sparsity the semantic segmentation
is affected by the pruning, but it is still performing visually well. For the 80% sparsity the number
of misclassified pixels increases marginally. However, for the 90% sparsity the model misclassifies
most of the pixels including the pixels of the skin and clothes. Furthermore, as shown in the figure,
the third sample is affected heavily by the pruning even at 70% sparsity.

Steering angle prediction: After pruning the network, as shown in Figure 1c, the best performing
pruning algorithm is the FPGM with mean squared errors (MSE) of 0.076, 0.121 and 0.321 respec-
tively, where the MSE without pruning is 0.058. The baseline model has 26.9M FLOPS. It is noticed
that at sparsity 90% the error increased dramatically mainly because the network is relatively small.

5 Conclusions and future work

In this work, structured pruning methods are applied on autonomous driving tasks at different sparsity
levels. Generally speaking, by increasing the sparsity levels, the performance of all the applications
is decreased as expected. However, object detection seems to be more robust compared to semantic
segmentation, mainly because of the nature and complexity of these application and related training
data and network architectures. Furthermore, FPGM did not harm the performance of both object
detection and steering angle prediction applications, compared to other pruning methods. On the other
hand, TaylorFO is found to be the best for skin semantic segmentation. For future work, it is planned
to extend this study to conduct more experiments considering more applications, different sensors,
more network architectures, multi task learning, sensor fusion and more deep network compression
and acceleration methods.
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