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Abstract

Hand-crafting generalised decision-making rules for real-world urban autonomous
driving is hard. Alternatively, learning behaviour from easy-to-collect human driv-
ing demonstrations is appealing. Prior work has studied imitation learning (IL) for
autonomous driving with a number of limitations. Examples include only perform-
ing lane-following rather than following a user-defined route, only using a single
camera view or heavily cropped frames lacking state observability, only lateral
(steering) control, but not longitudinal (speed) control and a lack of interaction with
traffic. Importantly, the majority of such systems have been primarily evaluated
in simulation - a simple domain, which lacks real-world complexities. Motivated
by these challenges, we focus on learning representations of semantics, geometry
and motion with computer vision for IL from human driving demonstrations. As
our main contribution, we present an end-to-end conditional imitation learning
approach, combining both lateral and longitudinal control on a real vehicle for
following urban routes with simple traffic. We address inherent dataset bias by data
balancing, training our final policy on approximately 30 hours of demonstrations
gathered over six months. We evaluate our method on an autonomous vehicle by
driving 35km of novel routes in European urban streets.

1 Introduction

Driving in complex environments is hard, even for humans, with complex spatial reasoning capabili-
ties. Urban roads are frequently highly unstructured: unclear or missing lane markings, double-parked
cars, narrow spaces, unusual obstacles and other agents who follow the road rules to widely varying
degrees. Driving autonomously in these environments is an even more difficult robotics challenge.
The state space of the problem is large; coming up with a driving policy that can drive reasonably
well and safely in a sufficiently wide variety of situations remains an open challenge. Additionally,
while the action space is small, a good driving policy likely requires a combination of high-level
hierarchical reasoning and low-level control.
There are two main established paradigms for solving the problem of autonomous driving: a traditional
engineering-based approach and a data-driven, machine-learning approach. The former performs
well in structured driving environments, such as highways or modern suburban developments, where
explicitly addressing different scenarios is tractable and sufficient for human-like driving [1–3]. This
approach is more mature, and the focus of commercial efforts today. However, is still unclear if this
can scale to deploying fully autonomous vehicles world-wide, in complex urban scenarios with wider
variation and visual diversity.
In comparison, data driven methods avoid hand-crafted rules and learns from human driving demon-
strations by training a policy that maps sensor inputs, such as images, to control commands or a
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Fig. 1: We demonstrate conditional route following using an end-to-end learned driving policy in
dense urban driving scenarios, including simple traffic following behaviour. We frame this single fully
differentiable architecture conceptually in terms of perception, sensor fusion and control components.
The division is purely semantic. Each camera provides an image (or images where using optical
flow) to the perception encoders, generating a learned computer vision representation for driving. We
generate various perception outputs from this intermediate representation, of semantics, geometry,
and motion, shown in Figure 2. The output features are compressed by sensor fusion and concatenated
(|| denotes concatenation). Based on this representation and a route command c, the network outputs
a short motion plan in steering and speed.

simple motion plan (e.g., steering and speed). Importantly, such an approach has greater potential
to generalise to the large state space and address variations such as weather, time of day, lighting,
surroundings, type of roads and behaviour of external agents. The attraction here is that we have seen
learned approaches to many vision tasks outperform hand-crafted approaches. We expect that it will
also be possible to do so for learned visual control.
Prior works primarily explore the data-driven approach in the context of imitation learning, but to
date address only a subset of the state space [4, 5] or the action space [6]. In more recent work, [7]
learn both steering and speed, conditioned on a route command (e.g. turn left, go straight, etc.), but
evaluate the method on a small-sized toy vehicle in structured scenarios with no traffic. Similarly,
[6] address control conditioned on a route with GPS localisation, though learn only lateral control
(steering) for driving empty roads.
Our main contribution is the development of an end-to-end conditional imitation learning approach,
which, to the best of our knowledge, is the first fully learned demonstration of complete control
of a real vehicle, following a user-prescribed route in complex urban scenarios. Additionally, we
include the first examples of a learned driving policy reacting to other traffic participants. Our method
requires monocular camera images as input and can be conditioned on a route command (e.g., taking
a turn at an intersection) [7], in order to follow the specified route.
Importantly, we utilise small amounts of driving data such that our final policy is trained on only 30
hours of demonstrations collected over six months, yet it generalised to routes it has not been trained
to perform. We train and evaluate on European urban streets: a challenging, unstructured domain in
contrast to simulated environments, or structured motorways and suburban streets.
The novel contributions of this work are:

• the first end-to-end learned control policy able to drive an autonomous vehicle in dense
urban environments,

• a solution to the causal confusion problem, allowing motion information to be provided to
the model for both lateral and longitudinal control of the vehicle,

• demonstration of data efficiency, showing that it is possible to learn a model capable of
decision making in urban traffic with only 30 hours of training data,

• comprehensive performance evaluation of end-to-end deep learning policies driving 35km
on public roads.

2 Related Work

The first application of imitation learning (IL) to autonomous driving was ALVINN [5], predicting
steering from images and laser range data. Recently, IL for autonomous driving has received renewed
interest due to advances in deep learning. [4, 8] demonstrated an end-to-end network, controlling
steering from single camera for lane following on empty roads. [9] adds conditional navigation to this
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same approach. [7] learn longitudinal and lateral control via conditional imitation learning, following
route commands on a remote control car in a static environment. [6] develop a steering-only system
that learns to navigate a road network using multiple cameras and a 2D map for localisation, however
it uses heavily cropped images, and is dependent on localisation and route map generation.
The CARLA simulator [10] has enabled significant work on learning to drive. One example is
the work of [11], which established a new behaviour cloning benchmark for driving in simulation.
However, simulation cannot capture real-world complexities, and achieving high performance in
simulation is significantly simpler due to a state space with less entropy, and the ability to generate
near-infinite data. Several approaches have transferred policies from simulation to the real world.
[12] use semantic segmentation masks as input and waypoints as output. [13] learn a control latent
space that allows domain transfer between simulation and real world. Sim-to-real approaches are
promising, but policy transfer is not always effective and robust performance requires careful domain
randomisation [14–16].
Rather than learning a driving policy from egocentric camera images, [17] and [18] present approaches
to using imitation learning based on a bird’s eye view (BEV) of a scene (using a fused scene
representation and LiDAR data respectively, neither being fully end-to-end due to the need for prior
perception and/or mapping). However, both approaches require additional infrastructure in the form
of perception, sensor fusion, and high-definition (HD) mapping: in preference to this, we advocate
for learning from raw sensor (camera) inputs, rather than intermediate representations.
Recently, model-based reinforcement learning (RL) for learning driving from simulated LiDAR data
by [19], but it has yet to be evaluated in real urban environments. Approaches with low dimensional
data have shown promising results in off-road track driving [20]. Model-free RL has also been studied
for real-world rural lane following [21].
Our work fits in the end-to-end imitation learning literature and takes inspiration from the much of
the work here. We extend the capabilities of a driving policy beyond what has been demonstrated to
date: learning full lateral and longitudinal control on a vehicle with conditional route following and
behaviour with traffic. We develop new methods to deploy our system to real world environments.
Specifically, we focus on urban streets, with routes not demonstrated during training, evaluated over
35km of urban driving.

3 Method

We begin with a brief introduction of imitation learning (IL) and conditional IL, followed by a
discussion of our method and model architecture.
Consider a dataset of observation-action pairs D{〈oi,ai〉}Ni=1, collected from expert demonstrations.
The goal of IL is to learn a policy πθ(ot) : O → A that maps observations ot to actions at at every
time step and is able to imitate the expert. The parameters θ of the policy are optimized by minimizing
a distance L between the predicted action and the expert action:

min
θ

∑
i

L
(
πθ(oi),ai

)
(1)

Conditional IL (CIL) [7] seeks to additionally condition the policy on some high-level command c
that can convey the user intent at test time. Such a command can serve to disambiguate multi-modal
behaviour: for example, when a car approaches an intersection, the camera input is not sufficient to
predict whether the car should turn left or right, or go straight. Providing a route command c helps
resolving the ambiguity. The CIL objective can be written as:

min
θ

∑
i

L
(
πθ(oi, ci),ai

)
(2)

3.1 Model Architecture

Our method learns directly from images and outputs a local motion plan for speed and steering.
The driving policy is a fully end-to-end neural network, but we conceptually structure it with three
separate components: perception, sensor fusion and control. We use a combination of pretrained and
trainable layers to learn a robust driving policy. Figure 1 outlines the architectural details discussed
below.

3.1.1 Perception
The perception component of our system consists of a deep encoder-decoder similar to multitask
segmentation and monocular depth [22]. It receives an image as observation and is trained to
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Fig. 2: An example of perception from the intermediate learned features of the three forward-facing
cameras on our vehicle in a typical urban scene (forward-left, forward, and forward-right). From top
to bottom: RGB input, segmentation, monocular depth, and optical flow.

reconstruct RGB, depth and segmentation. For driving, we use the encoded features, which contain
compressed information about the appearance, the semantics, and distance estimation. In principle,
such representations could be learned simultaneously with the driving policy, for example, through
distillation. Alternatively, the labelled control data could be labelled for perceptual tasks. However,
to improve data efficiency and robustness when learning control, we pretrain the perception network
on several large, heterogeneous, research vision datasets [23–27].
The perception architecture above does not have any temporal information about the scene. One
solution is to use concatenated representations of the past n frames, but this did not perform well in
our experiments. Instead, we use intermediate features from an optical flow model similar to [28],
and concatenate this to form features rich in semantics, geometry, and motion information.
Apart from the single forward-facing camera, in some of our experiments we additionally use a
left-facing and a right-facing view. In this case, the perception component treats each of these frames
independently. Figure 2 provides an example of the perception output on input images.

3.1.2 Sensor Fusion

The purpose of the sensor fusion component is to aggregate information from the different sensors
and process them into a single representation of the scene, useful for driving.
Singleview. In the case of a single camera, the model is composed of a simple feedforward architec-
ture of convolutional and fully-connected layers.
Multiview. Based on single-frame observations from 3 cameras: front, left and right (Figure 1).
Driving with a single view means the model must predict an action without full observability of the
necessary state (e.g., losing sight of the adjacent kerb while approaching a junction). Enhancing
observability with multiple views should improve behaviour in these situations. However, we found
that naively incorporating all camera features led to over-reliance on spurious information in the
side views. Thus, we occasionally corrupt the side view encoder outputs during training, using the
augmentation procedure described below for flow. We also apply self-attention [29] on the perception
output of each camera, allowing the network to model long-range dependencies across the entire
image and focus on the parts of the image that are important for driving.
Multiview and Flow. Additionally to the Multiview architecture above, optical flow is computed
only for the front camera using the last two consecutive frames. The flow features are concatenated
to the perception features for the front camera and then processed by sensor fusion.
Access to more information, such as motion, can actually lead to worse performance. As discussed
by [11, 30], imitation learning in particular can suffer from causal confusion: unless an explicit
causal model is maintained, spurious correlations cannot be distinguished from true causes in the
demonstrations. For example, inputting the current speed to the policy causes it to learn a trivial
identity mapping, making the car unable to start from a static position. While [30] propose a way
to learn a causal graph, it assumes access to a disentangled representation and its complexity grows
exponentially with the number of features.
Instead, we propose a method, which cannot determine the causal structure, but can overcome the
causal confusion problem and scale to large number of features. Given an input x, we add random
noise, e.g. Gaussian, and apply dropout [31] on the noise with probability 0.5 for the full duration of
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training. This allows the model to use the true value of x when available and breaks the correlation
the rest of the time, forcing the model to focus on other features to determine the correct output.
Applying this approach on the flow features during training allowed the model to use explicit motion
information without learning the trivial solution of an identity mapping for speed and steering.

3.1.3 Control
The control module consists of several fully-connected layers that process the representation computed
by sensor fusion. At this stage, we also input a driving route command ct, corresponding to one
of go-straight, turn-left or turn-right, as a one-hot-encoded vector. We found that inputting the
command multiple times at different stages of the network improves robustness of the model.
We selected this encoding of a route to ground this approach with those demonstrated in CARLA
[7, 11, 12, 32]. In practice, this limits real world testing to grid-like intersections. We use this
encoding for the approach outlined here, but we favour a richer learned route embedding similar to
[6, 33].
The output of the control module consists of a simple parameterised motion plan for lateral and
longitudinal control. In particular, we assume that the vehicle motion is locally linear and we output a
line, parameterised by the current prediction yt and a slope mt, for both speed and steering. During
training, we minimise the mean squared error between the expert actions, taken over N timesteps
into the future, and the corresponding actions predicted by the network motion plan:

N−1∑
n=0

γ∆n (yt + mt∆n − at+n)
2 (3)

where γ is a future discount factor, ∆n is the time difference between steps t and t+ n, yt and mt

are the outputs of the network for ot, and at+n is the expert speed and steering control at timestep
t+ n. Predicting such trend into the future provides for smoother vehicle motion and demonstrated
better performance both in closed loop and open loop testing.

3.2 Data

Driving data is inherently heavily imbalanced, where most of the captured data will be driving
near-straight in the middle of a lane, as shown in Figure 5. To mitigate this, during training we sample
data uniformly across lateral and longitudinal control dimensions. We found that this avoids the need
for data augmentation [17] or synthesis [4], though these approaches can be helpful.
We split the data into k ≥ 1 bins by steering value, defining x0, xk as the minimal and maximal
steering values and the bin edges x1, . . . , xk−1. We define the edges such that the product of the
number of data in each bin and the width of that bin (i.e. xj − xj−1) are equal across all bins, finding
these edges using gradient descent. Having defined the edges, we then assign weights to data:

wj =
xj − xj−1

Nj
· W

xk − x0
, (4)

where wj denotes the weight of data in the j-th bin, Nj — the number of data in that bin and W
— the total weight of the dataset (equal to the number of data). The total weight of each bin is
proportional to its width as opposed to the number of data. The second factor is for normalisation: it
ensures that the total dataset weight is W . We recursively apply this to balance each bin w.r.t. speed.

4 Experiments

The purpose of our experiments is to evaluate the impact of the following features on the driving
performance of the policy:

• Using computer vision to learn explicit visual representations of the scene, in contrast to
learning end-to-end strictly from the control loss,

• Improving the learned latent representation by providing wider state observability through
multiple camera views, and adding temporal information via optical flow,

• Understanding influence of training data diversity on driving performance.
To assess these questions, we train the following models:

• SV: Single view model. Based on the network described in Section 3.1, using only the
forward facing camera. The parameters of the perception module are pretrained and frozen
while training the sensor fusion and the control modules. A local linear motion plan for
speed and steering is predicted over 1s in the future. This model serves as our baseline.
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• MV: Multiview model. As SV, but camera observations from forward, left, and right views
are integrated by the sensor fusion module as described in 3.1.2.

• MVF: Multiview and Flow model. As MV, but with additional optical flow information.
• SV75: As SV, but using only the first 75% of the training data. The latter 25% of the data

was discarded, degrading the diversity while retaining comparable temporal correlation.
• SV50: As SV75, but using only 50% of the training data (discarding the most recent 50%).
• SV25: As SV75, but using only 25% of the training data (discarding the most recent 75%).
• SVE2E: Same as SV, but trained fully end-to-end with randomly initialised parameters.
• SVE2EFT: E2E fine-tuned perception. SV model with a second E2E fine-tuning stage.
• SVE2EPT: Same as SVE2E, but perception parameters pretrained as in SV.

We evaluate all of the above models in closed loop on real-world urban European streets using the
procedure described in Section 4.1 and the metrics discussed in 4.2. We note that we also evaluated
the baseline model SV in simulation with an in-house simulator: its performance was significantly
better compared to the real world, highlighting the simplification of the problem by simulation.

4.1 Procedure

Data Collection. We collected data from human demonstrations over the span of 6 months for a
total of 30 driving hours in a densely populated, urban environment representative of most European
cities. The drivers involved were not given any explicit instructions and were free to choose random
routes within the city. Collected data includes front, left and right cameras as well as measurements
of the speed and steering controls from the driver. Images were captured from rolling shutter cameras,
synchronised within 5ms with a frame rate of 15Hz. Scalar values (e.g., speed) were received at
100Hz. We used the front camera as the primary clock, associating this with the latest received values
for the rest of the sensors. Route annotations were added during postprocessing of the data, based on
the route the driver took. For further information see Appendix C.
Evaluation Procedure We evaluate the ability of a learned driving system to perform tasks that are
fundamental to urban driving: following lanes, taking turns at intersections and interacting with other
road agents. We select two routes not present in the training data in the same city, each approximately
1km in length and measure the intervention rates while autonomously completing the manoeuvres
required in order to reach the end of the route from the start. Each route was selected to have dense
intersections, and be a largely Manhattan-like environment analogous to [7] to avoid ambiguity with
the route encoding. Figure 4 shows the locations of these routes. Completing a route in a busy urban
environment implicitly entails navigating around other dynamic agents such as vehicles, cyclists and
pedestrians, to which the model has to respond safely through actions such as stopping or giving way.
Each model was commanded to drive the route in both directions, each of which counts as an attempt.
Should a given model have five interventions within a single route attempt, the attempt was terminated
early. Models with consistently poor performance were evaluated on fewer attempts.
We additionally evaluate these models interacting with another vehicle, following a pace car which
periodically stopped throughout the driving route. During these tests, we measure intervention rates
for stopping behind a stationary vehicle or failing to follow the pace car.
The interventions as well as their types are left to the judgment of the safety-driver, who is able to take
over control whenever the model exhibits poor behaviour. Evaluating a driving policy’s performance
in terms of the number and type of interventions is preferable to computing low level metrics (e.g.,
cross-track error to a path) as there are multiple solutions to performing the task correctly.
We note that neither of the testing routes has been seen by the model during training, though the
data has some overlap with some sections. While stopping for and following vehicles is a common
occurrence in the data, the particular test vehicle used was not seen during training.
Finally, the testing environment will inevitably contain time-dependent factors beyond our control -
this is expected for outdoor mobile robot trials. Examples include the position and appearance of
parked and dynamic vehicles, weather conditions, presence and behaviour of other agents, however,
we have controlled for these factors as much as possible by running trials with batches of models
in succession. Fundamentally, this real-world constraint forces a driving system to generalise: each
attempt of the same route is novel in a different way, e.g., weather, lighting, road users, static objects.

4.2 Metrics

We need a principled way of identifying which of the models may perform best under closed-loop
test conditions. For this purpose we use open-loop metrics of the control policy, computed on a
hold-out validation dataset. As discussed by [34] and [35], the correlation between offline open-loop
metrics and online closed-loop performance is weak. We observed similar results, but we found some
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(a) Performance w. increasing data (b) Interventions by type
Fig. 3: From the results in Table 1 we make a number of observations. In 3a we see a clear relationship
between data quantity and SV model performance (showing mean, s.d.). Inspecting the interventions
types in 3b we observe that the addition of optical flow improves dynamic vehicle behaviour, but
potentially suffers due to a lower signal-to-noise ratio with increased dimensionality.

utility in using open-loop weighted mean absolute error for speed and steering as a proxy for real
world performance (referred to in Table 1 as Balanced MAE). In particular, we used this metric on
the test dataset in Table 3 to select models for deployment. For the experimental results, we adopt the
following closed-loop metrics:

• Intervention rate, computed as metres per intervention,
• Intervention rate only during lane following (a subset of the previous metric),
• Success rate of turning manoeuvres (left, right),
• Intervention rate while following a pace car, travelling at up to 15 km/h,
• Success rate of stopping behind a pace car.

In addition to the rate of interventions, we also provide their type using the following categories:
• Obstacle: e.g., prevention of crashing into an obstacle such as a parked car or road works,
• Road position: e.g., wrong side of traffic or dangerous proximity to the kerb,
• Disobeyed navigation: e.g., drove straight instead of turning left,
• Failed manoeuvre: e.g., attempted the correct turn, but failed to complete the manoeuvre,
• Dynamic vehicle: e.g., acted poorly with other traffic, such as not stopping behind a car.

Finally, while these metrics provide quantitative results, they fail to capture qualitative properties.
We therefore provide some commentary on the models’ observed behaviour.

4.3 Results

Table 1 outlines the experimental results. A total of 34.4km of driving was performed under
automation, prioritising the SV, MV, and MVF models. We consider the performance in a static
environment (driving manoeuvres) independently of the performance following a pace car (traffic
following).

Model Attempts Distance (m) Intervention rate (m/int) Success Rate (%) Open Loop

A B Manoeuvres (LF only) Traffic follow Manoeuvres (LF only) Traffic Follow Turn: Left Turn: Right Stop: Car MAE Bal-MAE

SV 14 12 5113 (4094) 3158 222 (372) 121 74% (N=31) 87% (N=31) 69% (N=36) 0.0715 0.0630
MV 14 12 5811 (4613) 3440 306 (659) 191 70% (N=23) 86% (N=36) 65% (N=40) 0.0744 0.0706
MVF 14 12 5313 (4086) 2569 253 (511) 161 78% (N=32) 82% (N=34) 81% (N=36) 0.0633 0.0612

SV75 2 2 2777 (2258) - 154 (376) - 57% (N=13) 80% (N=17) - 0.0985 0.0993
SV50 2 4 2624 (2145) - 67 (98) - 54% (N=19) 50% (N=16) - 0.0995 0.1015
SV25 2 - 926 (746) - 44 (50) - 33% (N=6) 71% (N=7) - 0.1081 0.1129

SVE2E 2 2 823 (615) - 30 (30) - 42% (N=12) 100% (N=5) - 0.1410 0.1365
SVE2EFT 2 2 1591 (759) - 177 (379) - 69% (N=16) 90% (N=21) - 0.0769 0.0801
SVE2EPT 2 2 260 (177) - 26 (59) - 33% (N=3) 0% (N=5) - 0.0966 0.0946

Tab. 1: Driving performance metrics evaluated on routes A and B (see 4 and 4.1). Traffic Follow and
Manoeuvres present the metrics for following the routes with and without a pace car. The LF only
metrics refer to lane following. In Success Rate, N refers to the number of manoeuvre attempts.

4.3.1 Representation Learning with Computer Vision

Comparing the performance of SV to the E2E trained models (SVE2E, SVE2EFT, and SVE2EPT)
suggests that learned scene understanding is a critical component for a robust representation for
driving. Both fully E2E trained models (SVE2E, SVE2EPT) perform very poorly.
We attribute this to the fact that our perception model is significantly more robust to the diversity of
appearance present in real world driving images [36], in part influenced by the additional data seen
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during the initial perception training phase. In robotics we must consider methods which prioritise
data efficiency: we will never have the luxury of infinite data. For example, here we train on 30 hours
of driving, not nearly sufficient to cover the diversity of appearance in real world scenes.
We observed that the E2E trained models performed comparably to SV when operating in shaded
environments, but poorly in bright sunlight. We attribute this to the appearance change between our
training data and the test environment: the data was gathered in winter, three months prior to tests
being conducted in spring. Additionally, the fine-tuned model performs similarly to the baseline: on
this basis we recommend using pretrained perception due to the wider benefits of interpretability.

4.3.2 Improving the learned state: observability and temporal information
Firstly we consider the performance of multiview models compared to the the singleview baseline.
We see an improvement in driving performance when providing the model with a more complete
view of the scene. This is apparent when considering the disobeyed navigation interventions: the SV
model systematically fails to take certain turns. For example, if the side road is narrow, it tends to
drive straight past, ignoring the route. Equally, the model commonly cuts the near-side kerb while
turning. Both these failure modes are attributable the forward facing camera having no visibility of
this part of the scene. MV models tend not to exhibit these failure modes. Qualitatively, we found the
MV models to provide a much larger buffer around the kerb, however both models would exhibit the
same failure mode of poor positioning behind parked cars around turns without space to correct. We
attribute this failure mode to the low perception resolution and simple action representation used.
Secondly, we consider the benefit of augmenting the learned representation with temporal state,
describing the motion present in the scene with optical flow. MVF performs slightly worse than MV
in these metrics. We attribute this to a lower signal-to-noise ratio given the increased dimensionality,
though we consider these to be largely comparable. Where this motion information clearly has benefit
is behaviour with other vehicles (stopping): the model with motion information responds to other
agents more robustly, demonstrated by a success rate increase from 65% to 81%.

4.3.3 Influence of data quantity and diversity on performance
The learned driving policies here need significant further work to be comparable to human driving.
We consider the influence of data quantity on SV model performance, observing a direct correlation
in Figure 3a. Removing a quarter of the data notably degrades performance, and models trained
with less data are almost undriveable. We attribute this to a reduction in diversity. As with E2E
trained models, we found that reduced data models were able to perform manoeuvres in certain
circumstances. Qualitatively, all models perform notably better during environmental conditions
closer to the collection period (concluded three months prior to these experiments). We observed that,
in the best case, these models drove 2km without intervention. While we do not know the upper limit
on performance, it is clear that more diversity than our training set is likely to improve performance.

5 Conclusions

We present a conditional imitation learning approach which combines both lateral and longitudinal
control on a real vehicle. To the best of our knowledge, we are the first to learn a policy that can
drive on a full-size vehicle with full vehicle actuation control in complex real-world urban scenarios
with simple traffic. Our findings indicate that learning intermediate representations using computer
vision yields models which significantly outperform fully end-to-end trained models. Furthermore,
we highlight the importance of data diversity and addressing dataset bias. Reduced state observability
models (i.e., single view) can perform some manoeuvres, but have systematic failure modes. Increased
observability through multiple camera views helps, but requires dealing with causal confusion.
The method presented here has a number of fundamental limitations which we believe are essential
for achieving (and exceeding) human-level driving. For example, it does not have access to long-term
dependencies and cannot ‘reason’ about the road scene. This method also lacks a predictive long-term
planning model, important for safe interaction with occluded dynamic agents. There are many
promising directions for future work. The time and safety measures required to run a policy in closed
loop remains a major constraint: being able to robustly evaluate a policy offline and quantify its
performance is important area for research. Learning from corrective interventions (e.g., [37, 21]) is
another direction necessary for generalising to real-world complexities.
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A Network Architecture

In total, the network architecture used here consisted of 13 − 26M trainable parameters, varying
depending on the perception encoder used, and the number of cameras.

Model Perception Sensor Fusion Control Total
SV 10.4M 2.2M 705K 13.3M
MV 10.4M 6.5M 442K 17.4M
MVF 19.1M 6.5M 442K 26.1M

Tab. 2: Number of trainable parameters used in the network architecture depicted here.

B Training Procedure

Modules described in Sections 3.1.2 and 3.1.3 are trained jointly using stochastic gradient descent
(SGD) using batches of size 256 for 200k iterations. The initial learning rate is set to 0.01 and decayed
linearly during training, while momentum and weight decay are set to 0.9 and 0.0001 respectively.
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C Data

Dataset Frames Distance (km) Time (hours) Drivers
Training 735K 613 27.2 8
Test 91K 89 3.4 1

Tab. 3: Training and test driving datasets, collected over a 6-month period in a typical European city.

(a) Training collection area (b) Test route A (c) Test route B
Fig. 4: We collect exemplar driving data by driving through the European urban area in 4a. We
evaluate the learned driving policy performance in two urban routes, each approximately 1km in
length with multiple intersections. Both routes are dense urban scenes which broadly fall into a
Manhattan-like grid structure, with a mix of road widths. Models tested on each route are evaluated
in both directions: note that route A takes a slightly different route on the return due to safety-driver
visibility at an intersection. The driving environment is comparable to the scene shown in Figure 2.

(a) Steering (± %) (b) Speed (km/h) (c) Time of day (hour) (d) Throttle (%)
Fig. 5: We collect training data driving across a European city (see 4a). The data, as is typical, is
imbalanced, with the majority driving straight (5a), and a significant portion stationary (5b).
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