
Understanding Natural Language Parking
Instructions and Grounding for Self-driving Cars

Nana Otawara
Ochanomizu University

g1420511@is.ocha.ac.jp

Hiroshi Tsukahara
Denso IT Laboratory, Inc.

htsukahara@d-itlab.co.jp

Atsushi Keyaki
Denso IT Laboratory, Inc.
akeyaki@d-itlab.co.jp

Ichiro Kobayashi
Ochanomizu University
koba@is.ocha.ac.jp

Abstract

There has been a rapid development of practical applications of automatic driving,
and interactive operation using natural language will soon be necessary to easily
operate autonomous cars. In this study, we attempt to realize a correspondence
relationship, (i.e., symbol grounding) between driving instructions expressed in
natural language and objects in the real world recognized by the sensors in a car.
We then propose a method to solve the grounding problem by means of belief
propagation method and show an example of the solution with the observed real
sensor data. In particular, we focus on the parking operation of a car in this study.

1 Introduction

There has been growing research on the practical use of autonomous cars, and some models have
already been sold on the market. However, there would be many complex and irregular driving sit-
uations in real road scenes and expected to be cases that the system cannot recognize the situation
correctly or react it appropriately. Safe and comfortable driving can be achieved by enabling verbal
human-car communications through which passengers can temporarily provide driving instructions
to cars, in facing difficult situations for the system to handle. Moreover, it is especially convenient
for elderly individuals or individuals unskilled in driving. We believe that verbal communication
between a car and a human is an important factor for the operability of a car. To achieve communi-
cation between humans and cars, cars must first correctly understand the information about events,
objects, and places contained in human instructions. Then, cars perform the instructions using the
given information. To understand the content of verbal instructions, it is important that cars have
functions to analyze natural language and extract spatial semantic relations among events, objects,
and places from the instructions such as “park (event) in front of (place) the white car (object)”.

To perform the instructions, there are two technical challenges; 1. extracting spatial semantic re-
lations and 2. correctly correlating the spatial information of the instructions. In general, driving
is extremely complex because many factors must be considered, such as different traffic situations
and control targets. Therefore, in this study, we focus on the case in which we control a car for
parking. This alleviates technical difficulties but is still practically significant. We propose a method
to extract spatial semantics from verbal instructions for parking and correlate the extracted spatial
semantics with objects or places observed around the car. Figure 1 presents an overview of our pro-
posed method. Our proposed method infers a parking space or objects, given a driver’s instruction
such as “Park next to the red bus”. A driver’s instruction is converted into generalized grounding
graphs (G3) [1] through CCG [2] and SDC [3] so that we can apply belief propagation [4], before

Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Process-
ing Systems (NeurIPS 2019), Vancouver, Canada.

the inference is conducted. First, an instruction is converted to SDC using [5]. Next,G3 is generated
based on the SDC and the environment information a car observed, and then the likelihood of the
corresponding relation between the SDC and the environment information is calculated so as it gets
maximum. Finally, most likely parking place is inferred.

Figure 1: Overview of proposed: first, a driver’s natural language instruction is converted into G3

by the method of Inago et al. [5] (the part enclosed in blue), and then inference is conducted (the
part enclosed in red).

2 Related Work

The spatial description clause (SDC) is proposed by Koller et al. [3]. Tellex et al. [1] developed gen-
eralized grounding graphs (G3), which are probabilistic graphical models (factor graphs) that follow
SDC structures, and constructed a system for correlating language information with observed data
and understanding natural language commands containing spatial information. Howard et al. [6]
proposed a distributed correspondence graph (DCG), which efficiently infers a set of planning con-
straints, such as goal regions and accessible or inaccessible regions in the environment, and solves
the grounding problem with a higher accuracy rate than G3. In addition, Paul et al.[7] proposed an
adaptive distributed correspondence graph (ADCG), which extends the DCG so that it can reason
about abstract or hierarchical concepts, such as rows or columns of objects. G3, DCG, and ADCG
are all graphical models and infer the most probable set of events or objects by maximizing their
likelihood for given instructions and environments.

Some studies have tackled the grounding problem using deep learning methods with unsupervised
learning. Rohrbach et al. [8] proposed an unsupervised learning method to correlate words and
objects in an image by combining two procedures. The first is a grounding procedure that infers the
region relevant to the given words, while the second is a reconstruction procedure that reproduces
the original words from the inferred region.

Inago et al. [5] proposed a method for converting instructions for controlling a car into spatial de-
scription clauses through the analysis of the instructions with a combinatory categorial grammar
(CCG)-based shift-reduce parser. To build a syntactic analyzer, they first defined a grammar, which
regards spatial semantic categories as its syntactic rules, based on the CCG [2]. The grammar makes
it possible to flexibly represent the relationship between different spatial semantic categories in the
form of a parse tree. As a base syntactic analysis method, Inago et al. selected the shift-reduce
parsing method [9] because it is simple to apply a grammar into the shift-reduce parser. A SDC is
generated by converting the syntactic analysis result using heuristic conversion rules.

2

3 Inference of Grounding Graphs

The overview of the process is illustrated in Figure 1. We adopted the method of Inago et al [5]
to generate SDCs from natural language instructions, and then employed a probabilistic graphical
model called grounding graphs to take correspondence between the SDCs and the sensory infor-
mation observed by a car. Grounding graphs are used to infer a parking space or objects that are
referred to by SDC components and observed environmental information. Hereinafter, we focus on
inference process.

For the calculation to get the G3 with maximum likelihood, we consider factor graph models in
which the joint probability distribution p(λ, γ, ϕ|θ) is expressed as the product of the local weight
factors, e.g., Ψα(λα, γα, ϕα|θ). A graph is represented as a bipartite graph consisting of a set of
variable nodes x = (λ, γ, ϕ) and a set of factor nodes, e.g., α:

p(λ, γ, ϕ|θ) = 1

Z(θ)

∏
α

Ψα(λα, γα, ϕα|θα), (1)

where, λ is a set of language variable nodes that correspond to the elemental units of SDC, γ is a
set of environment variable nodes that express manipulation of the car or observed information of
objects in the real world, ϕ is a set of grounding variable nodes that calculate the truth value for
the Boolean state of correspondence, xα = (λα, γα, ϕα) is a set of variable nodes that connect to
factor node α. Grounding variable node ϕα connects to every factor node α. It returns True if the
correspondence of a set of environment variable nodes γα and a set of language variable nodes λα
is correct and False if incorrect. An index i is used for recognizing variable nodes, and xi shows the
variable node with the index i. The weight factor is an exponential type given by

Ψα(xα|θα) = exp

(∑
s

θα,sts(xα)

)
, (2)

where θα,s is a weight parameter for features ts(xα) with binary values, the suffix s is an index that
represents features, θα = {θα,s}, θ = {θα}, and Z(θ) is normalization factor,

Z(θ) =
∑
{xα}

∏
α

Ψα(λα, γα, ϕα|θα), (3)

where
∑

{xα} is the sum of all combinations of available values of variables in all nodes.

Inference using grounding graphs has the following challenges: i) First, we must generate ground-
ing graphs that reflect the structures of SDCs. We can construct grounding graphs by recursively
following the tree structure of the SDC; this procedure is the same as in a previous study [10]. In
Section 3.1, we discuss the method of generating grounding graphs from given SDC structures. ii)
In terms of weight factor (2), we must design appropriate features for the understanding of parking
instructions. We define the following two feature types—language features and spatial features—
and prepare quantitative and qualitative features as the feature characterizing spatial information.
In Section 3.2, we describe the design of features in terms of weight factors. iii) To generate the
grounding graph, we determine the values of the environment variable node γ so that its marginal
probability, which fixes the values of language variable node λ and grounding variable node ϕ in a
joint probability, is maximized. It should be noted that the range of the environment variable node γ
is given by the environment expression obtained from the observed data. In this maximization, the
cost of calculating the marginal probability of grounding graphs is problematic. In a prior study [3],
the probability of the entire graph was not always maximized because the prior study addressed
every factor independently and approximately calculated by multiplying them, then its marginal
probability was maximized greedily. In this study, we calculate the marginal probability considering
the connection of the entire graph by means of belief propagation [4] and maximize the marginal
probability of the graph. In Section 3.3, we discuss calculating the marginal probability distribution
of the grounding graphs by means of belief propagation. iv) We also determine parameter values θ
for features. For this end, we build a dataset from observed data annotating the true parking places
specified by the parking instructions and make use of this dataset to estimate the value of the pa-
rameters with log-likelihood maximization. In log-likelihood maximization, we adopt the iterative
proportional fitting (IPF) algorithm [11]. However, due to the annotation cost, the amount of avail-
able data is limited, and in many cases, the empirical distribution estimated from the learning data

3

becomes zero. For this reason, instability, such as in the parameters, occurs if IPF is adopted as is.
Thus, we propose an update equation that contains a normalization parameter. We then enable the
learning of parameters for features by avoiding instability with sparse data. In Section 3.4, we show
an algorithm of learning weight parameters for the features.

3.1 Grounding graph generation

　

EVENT(r=駐車して Park
l=PLACE(r=手前に in front of

l=PLACE(f=スペース the space
c=STATE(r=が停まっている is parked

l=OBJ(f=白い車))))) the white car

駐車して

𝜙" 𝜙# 𝜙$ 𝜙% 𝜙&

𝛾" 𝛾# 𝛾$ 𝛾% 𝛾&

𝜆" 𝜆# 𝜆$ 𝜆% 𝜆&

手前に スペース が停まっている 白い車
Park in	front	of the	space is	parked the	white	car

Figure 2: SDC and its generated grounding graph

In this section, we explain how to gen-
erate a grounding graph from a SDC ob-
tained by parsing parking instructions. Be-
cause a SDC has a nested structure, we
can use this structure to generate grounding
graphs. An example of a SDC and ground-
ing graph is provided in Figure 2. The park-
ing instruction, “Park in front of the space
where the white car is parked” is converted
to a SDC and expressed as “EVENT(r=Park
l=PLACE(r=in front of l=PLACE(f=space
s=STATE(r=is parked l=OBJ(f=the white car)))))”. In this SDC, EVENT contains the relation field
“Park”, while the landmark field is included in PLACE. That is, EVENT SDC has PLACE SDC
as a nested element. Grounding is expressed as the factor node that corresponds to "Park” and
connects to the node γ1. Grounding graphs are generated by a recursive procedure, as demonstrated
in Algorithm 1. ψ represents the factor nodes in this algorithm.

Algorithm 1 Algorithm of generating G3

1 generate the first γ, ψ, and ϕ nodes, as γ0, ψ0, and ϕ0
2 check elements of SDC:figure, relation, landmark, view, condition

2-1 if the element is first phrase,
generate new λ, λ0, and connect to ψ, ψ0

2-2 if the element is second phrase,
generate new ψ, ϕ, and λ, and connect to γ

2-3 if the element is EVENT or STATE SDC,
generate new γ, ψ, and ϕ, and connect to γ, then return to 2 and check the next element

2-4 if the element is other SDC,
generate new γ, ψ, and ϕ, and connect to ψ, then return to 2, and check the next element

3.2 Features

We use a combination of two feature types about languages and spatial relations from the environ-
ment. The configuration of each feature is as follows.

Features for natural language expressions We prepared a dictionary of features for natural lan-
guage expressions in advance. This dictionary was manually made from parking instructions used
in the experiments. This dictionary is used for normalizing fluctuations of phrases that express the
same event or object in different ways (i.e., synonyms).

the white car

object

in front of Park

objectplace event place

type ID : 1 type ID : 2 type ID : 3

𝜙𝜙𝜙

Figure 3: Factor graph types and their type ID.

Features for spatial relations As illustrated
in Figure 3, we classified factor nodes into three
types based on the number and SDC category
of variable nodes γ (in this paragraph, we omit
the factor suffix). The three types are as fol-
lows: a factor node with only one γ node whose
SDC type is OBJECT, a factor node with two
γ nodes whose SDC types are PLACE and
OBJECT, and a factor node with two γ nodes
whose SDC types are PLACE and EVENT. We
consider the distance from the self (car), angle,

4

and so on as spatial relation features. The spatial relation features are divided into two types: quali-
tative (e.g., order of distance) and quantitative (e.g., actual numerical distance).

3.3 Calculating marginal probability by message passing

The purpose of calculating grounding graphs is to estimate the values γmax of environment variables
that maximizes the marginal probability of environment variables γ to the given language variables
λ and the grounding variables ϕ. In the prior study [3], the authors expressed a grounding graph
as a product of logistic regression models with grounding variable ϕα under the condition that lan-
guage variable nodes λα and environment variable nodes γα are independently given, but not the
marginal probability of the entire graph. However, they considered the individual maximization of
the conditional probability distribution that the logistic regression model of each factor express, that
is,

γmax ≈ arg max
γα

pα(ϕα = True|λα, γα) (4)

where pα(ϕα = True|λα, γα) is the probability that the logistic regression model outputs in factor
node α, given only instructions for which all values of the grounding variables are True. However,
the value of (4) does not agree with the conditional probability given λ and ϕ in (1) because (4)
does not consider relations that some γα are shared between factor nodes. For this reason, the re-
sult differs depending on the order of maximizing factor nodes. In this study, we fixed λ and ϕ,
and calculated the marginal probability of γ in (1) considering the relation of the entire graph. We
grounded language information onto environmental information more effectively by calculating γ
that maximizes the marginal probability. However, calculating marginal probability is generally dif-
ficult because it is difficult to calculate the sum of partition function (3). Therefore, we calculated
the marginal probability that considers the relation of the entire graph by means of belief propaga-
tion [4, 12], although this is an approximate method. If the grounding graph has a tree structure,
then calculating the exact marginal probability is possible [4]. The belief propagation algorithm is
described in Appendix A.

3.4 Learning of weight parameters

The calculation of grounding graphs described above is on the assumption that parameters θα,s are
provided. Because we cannot decide these parameters ourselves, they must be decided inductively
from the actual data. In this section, we describe the method for learning parameters. When the data
DN = {x(n)}Nn=1, true labels annotated in the actual data, are given as training data, we define a
log-likelihood function for the data based on (1) and apply the IPF algorithm [11], which maximizes
the defined log-likelihood function for each θα,s. The update equation of parameters θα,s is given
in the following algorithm based on IPF:

θ(q+1)
α,s ← θ(q)α,s + η log

p̂α(ts(xα))

pα(ts(xα)|θ(t)α)
, (5)

where q represents the number of updates, p̂α(ts(xα)) is the probability of the empirical distribution
that the feature takes the value of ts(xα) = 1 calculated from the learning data pα(ts(xα)|θ(t)α) is
the same probability as the probability model in (1), and η is the learning rate. However, in updating
with (5), if there is insufficient training data, in most cases the empirical distribution becomes 0
or very small, and the calculation of the log-likelihood of (5) occasionally falls into instability and
overflows the memory. Therefore, we added the regularization term in (5) for stable calculation.

L(θ) =
1

N

N∑
n=1

log p(x(n)|θ)− µ

2

∑
α,s

θ2α,s, (6)

Equation (6) is a convex function due to the convexity of the exponential family. Therefore, we can
calculate the maximum value by optimization using a gradient method. The derivative of θα,s is

∂L(θ)

∂θα,s
= Ê[ts(xα)]− µθα,s − Eθ[ts(xα)], (7)

5

where

Ê[ts(xα)] =
1

N

N∑
n=1

ts(xα), (8)

Eθ[ts(xα)] =
1

Z(θ)

∂Z(θ)

∂θα,s
=
∑
{xβ}

p(xβ |θ)ts(xα), (9)

therefore, from the condition that L(θ) is maximized with θα,s, the following equation is given:

Ê[ts(xα)] = Eθ[ts(xα)] + µθα,s, (10)

This conditional equation is satisfied when the expectation values from the empirical distribution
about features ts(xα) match the expectation values of the model in the case of not considering the
regularization term µ = 0. Now, assuming that the condition of equilibrium (10) does not satisfy
slightly, we consider satisfying the condition by adjusting θα,s with the negligible quantity δθα,s as
follows:

Ê[ts(xα)] = Eθ(q)+δθα,s
[ts(xα)] + µ(θ(q)α,s + δθα,s), (11)

Because ts(xα) represents binary features, the left-hand side of (11) is given below:

Ê[ts(xα)] = p̂(ts(xα)), (12)

p̂(ts(xα)) = p̂(ts(xα) = 1) represents the appearance probability of features ts(xα) in the empirical
distribution. The first term of the right-hand side of (11) can be replaced as in (13):

Eθ(q)+δθα,s
[ts(xα)] =

∑
{xβ}

ts(xα)e
δθα,sts(xα)−Cδθα,sp(xβ |θ(q)β),

= e(1−C)δθα,s

∑
{xα:ts(xα)=1}

p(xα|θ(q)α), (13)

where, C is the constant not depending on δθα,s and is defined by the first approximation of δθα,s:

e−Cδθα,s =
Z(θ(q))

Z(θ(q) + δθα,s)
, (14)

However, if the scale of the weight factor Ψα(xα|θα) regains eC
∏

s θα,s times, constant C can be 0.
If we denote eδθα,s ≃ 1 + δθα,s by the first order approximation with δθα,s and substitute this into
(13), the update equation including the regularization term is given from (11).:

θ(q+1)
α,s ← θ(q)α,s + η

p̂α(ts(xα))− pα(ts(xα)|θ(q)α)− µθ(q)α

pα(ts(xα)|θ(q)α) + µ
, (15)

where pα(ts(xα)|θ(q)α) =
∑

{xα:ts(xα)=1} p(xα|θ
(q)
α). It is noted that (15) can be expressed as (16)

when the second term of its right-hand side is replaced with the first order approximation:

θ(q+1)
α,s ← θ(q)α,s + η log

p̂α(ts(xα))− µ(θ(q)α,s − 1)

pα(ts(xα)|θ(q)α) + µ
, (16)

Equation (16) results in (5) when µ = 0. If we apply (15) to all factor nodes α, θα,s converges to the
optimal solution θ∗α,s that maximizes the log-likelihood function. In this case, we use the marginal
probability distribution obtained by (22) as the marginal probability distribution of the model. The
learning rate η is defined based on sigmoid function as follows:

η =
2

1 + exp[−Q/(τq)]
− 1 (17)

where τ is a parameter for adjusting the decay speed. Q is the maximum number of update param-
eters. We set the parameter τ to 0.25 and schedule the learning rate η so that it begins at 1.0 and
decays as learning progresses. The regularization hyperparameter µ is set to 0.1 in the experiments.

6

4 Experiments

4.1 Experiment settings

The target dataset is provided by pairs of parking instructions collected through crowdsourcing and
sensor information observed in the real world for parking. The parking instructions were input by
crowdworkers who attempted to park their own cars in the parking spaces specified in presented im-
ages by a red arrow as indicated in Figure 4. There were 100 crowdworkers, and we collected 1,000
parking instructions with five different target parking spaces. Crowdworkers were given images of
parking scenes from two viewpoints: the car (self) is located either at the left side or at the in front
of the parking spaces . There were eight sets of environmental data; four were recorded at slightly
different positions and directions of the car (self) where it was not far from the parking space, while
the remaining four were recorded where the car was at the front of the parking space , similarly.
In this study, we limited parking instructions to ones made from the viewpoint of the car (self) for
simplicity. That is, the instructions “park at the right side of the white car (from the viewpoint of
the car (self))” can be used; however, “park at the left of the electric car (from the viewpoint of the
electric car)” was excluded. Instructions that were divided into two or more sentences were also
excluded. We manually annotated ground truth labels for the data. The environment data consist
of geographic environment map data with spatial location and extent of parking lots and bounding
boxes of vehicles and other obstacles on occupancy grid maps converted from the measured Li-
DAR point clouds. In this study, we hand-labeled bounding boxes of objects as well as their object
classes, i.e., vehicles or others. The ego vehicle is located at the center cell of the occupancy grid
maps and ego location was estimated with not only RTK-GNSS positioning but also LiDAR-based
scan matching with precise 3D environment map. The overlay of parking lots and object bounding
boxes was synthesized by transforming the coordinates of bounding boxes on the occupancy grid to
the ones on the geographic environment map relative to the location and the heading direction of the
ego vehicle.

4.2 Evaluation

To confirm the effectiveness of the estimation of parking spaces specified by instructions, we used
five-fold cross validation as the evaluation method. The results are summarized in Figure 5. We
calculated the precision that is a ratio of correct groundings, i.e., correspondence between SDCs
and the observed environmental information. In these figures, the “all” graph depicts the precision
among all groundings “place” depicts the precision for the grounding of the parking space, and “ob-
ject” depicts the precision for the grounding of the object The vertical axis of the figures represents
the precision, while the horizontal axis represents the number of learning steps. In addition, the
colored region shows the range in which the precision deviates from the mean value within −2σ
to +2σ where σ is the standard deviation calculated from five validation datasets. We conducted
three experiments with different combinations of features: i) with quantitative features alone, ii)
with qualitative features alone, and iii) with both, respectively. The precision is presented in Table
1. From Figures 5, it is found that the extent of the colored regions are relatively large, about 10%
of the mean precision value. The results can be explained as follows. Because the initial param-
eters were randomly determined, they influenced subsequent learning. In addition, the data was
too sparse because the only data from two viewpoints are used and it is not enough to learn spatial
relation sufficiently.

After 5,000 steps of learning, the precision in the case of using both qualitative and quantitative
features was the highest: 79.2% in “all”. Using quantitative features alone resulted in the second
highest precision: 77.2% in “all”, while using qualitative features alone resulted in the lowest pre-
cision: 60.5%. The precision decreased by over 15% in learning with qualitative features because
there were fewer features. We could distinguish between detailed places because distances and an-
gles were punctuated by 1 meter and 5 degrees, respectively, in quantitative features. However, when
using qualitative features, we estimated only order relations; therefore, it is not informative enough
to capture spatial features of the real world. Quantitative features make it possible to distinguish
between detailed places or objects, while qualitative features make it possible to capture the relation
of objects if the place of the car (self) is tilted a little. For this two reasons, the precision in the case
of using both qualitative and quantitative features was the highest. The update equation with the IPF
algorithm fell into instability and did not converge when the empirical distribution became 0 due to
the sparsity of the learning data. The experiments without regularization were also conducted, how-

7

ever they could not be calculated because of weight parameter overflow. Regularization parameter
µ made it possible to learn stably.

Figure 4: View of parking scenes

all place object
combination 79.2 81.6 83.0
qualitative 60.5 66.1 72.7
quantitative 77.2 79.4 82.0

Table 1: Precision of final step

Figure 5: Variation of each precision with changing the number of learning steps

5 Conclusion

In this study, with the aim of parking an autonomous car using speech dialog, we proposed the
method for estimating an appropriate parking space by properly understanding the content of users’
verbal instructions. The method includes estimating the parking space by achieving grounding be-
tween the location specified in an instruction and a location in the real world. We then conducted
the experiment with the proposed method. In terms of grounding parking instructions onto objects
in the real world, we have thus far focused on simple SDCs and estimated the parameters of the
grounding graphs and parking spaces by means of the belief propagation method. In parameter es-
timation, we proposed a stable learning method by introducing a regularization term into the IPF
algorithm [11]. Furthermore, we obtained the accuracy of cases in which features were expressed as
qualitative features, quantitative features, and both, and confirmed that the accuracy increased when
both features were used.

We calculated the marginal probabilities of the grounding graphs G3 with belief propagation al-
gorithm. Belief propagation enables to more correctly estimate groundings considering the entire
structure of graphs rather than the conventional approximation method , i.e., dividing a grounding
graph into a product of graphs with only one factor node and the inference is made independently
for each grounding variable of those factored graphs often used in the calculation for groundings.
In future work, we plan to expand the size of training data for improving the inference accuracy of
grounding graphs and extend the types of instructions, such as “Turn left at the next traffic light”, so
that we can treat the various driving instructions in addition to parking instructions. In addition, we
plan to extend the SDC so that it can handle dynamic driving instructions that depend on temporal
information, such as “Before the car behind us approaches, change to the next lane.”

8

Acknowledgement

The authors thank Prof. Manabu Oomae of Keio University for kindly providing us their autonomous
driving cars and experiment environment. We would also like to express our gratitude to Waymo’s
sponsorship and the literary fusion AI-Data science (AI-DS) center of Ochanomizu University for
their financial support to attend the workshop.

References
[1] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter, Ashis Gopal Banerjee, Seth Teller,

and Nicholas Roy. Understanding natural language commands for robotic navigation and mobile manip-
ulation. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[2] Mark Steedman. The syntactic process, volume 24. MIT press Cambridge, MA, 2000.

[3] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward understanding natural language
directions. In Proceedings of the 5th ACM/IEEE international conference on Human-robot interaction,
pages 259–266. IEEE Press, 2010.

[4] Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. Proceeding of
the Second AAAI Conference on Artificial Intelligence (AAAI’82), 1982.

[5] Akari Inago, Hiroshi Tsukahara, and Ichiro Kobayashi. Parsing parking instructions for self-driving cars
into spatial semantic descriptions. ICICA, 2019.

[6] Thomas M Howard, Stefanie Tellex, and Nicholas Roy. A natural language planner interface for mobile
manipulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 6652–
6659. IEEE, 2014.

[7] Rohan Paul, Jacob Arkin, Nicholas Roy, and Thomas M Howard. Grounding abstract spatial concepts for
language interaction with robots. In IJCAI, pages 4929–4933, 2017.

[8] Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor Darrell, and Bernt Schiele. Grounding of
textual phrases in images by reconstruction. In European Conference on Computer Vision, pages 817–
834. Springer, 2016.

[9] Yue Zhang and Stephen Clark. Shift-reduce ccg parsing. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 683–692.
Association for Computational Linguistics, 2011.

[10] Stefanie Tellex. Natural language and spatial reasoning. PhD thesis, Massachusetts Institute of Technol-
ogy, 2010.

[11] Stephen E Fienberg and Michael M Meyer. Iterative proportional fitting. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA DEPT OF STATISTICS, 1981.

[12] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Generalized belief propagation. In Advances in
neural information processing systems, pages 689–695, 2001.

A Belief propagation algorithm

Belief propagation makes it possible to calculate the marginal probability distribution of unobserved nodes
based on information of the observed nodes. Initially, messages from all factor nodes α to variable nodes i,
and messages from all variable nodes i to factor nodes α are initialized as 1 in the calculation of the marginal
probability distribution of the grounding graphs. Next, alternate message mα→i propagates from variable node
j ∈ xα\i that connects to factor node α except i and message mβ→i propagates from other factor nodes
β ∈ ∂i\α connecting through α. This is repeated until the value converges to a fixed point or the number of
updates reaches a predetermined maximum. The convergence decision is made when the absolute value of the
difference between a message updated t times and a message updated t+1 times is less than the predetermined
residual error, ϵ. The marginal probability of factor nodes p(xα) and variable nodes p(xi) can be calculated
with the converged messages. The marginal probability distribution of the factor nodes is used when learning,
while that of the variable nodes is used when inferring the type of car manipulation or objects. The above belief
propagation algorithm and equations are presented in Algorithm 2 [12].

9

Algorithm 2 Belief propagation algorithm
1. Initialize messages

m
(0)
α→i = 1,m

(0)
i→α = 1 (18)

2. Propagate messages until they converge

m
(t+1)
α→i (xi) ∝

∑
xα\i

Ψα(xα)
∏

j∈xα\i

m
(t)
j→α(xj) (19)

m
(t+1)
i→α (xi) ∝

∏
β∈∂i\α

m
(t)
β→i(xi) (20)

3. Calculate marginal probabilities by the converged message values m∗
α→i and m∗

j→α

p(xi) ∝
∏
α∋i

m∗
α→i(xi) (21)

p(xα) ∝ Ψα(xα)
∏
j∈xα

m∗
j→α(xj) (22)

10

