
StarNet: Targeted Computation for
Object Detection in Point Clouds

Jiquan Ngiam∗†, Benjamin Caine∗†, Wei Han†, Brandon Yang†,
Yuning Chai‡, Pei Sun‡, Yin Zhou‡, Xi Yi, Ouais Alsharif‡, Patrick Nguyen,

Zhifeng Chen†, Jonathon Shlens∗†, Vijay Vasudevan†
†Google Brain, ‡Waymo

{weihan,shlens}@google.com

Abstract

We present an object detection system designed for point cloud data that enables
targeted and adaptive computation. We observe that objects in point clouds are
quite distinct from traditional camera images: objects are sparse and vary widely
in location, but do not exhibit scale distortions observed in single camera perspec-
tive. These two observations suggest that simple and cheap data-driven object
proposals to maximize spatial coverage or match the observed densities of point
cloud data may suffice. This recognition paired with a local point cloud-based net-
work permits building an object detector that can adapt to different computational
settings and target spatial regions. We demonstrate this flexibility and the targeted
detection strategies it enables on the large-scale Waymo Open Dataset.

1 Introduction

Detecting and localizing objects forms a critical component of any autonomous driving platform
[1, 2]. Self-driving cars (SDC) are equipped with a variety of sensors such as cameras, LiDARs, and
radars [3, 4], where LiDAR is one of the most critical as it natively provides high resolution, accurate
3D data about the environment. However, object detection systems for LiDAR look remarkably
similar to systems designed for generic camera imagery.

Despite large modality and task-specific differences, the best performing methods for 3D object
detection re-purpose camera-based detection architectures. Several methods apply convolutions to
discretized representations of point clouds in the form of a projected Birds Eye View (BEV) image
[5, 6, 7, 8], or a 3D voxel grid [9, 10]. Alternatively, methods that operate directly on point clouds
have re-purposed two stage object detector design [11, 12, 13].

We start by recognizing that 3D region proposals are fundamentally distinct. Every reflected point
(above the road) must belong to an object or surface. We demonstrate that efficient sampling
schemes that match the data distribution are sufficient for generating region proposals. Then, each
proposed region is process independently. To avoid discretization, we featurize each local point
cloud directly [14, 15] in order to classify objects and regress bounding box locations [16, 17].

The resulting detector is as accurate as the state-of-the-art at lower inference costs, and more accu-
rate at similar inference costs. The model does not waste computation on empty regions because the
proposal method naturally exploits the sparse distribution of the point cloud. One can also dynam-
ically vary the number of proposals and the number of points per proposal at inference time since
the model operates locally. This allows the cost of inference to scale linearly, and permits a single
trained model to operate at different computational budgets. Finally, because each region is com-
pletely independent, one may select at run-time where to allocate region proposals based on context.

Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Process-
ing Systems (NeurIPS 2019), Vancouver, Canada.

R

Sample centers

Selected center Neighborhood points

Gather and featurize cells Project to anchor offsets

Featurizer

Box
Classifier

Box
Regressor

Box
Suppression

Predicted
Boxes

and
Scores

Figure 1: StarNet overview. After obtaining a proposal location, we featurize the local point cloud
around the proposal. We randomly select K points within a radius of R meters of each proposal
center. In our experiments, K is typically between 32 to 1024, and R is 2-3 meters. All local points
are re-centered to an origin for each proposal.

For example, a deployed system could exploit priors (e.g. HD maps or temporal information) to
target where in the scene to run the detector.

2 Related work

Object detection in point clouds has started with porting ideas from the image-based object detection
literature. By voxelizing a point cloud (i.e. identifying a grid location for individual points ~xi) into
a series of stacked image slices describing occupancy, one may employ CNN techniques for object
detection on the resulting voxel grids [5, 9, 10, 6, 7].

Employing a grid representation for point clouds in object detection presents potential drawbacks.
Even when ignoring the height dimension in 3D by using a Birds Eye View Representation (BEV),
convolutions can be expensive and the computational demand grows as roughly as O(hw) where h
and w are the height and width of an image. In practice, this constraint requires that CNNs operate at
no larger than ∼ 1000 pixel input resolution [18]. Given the large spatial range of LiDAR, selecting
a grid resolution to achieve this pixel resolution (e.g. 0.16 ∼ 0.33 meter/pixel [8]) discards detailed
spatial information. This often results in systematically worse performance on smaller objects such
as pedestrians [5, 9, 10, 7] where the latter may only occupy several pixels in a voxelized image.

For these reasons, many authors explored building detection systems that operate directly on repre-
sentations of the point cloud data. For instance, VoxelNet partitions 3-D space and encodes LiDAR
points within each partition with a point cloud featurization [9]. The result is a fixed-size feature
map, on which a conventional CNN-based object detection architecture may be applied. Likewise,
PointPillars [8] proposes an object detector that employs a point cloud featurization, providing in-
put into a grid-based feature representation for use in a feature pyramid network [19]; the resulting
per-pillar features are combined with anchors for every pillar to perform joint classification and
regression. The resulting network achieves a high level of predictive performance with minimal
computational cost on small scenes, but its fixed grid increases in cost notably on larger scenes and
cannot adapt to each scene’s unique data distribution.

In the vein of two stage detection systems, PointRCNN [12] employs a point cloud featurizer [15]
to make proposals via a per-point segmentation network into foreground and background. Subse-
quently, a second stage operates on cropped featurizations to perform classification and localization.

Finally, other works propose bounding boxes through a computationally intensive, learned proposal
system operating on paired camera images [11, 13], with the goal of improving predictive perfor-
mance by leveraging a camera image to seed a proposal system to maximize recall.

3 Methods

Our goal is to construct a detector that takes advantage of the sparsity of LiDAR data and allows
us to target where to spend computation. We propose a sparse targeted object detector, termed
StarNet: From a sparse sampling of locations (centers) in the point cloud, the model extracts a
local subset of neighboring points. The model featurizes the point cloud [14], classifies the region,
and regresses bounding box parameters. Importantly, the object location is predicted relative to the
selected location. Each spatial location may be processed by the detector completely independently.
An overview of this method is depicted in Figure 1 and Appendix C.

The structure of the proposed system confers two advantages. First, inference on each cell proposal
occurs completely independently, enabling computation of each center location to be parallelized.

2

Second, heuristics or side information [20, 7] may be used to rank the locations to process. This
permits the system to focus it’s computation budget on the most important locations.

3.1 Center location selection

We propose using an inexpensive, data-dependent algorithm to generate proposals from LiDAR with
high recall. In contrast to prior work [5, 8, 10], we do not base proposals on fixed grid locations, but
instead generate proposals to respect the observed data distribution in a scene.

(# points, 64)

Max

Concat

(64)

(# points, 128)

BN - Linear - ReLU

BN - Linear - ReLU

(# points, 256)

(# points, 64)

Figure 2: StarNet Block. We annotate edges
with tensor dimensions for clarity: (# points,
feature dimension) represents a point cloud
with # points with attached features.

Concretely, we sample N points from the point
cloud, and use their (x, y) coordinates as propos-
als. In this work, we explore two sampling al-
gorithms: random uniform sampling, and farthest
point sampling (FPS), which are compared in Ap-
pendix D and visualized in Appendix F. Ran-
dom uniform sampling provides a simple and ef-
fective baseline because the sampling method bi-
ases towards densely populated regions of space.
In contrast, farthest point sampling (FPS) selects
individual points sequentially such that the next
point selected is maximally far away from all pre-
vious points selected, maximizing the spatial cov-
erage across the point cloud. This approach per-
mits varying the number of proposals from a small,
sparse set to a large, dense set that covers point
cloud space.

3.2 Featurizing local point clouds

We experimented with several architectures for
featurizations of native point cloud data [15, 21]
but the StarNet featurizer most closely followed
[22]. The resulting architecture is agnostic to the
number of points provided as input [15, 21, 22].

StarNet blocks (Figure 2) take as input a set of points, where each point has an associated feature
vector. Each block first computes aggregate statistics (max) across the point cloud. Next, the global
statistics are concatenated back to each point’s feature. Finally, two fully-connected layers are ap-
plied, each composed of batch normalization (BN), linear projection, and ReLU activation. StarNet
Blocks are stacked to form a featurizer (Figure 8).

3.3 Anchor Boxes.

We use a grid of G×G total anchor offsets relative to each cell center, and each offset can employ
different rotations or anchor dimension priors. We project each featurized cell to D dimensional
feature vectors at each location offset from which we predict classification logits and bounding box
regression logits following [10, 8]. Ground truth labels are assigned to individual anchors based
on their intersection-over-union (IoU) overlap [10, 8]. To make final predictions, we employ an
oriented, 3-D multi-class version of non-maximal suppression (NMS) [23].

4 Results

In this work, we focus on 3D vehicle and pedestrian detection from LiDAR point cloud data. All
experiments in this section were performed on the Waymo Open Dataset, but we provide KITTI [1]
results in Appendix A, and ablations regarding the importance of data augmentation on KITTI in
Appendix B. Additionally, a comparison of sampling techniques can be found in Appendix D.

4.1 Flexible detection on a large-scale self-driving dataset

To demonstrate StarNet’s flexible design, we show two strategies for altering a single trained model’s
computational cost at inference time: varying the number of proposals, and because the point featur-
izer is agnostic to the number of points, varying the number of points used as input to our featurizer

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
floating point operations (hundreds of billions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
e
a
n
 a

v
e
ra

g
e
 p

re
ci

si
o
n
 (

m
A

P
)

Pedestrians

StarNet (64 pts)

StarNet (128 pts)

StarNet (256 pts)

StarNet (384 pts)

PointPillars

0.0 0.5 1.0 1.5 2.0 2.5
floating point operations (hundreds of billions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
e
a
n
 a

v
e
ra

g
e
 p

re
ci

si
o
n
 (

m
A

P
)

Vehicles

StarNet (64 pts)

StarNet (128 pts)

StarNet (256 pts)

StarNet (384 pts)

PointPillars

Figure 3: Flexible computational cost of detection for (left) pedestrians and (right) vehicles.
Across 5 separately-trained PointPillars models [8], computational cost grows quadratically with
increased spatial resolution for the LiDAR pseudo-image. All curves for StarNet arise from a single
set of saved model weights. Each curve traces out StarNet accuracy on the Validation set for a fixed
number of point cloud points. Points along on a single curve indicate 64 to 1024 selected centers.

for each proposed region. Each blue curve in Figure 3 shows the computational cost versus predic-
tive performance of the same model evaluated with a different number of input points per proposal,
while varying the number of proposals. We compare our single StarNet model to a family of base-
line PointPillars models (black curve) trained at 5 different grid resolutions.12 Validation accuracy
was computed on all annotated bounding boxes in the Waymo Open Dataset with 5+ LiDAR points.

We observe in Figure 3 that a single StarNet model can outperform our baseline in both mean average
precision and FLOPs, and in the case of pedestrians offers a more dramatic improvement. It is also
evident that PointPillars (black curve) increases in precision for both pedestrians and vehicles with
increased grid resolution, but with a computational cost that grows quadratically.

4.2 Targeted computation for point cloud detection

0 10 20 30 40 50 60 70 80 90
distance (meters)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
a
n
 a

v
e
ra

g
e
 p

re
ci

si
o
n
 (

m
A

P
) 128 Proposals

192 Proposals

256 Proposals

384 Proposals

512 Proposals

768 Proposals

1024 Proposals

Figure 4: Spatially targeting detection. We
selected 128-1024 spatially-closest proposals
and evaluate the mAP in 10m distance bins.

Our approach enables proposals to be ranked by
importance, which can be leveraged as a mecha-
nism for targeting computation. We demonstrate
this by first ranking each proposal by distance
from the vehicle. Next, we select a subset K =
128− 1024 proposals from N = 1024 proposals,
and evaluate our mean average precision (mAP)
in 10 meter bins from the vehicle (Figure 6). We
find that the same model with one eighth the pro-
posals and computational cost achieves the same
mAP up to 10 meters. Likewise, the same model
with fewer than half the proposals and computa-
tional cost achieves the same mAP as the default
model up to 20 meters.

5 Discussion

In this work, we presented a 3D object detection system that operates on native point cloud data.
Our approach leverages the sparse distribution of point cloud data, and allows for flexible targeting
across a range of computational priorities. We find that the system is competitive with state-of-
the-art systems on the large-scale Waymo Open Dataset. We demonstrate how in principle the
detection system may be employed to target spatial locations without retraining nor sacrificing the
prediction quality. For instance, depending on evaluation settings, a single trained pedestrian model
may exceed the predictive performance of a baseline convolutional model by ∼ 48% at a similar
computational demand; or, the same model may achieve the same predictive performance but with
∼ 20% of the computational FLOPS cost.

1We use resolutions of [128, 192, 256, 384, 512] pixels, with 16k to 32k featurized locations (pillars).
2Following [8], vehicle models have an output stride of 2, and pedestrian models an output stride of 1

4

References
[1] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti

dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Kr-
ishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous
driving. arXiv preprint arXiv:1903.11027, 2019.

[3] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and Ragunathan Raj Rajkumar. A multi-sensor
fusion system for moving object detection and tracking in urban driving environments. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 1836–1843. IEEE, 2014.

[4] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James Diebel,
Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, et al. Stanley: The robot that won the
darpa grand challenge. Journal of field Robotics, 23(9):661–692, 2006.

[5] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection from point clouds.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7652–7660,
2018.

[6] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious: Real time end-to-end 3d detection, track-
ing and motion forecasting with a single convolutional net. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3569–3577, 2018.

[7] Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Exploiting HD maps for 3d object detection. In
Conference on Robot Learning, pages 146–155, 2018.

[8] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars:
Fast encoders for object detection from point clouds. arXiv preprint arXiv:1812.05784, 2018.

[9] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4490–4499,
2018.

[10] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10):3337, 2018.

[11] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Ipod: Intensive point-based object
detector for point cloud. arXiv preprint arXiv:1812.05276, 2018.

[12] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointRCNN: 3d object proposal generation and
detection from point cloud. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–779, 2019.

[13] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for 3d object
detection from rgb-d data. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 918–927, 2018.

[14] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 652–660, 2017.

[15] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in Neural Information Processing Systems, pages
5099–5108, 2017.

[16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing Systems, pages
91–99, 2015.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

[18] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fis-
cher, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy trade-offs for modern
convolutional object detectors. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7310–7311, 2017.

5

[19] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[20] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[21] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point clouds.
arXiv preprint arXiv:1811.07246, 2018.

[22] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

[23] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587, 2014.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988,
2017.

6

Targeted Computation for Object Detection in Point Clouds:
Supplementary Material

A KITTI Results

We evaluate StarNet on the popular self-driving benchmark KITTI [1]. Results here arise from two separately
trained models, one for vehicles, and another for pedestrians and cyclists, similar to [8]. Our StarNet model
uses 256 farthest point sampling centers (proposals) during evaluation, and a series of 5 StarNet blocks. Full
training details are available in already open sourced code available at Anonymized.

We demonstrate that our performance is comparable on the KITTI test set to several competitive LiDAR only
baselines. Because KITTI is relatively small compared to other deep learning datasets, data augmentation has
been used extensively for all competing methods. We note how gains in predictive performance due to data
augmentation (up to +18.0, +16.9 and +30.5 mAP on car, pedestrian and cyclist) are substantially larger than
gains in performance observed across advances in detection architectures, and provide a data augmentation
ablation for KITTI below in Appendix B. As such, we focus the majority of the above paper on the much larger
Waymo Open Dataset.

Table 1: Results on the KITTI test object detection benchmark for object detection systems using
3-D evaluation. All detection results and comparisons based only on LIDAR data. mAP calculated
with an IOU of 0.7, 0.5 and 0.5 for vehicles, cyclists and pedestrians, respectively.

Car Pedestrian Cyclist
Model Name Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

VoxelNet [9] 77.47 65.11 57.73 39.48 33.69 31.5 61.22 48.36 44.37
SECOND [10] 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90
PointPillars [8] 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92

StarNet 81.63 73.99 67.07 48.58 41.25 39.66 73.14 58.29 52.58

B Data Augmentation on KITTI

Table 2: Data augmentation improves performance substantially on KITTI. All results reported
on 3D detection metric for validation data. Global data augmentations consist of randomly flipping
about y-axis, uniformly randomly rotating all points ± 45◦, uniformly randomly scaling all points
[0.95, 1.05] and randomly translating individual points along the z-axis with std of 0.35. Bounding
box augmentations consist of augmenting the bounding boxes from a ground truth data base (< 25
boxes per scene) [10] and uniformly randomly rotating boxes by ± 9◦.

Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

no augmentations 77.8 68.2 65.7 45.5 40.8 36.9 56.1 36.9 35.5
+ global augment 85.4 74.8 72.7 46.3 39.4 36.2 75.8 51.9 48.7
+ bbox augment 86.6 77.0 74.6 63.9 56.5 52.4 81.5 58.3 54.8
+ both 90.4 79.7 77.7 71.8 61.0 53.8 86.5 65.2 66.0

We employed the following data augmentations culled from a survey of the recent literature [6, 5, 7, 9, 10,
8]. per-bounding box rotation (− π

20
, π

20
), y-axis scene flipping, world coordinate scaling (0.95, 1.05), global

rotation (−π
4

, π
4

), and ground-truth bounding box augmentation (copy-pasting objects from different scenes).

In order to parse the relative benefit of various data augmentations strategies to the overall performance of
the model, we selectively removed data augmentations before training the model and report the correspond-
ing results in Table 2. We find that the addition of data augmentations for the bounding box labels as well as
augmentations for global alterations of the point clouds substantially improved the detection performance. Fur-
thermore, both sets of augmentations are additive in terms of improving predictive performance. In particular,
we note that some of the gains in predictive performance (up to +30.5 mAP on cyclist) are substantially larger
than the gains in performance observed across advances in detection architectures [10, 8].

7

C Architecture and Training of StarNet

C.1 Training Details

We briefly describe our training procedure for our Waymo Open Dataset models, but encourage readers to
reference our already open sourced code at Anonymized. All models are trained with the Adam [24] optimizer
with a learning rate of 0.001, and a exponential decay to 0 over 75 epochs (with decay starting at epoch 5).
We use gradient clipping with a value of 5, a L2 regularization loss weight of 3e-5 for vehicles, and 3e-6 for
pedestrians. We employ a batch size of 32 during training.

Both vehicle and pedestrian StarNet models use a featurizer architecture consisting of 5 StarNet blocks, each
with an input dimensionality of 128, a hidden dimensionality (the first fully connected layer) of 256, and an
output dimensionality of 64. After concatenation of each blocks global features, the output dimensionality of
the featurizer is 384. We calculate the mean of the classes dimensions (height, width, and length) from the
training set, and use 4 rotations ([0, π

2
, 3π

4
, π
4
]) for our box prior. This box prior is placed in a 5x5 equispaced

grid around each sampled center, giving us 100 anchors per sampled region. For each sampled region, we
project the features from our StarNet featurizer to 128 features for each anchor offset. We then use a linear
layer to classify the class of each anchor with a focal sigmoid loss (α = 0.25, γ = 2), and another linear layer
to regress the 7 parameters of our box. Rotation is encoded as sin(θ).

Finally, we apply a 3D oriented, per-class non-maximum suppression (NMS) to our predictions, keeping the
top 512 boxes. We found for vehicles the best NMS parameters, while not overly sensitive, were a 3D IoU
threshold of 0.03, and an NMS score threshold of 0.31. For pedestrians, we found a higher 3D IoU threshold
ideal, with a value of 0.46, and a score threshold of 0.01. Again, the model was not overly sensitive to these
values, beyond the discrepancy of IoU threshold between classes.

C.2 Ground removal from point clouds

One important feature for the efficiency of the proposal system is to remove the points associated with ground
reflections. We follow previous work and remove points with a z-dimension below a certain threshold [10, 8],
although more sophisticated methods are possible [20]. For KITTI, z > −1.35. For the Waymo Open Dataset,
we computed the 10th and 90th percentile of the center z location of all objects and kept only points with z
coordinate in that range. In spite of this heuristic, FPS still covers many ground points; high-quality ground
removal would decrease the number of centers required.

C.3 Constructing final predictions

Algorithm 1: StarNet

Input : N,K,R,G,X = {~xi}, F = {~fi}, A =
{anchors}, where |A| = G2

Output: Coordinates and scores of boxes B
// Samples N centers from X .
C ←− Sample(X,N)
B ←− ∅
for i ∈ C do

// Samples K points near ~xi.
P = Neighbor(~xi,K,R)
// Featurizes points around ~xi.
~u = Featurize({~xj |j ∈ P}, {~fj |j ∈ P})
// Predicts boxes and their scores, given
// feature ~u and anchors A.
B′ = PredictBoxes(~u,A)
B ←− B ∪B′

end
B ←− NonMaximumSuppression(B)

The current design uses a grid of G×G total anchor
offsets relative to each cell center, and each offset can
employ different rotations or anchor dimension pri-
ors. We emphasize that unlike single-stage detectors
[8, 10], the anchors are data-dependent since they are
based on the proposals.

We project each featurized cell to G × G D-
dimensional feature vectors; the same projection
weights are shared for all cells, but different weights
are used for each grid offset. These feature vectors
are then used as input to classification and regression
heads that produce classification logits and bounding
box regression logits. The regression logits predict
δx, δy, δz corresponding to residuals of the location
of the anchor bounding box; δh, δw, δl correspond-
ing to residuals on height, width and length; and a
residual on the heading orientation δθ, parameter-
ized following [10, 8]. We use a smoothed-L1 loss
on each predicted variate [8]. The classification log-
its are trained with a focal cross-entropy loss on the
class label [25].

Ground truth labels are assigned to individual anchors based on their intersection-over-union (IoU) overlap [10,
8]. We compute the intersection-over-union (IoU) for each anchor and ground truth label and assign labels to
foreground or background if the IoU exceeds or falls short of prescribed foreground an background thresholds
(E.g., the pedestrian model for Waymo Open Dataset used 0.6 and 0.45 as foreground and background IoU
threshold). Otherwise, objects are ignored. We also perform force-matching if an object is not assigned as
foreground to any anchor: we assign the object as foreground to the highest matching anchor if (a) the highest

8

32 64 128 256 512 1024 2048 4096
Number of Centers

0

20

40

60

80

100

C
o
v
e
ra

g
e
 (

%
)

41.1

54.3

67.2

78.3

87.8

93.6
97.4 98.7

44.2

77.4

96.1
98.9 99.2 99.3 99.4 99.4

random uniform

farthest point

32 64 128 256 512 1024 2048 4096
Number of Centers

0

20

40

60

80

100

C
o
v
e
ra

g
e
 (

%
)

14.2

21.1

29.5

39.2

49.7

60.0

69.4

76.6

14.3

32.5

58.7

80.8

87.3 88.1 88.3 88.4

random uniform

farthest point

Figure 5: Simple sampling procedures have good coverage over ground truth bounding boxes.
The coverage of proposals for cars is plotted against the number of samples on KITTI (left) and
Waymo Open Dataset (right). Error bars (not shown) range from 0.5%-3.0%. See text for details.

matching anchor is not assigned to foreground of any object and (b) the IoU to the matching anchor is greater
then zero.

To make final predictions, we employ an oriented, multi-class version of non-maximal suppression (NMS)
[23]. NMS removes predictions of the same class that heavily overlap with one another. Through preliminary
experiments, we found that setting the IoU threshold to 0.46 resulted in the best predicted results for the
pedestrian model for Waymo Open Dataset. Note that NMS is not used during training resulting in potentially
faster training times than other detection approaches [16, 17].

D Sampling strategies for point cloud detections

As a first step in constructing the object detection system, we explored two simple strategies for naively sam-
pling point clouds: random sampling and farthest point sampling (Section 3.1). Figure 7 in Appendix F show-
cases typical results of what each proposal mechanism generates on scenes from the Waymo Open Dataset.
Note that random sampling samples many centers in dense locations, whereas farthest point sampling maxi-
mizes spatial coverage of the scene.

64 12
8

19
2

25
6

38
4

51
2

76
8

10
24

Number of centers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
e
a
n
 a

v
e
ra

g
e
 p

re
ci

si
o
n
 (

m
A

P
)

Pedestrians

StarNet (Farthest Point Sampling)

StarNet (Random Uniform)

Figure 6: Adaptive computation with a sin-
gle trained model. A Pedestrian StarNet,
trained with 1024 proposals, evaluated on
Waymo Open Dataset using 64 to 1024 pro-
posals from either farthest point or random uni-
form sampling.

To quantify the efficacy of each proposal method, we
measure the coverage as a function of the number of
proposals. Coverage is defined as the fraction of an-
notated objects with 5+ points that have IoU > 0.5 with
the sampled boxes. Figure 5 plots the coverage for each
method for a fixed IOU of 0.5 for cars in KITTI [1] and
the Waymo Open Dataset. All methods achieve mono-
tonically higher coverage with greater number of pro-
posals with coverage on KITTI exceeding 98% within
256 samples. Because random sampling is heavily bi-
ased to regions which contain many points, there is a
tendency to oversample large objects and undersample
regions containing few points. Farthest point sampling
(FPS) uniformly distributes samples across the spatial
extent of the point cloud data. We observe that FPS pro-
vides uniformly better coverage across a fixed number
of proposals and we employ this technique for the rest
of the work. Finally, in Figure 6 we show how this rela-
tionship translates to mean average precision (mAP) for
a single StarNet Pedestrian model evaluated with both
sampling methods.

E Details of Waymo Open Dataset

The Waymo Open Dataset contains both LiDAR points and camera images – although this work focuses on
the former. The dataset was collected in both urban and suburban areas, in a variety of weather conditions, and
across varying times of the day. The LiDAR spans a circular volume centered about the self-driving car with a
radius of 75m. The dataset is split into training, validation. The training split consists of 158,361 frames across
798 distinct scenes. The validation split consists of 40,077 frames across 202 scenes. Each scene consists of
about 200 frames recorded at 10 Hz.

9

The dataset was annotated exhaustively for vehicles and pedestrians. Objects were human-labeled based on
camera and LiDAR images. Thus, many annotated objects are minimally observable based on the LiDAR
and contain very few reflected points. The training split contains approximately 2.2M pedestrians and 4.8M
vehicles. The validation split contains 539k pedestrians and 1.25M vehicles. Vehicles were annotated across
a large array of sizes from mopeds to large trucks. Pedestrians were annotated even in crowded environments
indicating that some pedestrian boxes may overlap and lie within closer proximity.

F Visualizing Sampling Methods

[h]

Figure 7: Example of random uniform sampling (left) and farthest point sampling (right) with the
same number of samples. Red indicate selected centers. Green indicate pedestrians. Note that
random uniform sampling biases towards high density regions, while farthest point sampling evenly
covers the space. Neither place any proposals in empty space.

G StarNet Featurizer

(# points, 3 + flaser)

Input

Linear - ReLU

StarNet Block

(# points, 64)

(# points, 64)

StarNet Block

StarNet Block

StarNet Block

StarNet Block

Mean

Mean

Mean

Mean

Mean

Mean

Concat

(# points, 64)

(# points, 64)

(# points, 64)

(# points, 64)

(384)

10

Figure 8: We stack multiple StarNet blocks to build the full network for featurization. There are
readout connections from each block to the final feature representation.

11

