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Abstract

Large-scale ground truth dataset is of crucial importance for deep learning based
segmentation models, but annotating per-pixel masks is extremely time consuming.
In this paper, we investigate semi-annotated graph based segmentation algorithms
that enforce connectivity. To be more precise, we introduce a class-agnostic
heuristic of a discrete Potts model, and a class-aware Integer Linear Programming
(ILP) that ensures global optimum. Both algorithms are able to generate panoptic
segmentation supervised by scribbles, and can take RGB, or utilize the feature
maps from any DCNN, whether trained on the target dataset or not, as input. We
present competitive semantic segmentation results on the PASCAL VOC dataset,
as well as report panoptic segmentation result on the more challenging Cityscapes
dataset. Our algorithms show superior results that makes them suitable for weakly
supervised segmentation on new dataset, or interactive semi-automated ground
truth generation by human annotators on existing dataset.

1 Introduction

Deep Convolutional Neural Networks (DCNNs) excel at a wide range of image recognition tasks [16,
33, 39], such as semantic segmentation [10, 39, 51] and panoptic segmentation [20, 48, 47, 19].
Semantic segmentation studies the tasks of assigning a class label to each pixel of an image, where
instance segmentation [11] detects and segment each object instance. Panoptic segmentation unifies
both tasks that investigate to segment both things (such as person, cars) and stuff (such as road, sky)
classes, which is more relevant in the application towards autonomous driving and parking [38].

While DCNNs show outstanding results for semantic and panoptic segmentation, they have two
conceptional problems. First, they require huge amounts of annotated data. Annotating segmentation
masks is a very time consuming and labor extensive task. For example, annotating a semantic image
mask took “more than 1.5h on average” on the Cityscapes dataset [12]. For autonomous parking,
there are no public surround-view fish-eye cameras [4] dataset available. In addition, DCNNs rely on
their implicitly learned generalization probability and most of the state of the art architectures do not
make use of any domain specific knowledge, such as neighborhood relations and connectivity priors
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Figure 1: Left: image with scribbles from Pascal VOC dataset. Mid-left: semantic segmentation
result of our heuristic using layer 3 of ResNet 101 as input information. Mid-right: result of our ILP
using probability map of DeepLab V2 as input. Right: ILP without connectivity prior (MRF).

for segments. In contrary, classical graph based segmentation models [6, 7, 49] do not require any
learning data and can incorporate specific domain knowledge. Their major drawback is they relay on
human designed similarity features and require complex optimization algorithms or solvers, which
are mainly CPU based and non-suitable for real time applications.

In this work, we explore the combination of DCNNs and graph based segmentation algorithms for
the task of annotation ground truth panoptic segmentation. Specifically, we design a heuristic region
growing method based on the Potts model [31], as well as an optimization solver based integer
linear programming (ILP) model. We utilize scribble based annotations from human annotators as an
initialized hard constraints for our optimization algorithm, which is typical in a human-in-the-loop
(HITL) annotation process. We explore two different scenarios. In the first scenario, we assume that
for the segmentation task, there is already a pre-trained neural network with the same class mapping.
Here, we use the probability map of the DCNNs, as well as scribbles, as input to our algorithms
and show significantly improved results for semantic segmentation on the Pascal and Cityscape
datasets [12]. In the second scenario, we assume that no pre-trained DCNN for the same objective is
available. This is true for a lot of existing datasets, e.g., Cityscapes does not contain any class labels
for lane marking, which is crucial information for an autonomous vehicle. In this case, we cannot
use the class specific probability map, but the more generic low level features of a DCNNs can be
utilized as feature description for the optimization algorithm.

To highlight the conceptual limitation of DCNNs, we propose two interactive graph based segmenta-
tion algorithms, that both enforces connectivity of pixels that belong to the same region (to be more
precise in Sec. 2.1) of a class. We first present a class-agnostic heuristic algorithm that efficiently
approximates the Potts model. We then study and propose a novel ILP of the markov random field
(MRF) by introducing pseudo edges in case of multi-instances (or regions) of the same class, that
greatly reduces the complexity. Furthermore, we add probability maps and lower level feature maps
of DCNNs as unary and pairwise priors for the heuristic and ILP, which improves the accuracy
by a large margin. The connectivity prior [46] improves the quality of the segmentation and gives
the annotator more control over per scribble instance (or regions) segmentation. See Fig. 1 for a
visualization of our result for just one loop of drawing scribbles.

We prototype our algorithms for the task of ground truth segmentation, and present competitive
semantic segmentation on the PASCAL VOC dataset, as well as report panoptic segmentation on
the more challenging Cityscapes dataset, both supervised by one single round of scribbles. While
there is public scribble dataset [25] for Pascal but none for Cityscapes, we create a artificial scribble
dataset 2 for Cityscapes based on the ground truth. To investigate the general purpose of low level
DCNN feature, we compare DCNN trained on ImageNet with and without fine tuning on the target
dataset. Our experiments show that incorporating the connectivity prior as well as the neural network
feature maps greatly improve the algorithm performance.

Summarized our key contributions are

• an in depth analysis of a combination of neural network and graph based scribble supervised
segmentation algorithms with connectivity prior,

• improved heuristic algorithm and novel formulation of the ILP via pseudo edges which
superior performance,

2We will make the code that generates the Cityscapes artificial scribble dataset open-source.
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• extensive evaluation of the scribble based weakly supervised algorithm for semantic and
panoptic segmentation on two challenging datasets.

Our proposed algorithms have multiple use cases in annotating datasets for panoptic segmentation.
Firstly, when no training data is available, one can use our algorithm to generate a good quality
panoptic segmentation baseline. Secondly, if training data is available, one can use any trained
DCNN and its probability as the input feature to our algorithm, then improve the inference result
of the DCNN. These can be used inside any HITL annotation tool, as the annotator can interact
with the image in forms of scribbles until satisfaction. Finally, it can be used inside any weakly or
semi-supervised learning framework for panoptic segmentation. To the best of our knowledge, our
methods are the first ”non-DCNN” panoptic segmentation algorithms on Cityscapes with competitive
results, which shows the potential improvement gained by a combined approach.

Related Work. The procedure of annotating per pixel segmentation masks is similar to interactive
image segmentation, which is widely studied in the past decade. The method using bounding
boxes [34] is suitable for instance segmentation, which requires the user to draw the box as tight as
possible. Similarly, 4 extreme points [28, 30] can be used. In both cases only the thing classes can
be annotated. On the other hand, polygon based methods, such as LabelMe [36], require users to
carefully click the extreme points of things and stuff, and the accuracy heavily depends on the number
of clicks. On the contrast, scribbles are recognized as a more user-friendly way among various forms
of user interactions [8, 23]. Moreover, it is also easier to annotate stuff classes using scribbles.

Modern segmentation annotation tools often adopts deep learning based methods, including Polygon-
RNN++ [2] and Curve-GCN [27]. Besides, they also take advantage of deep learning based ensemble
learning [52], to combine several inference results to produce better segmentation. However, these
methods requires existing ground truth dataset for DCNNs to learn on the first hand, which may not
be available when unknown domains or new classes are introduced.

As a cheaper alternative, weakly supervised segmentation has drawn a lot of attention recently.
[13, 18, 24] claim that weekly iteratively trained by just bounding boxes and image tags, the DCNN
can get 95% score compared to fully supervised on Pascal VOC. Since this method emphasizes on
thing classes, it has worse score (or even none) on stuff classes. Instead, [25, 9] claim that iteratively
training a DCNN by scribble annotations alone suffers only a small degradation in performance on
both thing and stuff classes.

For graph based methods, the (discrete) Potts model [31] is widely used for denoising and segmen-
tation. The author of [43] formulate the problem as an ILP and tries to solve the global optimal
solution, but only to a reduced image size, while [29] proposed an efficient region fusion based
heuristic algorithm. The author of [40] extend their work by incorporating scribbles and enforcing
connectivity of pixels with the same scribble at every iteration (which we call `0Hg).

The MAP-MRF (maximizing a posterior in an markov random field) has been well studied for image
segmentation. Previous methods focus on local priors[6, 21], and efficient approximate algorithms
exists, e.g., graph cut [7] and belief propagation [49]. Recently, [32, 41] has looked into the global
connectivity prior of MRF, and formulate the problem as an ILP, which uses the cutting plane method
and are solved by an ILP solver. Solving an ILP is in generalNP-hard, and the branch and bound [22]
is a fundamental method to solve an ILP inside any modern ILP solver [3].

Our proposed algorithms are scribble based with global connectivity prior, which enforces pixels of
the same region to be connected, and allows the annotator to better control the final segmentation.

2 Proposed approach

2.1 Prerequisite

Given an image, we build an undirected graph G = (V,E) where V represents a set of pixels (or
superpixels) and E a set of edges consisting of un-ordered pairs of nodes. Image segmentation can
thus be transformed into a graph labeling problem, where the label set C is pre-defined.

When talking about segmentation, we need to first distinguish between class, instance, and region
(associated with a scribble) ID of a node. In semantic segmentation, the task is to assign a class label
to each node in a graph. In panoptic segmentation, one has to further assign an instance ID to the
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Figure 2: Left: our scribble policy to draw as many scribbles as there are separated regions. Middle:
ILP-D that introduces dummy class variables on each region. Right: ILP-P that introduces pseudo
edges which connect multiple regions of the same class, which does not increase number of variable.

node that belong to the “thing” class. In this paper, our algorithms require an additional region ID,
which is linked to a scribble and we assume nodes within the same region must be connected (to be
explained in Sec. 2.4). This is to deal with the case where an object of the ‘thing” or “stuff” class is
separated into several connected regions, e.g., the car in Fig. 2 is separated into two regions by a tree.
Afterwards, the class and region labels can be combined to generate a panoptic segmentation.

2.2 Overall workflow

We first describe the pre-processing steps before running the two proposed segmentation algorithms
from Sec. 2.3 through 2.5, i.e., applying superpixel algorithm as a dimension reduction step, the
scribble policy needed to follow in order to produce panoptic segmentation, and extracting different
levels of image features to pass to the algorithm. Thereafter, in Sec. 2.6, we discuss the formal
definition of connectivity, and the two proposed algorithms in details, i.e., the class-agnostic heuristic
and the class-aware ILP with connectivity constraints.

2.3 Superpixels as dimension reduction

Superpixels have long been used for image segmentation [44, 14, 42, 1], as they can greatly reduce
the problem size while not sacrificing much of the accuracy. In this paper, we adopt SEEDS [14]
to generate superpixels on the PASCAL VOC dataset [15], while using a deep learning based
method [45] on the more challenging Cityscapes dataset [12]. We then build a region adjacency graph
(RAG) G(V,E) of the superpixels, where each superpixel forms a node (vertex) and edges connect
two adjacent superpixels. The RAG is then processed by our graph based algorithms.

2.4 Extracting features using scribbles

Our segmentation algorithms are scribble supervised, which are two folded. On the one hand, the node
labels, such as class, instance and region IDs are fixed if the nodes are covered by the corresponding
scribbles. On the other hand, for the ILP algorithm, if no high level image information exists, the
superpixels covered by scribbles will be used to extract information for the class, i.e., one can use the
average color of the scribbled superpixels to represent the corresponding class [41].

Scribbles generation policy. First of all, the scribble itself must be connected. Second, one has to
draw as many scribbles as there are connected regions (both “thing” and “stuff” class) presented in
the image. For instance, if an object is cut into separated regions, one has to draw a scribble on each
region. One sample image with scribbles is shown in Fig. 2.

2.5 Extracting features from images by DCNN

Although the input to the algorithms can be as simple as image RGB information, one can also take
advantage of the modern DCNN to extract deeper features. We distinguish two scenarios:
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• No previous training data is available – one starts annotating images in a new dataset.

• Training data available – one continues annotating more images of an existing dataset.

In the former case, other than RGB, one can also adopt any base network (i.e., ResNet 50 [16])
pre-trained on other datasets (i.e., ImageNet) and use the output of the low level features that extracts
image edges, textures, etc. In the later case, one can fully utilize any modern DCNN trained on the
existing dataset, and use the output of the final layer (i.e., probability map). We conduct detailed
experiments on adopting different levels of feature maps as input to our algorithms in Sec. 3.

2.6 Our proposed optimization algorithms

Given a region adjacency graph G(V,E), we use graphical models to propagate information from
labeled (scribbles) to unlabeled nodes. We present a local greedy class-agnostic clustering algorithm
of the discrete Potts model, and a class-aware ILP formulation of MRF with connectivity prior.

2.6.1 The connectivity prior

Two nodes u, v in a graph G are connected if there is a (u, v)-path in G. G is called connected if
every pair of nodes are connected in G, otherwise it is disconnected. Let Ḡ` ⊆ G be a connected
subgraph where every node is labeled ` ∈ C. Then, the image segmentation with connectivity
constrains corresponds to find a partition of G into k (k = |C|) connected (and disjoint) subgraphs
{Ḡ1, Ḡ2, . . . , Ḡk}. Enforcing connectivity constrains itself is proven to be NP-hard even in the
rooted case [41], where at least one node of each subgraph is fixed (fulfilled by our scribble policy).

2.6.2 The `0 region fusion based heuristic

Given a graph G(V,E), Let yi be the information (either RGB or from any DCNN) of node i, and wi

be its estimated value, the discrete Potts model [31] has the following form:

min
w

∑
i∈V
‖wi − yi‖2 +

∑
(i,j)∈E

λ ‖wi − wj‖0 , (1)

where λ is the regularization parameter. Here, the first term is the data fitting and the second is the
regularization term. We recall that the `0 norm of a vector gives its number of nonzero entries.

In this paper, we introduce an iterative scribble based region fusion heuristic algorithm (which we
call `0Hl) with the “class” and “region” ID for each node. In the beginning, the nodes covered by
the same scribble are grouped together and labeled with the same IDs, while all other nodes are
unlabeled and in their individual group. Note that different regions can share the same class ID.
Then the procedure of merging groups follows that of [29], which iterates over each group and its
neighboring, except that it needs to first check the region ID. If both groups have region IDs and are
different, then they cannot be merged. In all other cases, i.e., if both groups have no region ID or
have the same region ID, the following merging criteria of [29] are checked:

σi · σj · ‖Yi − Yj‖2 ≤ β · γij · (σi + σj). (2)

where σi denotes the number of pixels in group i, Yi the mean of image information (e.g., RGB color)
of group i, and γij denotes the number of neighboring pixels between groups i and j. Here, β is the
regularization parameter, and it increases over the iteration number.

If (2) is satisfied, two groups are merged, and their labels are updated according to the following rule.
If both groups have no “region” ID, the merged group still have none, hence unlabeled. If only one
group has region ID (by our policy also class ID), the merged group inherit the label, hence labeled.

After one iteration of all groups, β increases (follows the exponential growing strategy of [29]), i.e.,
β = ( iter

50 )2.2 ∗ η, where “iter” is the current iteration number and η is a parameter. The procedure
continues until all groups are labeled, and the complexity of `0Hl is O(n) (n is the nodes number).

Note that the above algorithm is approximate to (1), and connectivity of each region is enforced
at every step. Given desired scribbles, `0Hl is able to generate panoptic segmentation (and also
semantic segmentation). Also note that the class ID does not play any role in the algorithm, it inherits
from the scribble and propagates with the region ID. Hence, this algorithm is class-agnostic.
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2.6.3 The ILP formulation with connectivity constraints

The MRF with pairwise data term can be formulated as the following ILP:

minx
∑

`∈C

∑
i∈V

c`ix
`
i + λ

∑
`∈C

∑
(i,j)∈E

dij |x`i − x`j | (3)∑
`∈C

x`i = 1, ∀i ∈ V, (3a)

x`i ∈ {0, 1}, ∀i ∈ V, ` ∈ C, (3b)

where c`i denotes the unary data term for assigning class label ` to node i (hence class-aware), dij
the simplified pairwise term for assigning i, j different labels, and λ is the regularization parameter.
Constraint (3a) enforces that each node is assigned exactly one label, i.e., x`i = 1 if and only if node i
is labeled `. Note that the absolute term can be easily transformed into linear terms by introducing
additional continuous variables [41]. The complexity for solving (3) is O(2n) (NP-hard), where n
is the number of binary variables.

Connectivity constraints with root node Let r (the first node of scribble) denote the root node of
the scribbled subgraph (region) in G(V,E). Then, the following constraints suffice to characterize
the set of all connected subgraphs that contain r

xi ≤
∑

s∈S
xs, ∀i ∈ V : (i, r) /∈ E, ∀S ∈ S(i, r), (4)

where S, recall from [37], is the vertex-separator set of {i, r}, i.e., if the removal of S from G
disconnects i and r. And S(i, r) is the the collection of all vertex-separator sets of {i, r}.
The number of constraints (4) is exponential with respect to the number of nodes in G, and in practice,
they are added iteratively when needed (called cutting planes method [17]). For the simplest case
where the region (scribble) ID coincide with the class ID, i.e., the number of regions equals that of
classes, (3) with connectivity prior is solved as follows. We first solve (3) alone and then check if all
subgraphs Gi are connected. If not, we iteratively adds constraints of type (4) on the fly [41], and
then solve the resulting ILP again. This procedure continues until all subgraphs are connected. This
method ensures global optimality if no time limit is restricted.

In the case where k regions share the same class ID, [41] adds k − 1 “dummy classes” to retain the
connectivity property (we call it ILP-D, and is illustrated in Fig. 2). This has two drawbacks. First
of all, the number of binary variables is increased by (k − 1)|V | and thus the complexity increases
dramatically. Second, if one uses the probability map of any DCNN, then all the k dummy classes
share the same unary term (c`i). In the extreme case where no pairwise term dij exists in (3), there
exists symmetry on assigning which of the k dummy classes to one node. Note that, similar to `0Hl,
ILP-D is able to directly output panoptic segmentation.

In this paper, we introduce a much lighter formulation (we call it ILP-P). Instead of adding dummy
classes, we add k − 1 pseudo edges that “connect” all separated regions of the same class (illustrated
in Fig. 2), which fixes both issues. In particular, it does not increase the number of variables and
is class-aware. But ILP-P is only designed for semantic segmentation, i.e., it is not region-aware.
Post-processing methods are needed to generate panoptic segmentation.

3 Semantic and Panoptic Segmentation Experiments

3.1 Experimental setup

In this session, we conduct extensive experiments on the public Pascal VOC [15] and Cityscapes [12]
dataset. In all our experiments, when we mention base network, we refer to the publicly released
ResNet 101 [16] that is pre-trained on ImageNet [35] and COCO [26]. We adopt DeepLab V2 [10]
(without CRF as post-processing) and DRN [50] as our DCNN to get the probability maps, trained
on their corresponding training sets. We adopt IBM Cplex [5] version 12.8 to solve the ILP.

All computational experiments are performed on a Intel(R) Xeon(R) CPU E5-2620 v4 machine, with
64 GB memory. Other than using GPU to extract feature maps from DCNN as input to our algorithms,
we use CPU to run our algorithms. If not otherwise mentioned, the input data term yi and parameter
η for the heuristic are reported directly in the tables. The regularization parameter λ for the ILP is set
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Table 1: Comparison of different models when no
training data is available.

Model Dim Time mIoU

`0Hg-RGB 3 1.1 57.7
`0Hl-RGB 3 2.2 69.8
`0Hl-layer 1 64 2.9 70.8
`0Hl-layer 3 256 3.9 71.6
ILP-P-10 – 9.7 71.9

Table 2: Comparison when training data is avail-
able, using DeepLab V2 [10] as baseline.

Model Time (s) mIoU (%)

DeepLab V2 [10] – 70.5
MRF-prob 0.2 80.8
`0Hl-prob 0.8 80.8
ILP-D-5 4.5 80.9
ILP-P-5 4.2 81.3
ILP-P-10 7.9 81.9

to 1, and the pairwise term dij = e‖yi−yj‖2 . We have two scenarios. When training data is available,
we can use the probability map pi and c`i =

∥∥1` − pi
∥∥
2
, where 1` is an k (k being the number of

classes) dimensional vector with
∥∥1`
∥∥
1

= 1 and the `’s position equals 1. When there is no training
data, we compute the average of the nodes information (yi) covered by scribbles of the same class
(i.e., class `), and use this to represent class ` (denote as Y`). Then c`i = ‖yi − Y`‖2.

We report the semantic and panoptic segmentation scores, where the mean intersection over union
(mIoU) is commonly used for semantic segmentation, and the panoptic quality (PQ) metric is newly
introduce in [20] and is a combination of segmentation quality (SQ) and recognition quality (RQ).

3.2 Results on Pascal VOC 2012

Pascal VOC has 20 “thing” classes and a single “background” class for all other classes. We evaluate
our algorithms on the 1449 validation images. We first apply [14] to produce around 700 superpixels,
and use the public available scribble set of Pascal provided by [25]. Since the scribbles do not meet
our policy for panoptic segmentation, we only report the semantic segmentation results.

No training data When no previous training data is available, one can either use RGB or the
output of lower level features of a base network as input (yi) to our algorithms. We compare our
class-agnostic heuristic (`0Hl) to the more greedy one (`0Hg) in [41] using RGB as input. We also
compare using different low levels of features from ResNet 101, against using just RGB, as well
as ILP-P with `0Hl. We do not set any time or step limit for both heuristics, but a time limit of 10
seconds for ILP-P (denoted ILP-P-10). We report in Table 1 the detailed comparison, where we use
the RGB, first and third layer of ResNet 101 as input to `0Hl, and “Dim” is the dimension of the
input feature map. After several trials, the growing parameter η is set to 0.1, 20 and 100 for RGB,
layer 1 and layer 3 of ResNet 101.

We can see in Table 1 the advantage of `0Hl over `0Hg, that improves mIoU by over 12%, despite
the time increases. We could also see the improvement by incorporating lower level features maps of
ResNet 101, that improves mIoU by almost 2%, even though it is pre-trained on completely different
dataset. ILP-P adopts `0Hl-layer 3 as initial solution, and further increase the mIoU by 0.3%.

With training data In addition, if training data is available, we use the probability map of DeepLab
V2 (with base line mIoU 70.5%) that is trained on Pascal as input information to our algorithms,
`0Hl get another huge boost of 9.2% to 80.8% compared to using layer 3. We compare MFR (3)
(without connectivity but solved to global optimum) with `0Hl (heuristic with connectivity) and
found out they perform the same, which shows the importance of the connectivity prior. An example
of visual comparison is illustrated in Fig. 1.

We then compare ILP-D (with dummy classes) and ILP-P (with pseudo edges) with `0Hl as initial
solutions (baseline 80.8%), and set the time limit to 5 and 10 seconds. Table 2 suggests that both
ILPs improve the baseline within the time limit, where ILP-P outperforms ILP-D in both accuracy
and efficiency. Also, because of the NP-hardness, many problems remain non-optimum and it is
in general beneficial to allow the ILP solver to run for more time. The best mIoU is reported by
ILP-P-10 at 81.9%, which improves the baseline of DeepLab V2 by 11.4% and the initial solution of
`0Hl by 1.1%. Finally, since ILP is class-aware and encodes pairwise term dij , further boost on the
performance is expected, given better baseline DCNN and an edge detector.
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Figure 3: Top: Cityscapes original image and image with superpixels and artificial scribbles, Bottom:
semantic and panoptic segmentation of `0Hl-prob, with DCNN’s probability map as input.

3.3 Results on Cityscapes

Cityscapes has 8 “thing” classes, and 11 “stuff” class labels. While there is no public scribble set for
Cityscapes, we hack the ground truth instance segment and apply erosion and skeleton algorithms to
generate artificial scribbles (see Fig. 3) that meet our request in Sec. 2.4. We evaluate our algorithms
on the 500 validation images with these scribbles. We first apply [45] to produce around 2000
superpixels, then apply our heuristic and ILP algorithms to get semantic and panoptic segmentation.

No training data When no training data is available, we use RGB and output of layer 3 of Resnet
101 as input to `0Hl, and report in Table 3 both mIoU and PQ. We also compare `0Hl with one recent
weekly supervised methods [24]. It uses a more powerful PSPNet [51] supervised by bounding boxes
and image tags, and requires end to end training. `0Hl shows superior results on both semantic and
panoptic segmentation, both around 10% boost of performance compared to [24]. Note that it is not a
fair comparison since our algorithm requires scribbles at inference time while [24] does not. The
running time is 6.5 and 7.2 seconds for RGB and layer 3.

With training data We use the public full-supervised (trained on Cityscapes) DRN [50] as our
baseline (71.4% mIoU), and run `0Hl and ILP-P using its probability map. Table 4 shows `0Hl-prob
improves the baseline by 4.4%, and by 1.5% compared to `0Hl-layer 3 . Besides, PQ also increases
from 49.6% to 51.2%. Because of the rich class and instance information (more than 15 classes
per image) of Cityscapes and also that we use around 2000 superpixels, which results in nearly 30k
binary variables, ILP struggles to find any better solution within the time limit of 10 seconds. Hence,
the score remains unchanged compared to `0Hl in our experiment, which is not shown in the table.

Finally, note that the performance of our algorithms on both Pascal and Cityscapes are upper bounded
by the accuracy of superpixels. Hence, using better superpixel algorithms or increasing the superpixel
number may further influence our performance.

Table 3: Comparison of different models when no
training data is available. Our heuristic is around
10% better than [24] on mIoU and PQ.

Model mIoU PQ SQ RQ

`0Hl-RGB 74.2 49.6 74.3 63.8
`0Hl-layer 3 74.3 49.6 74.5 63.7
Weakly [24] 63.6 40.5 – –

Table 4: Comparison when training data is avail-
able, based on DRN [50]’s probability map. Our
result improves the baseline by 4.4%.

Model Time mIoU PQ SQ RQ

DRN [50] – 71.4 – – –
(Baseline)
`0Hl-prob 7.2 75.8 51.2 75.6 64.8
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