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Abstract

Moving Object Detection (MOD) is a critical task for autonomous vehicles as
moving objects represent higher collision risk than static ones. The trajectory of the
ego-vehicle is planned based on the future states of detected moving objects. It is
quite challenging as the ego-motion has to be modelled and compensated to be able
to understand the motion of the surrounding objects. In this work, we propose a
real-time end-to-end CNN architecture for MOD utilizing spatio-temporal context
to improve robustness. We construct a novel time-aware architecture exploiting
temporal motion information embedded within sequential images in addition to
explicit motion maps using optical flow images. We demonstrate the impact of our
algorithm on KITTI dataset where we obtain an improvement of 8% relative to the
baselines. We compare our algorithm with state-of-the-art methods and achieve
competitive results on KITTI-Motion dataset in terms of accuracy at three times
better run-time. The proposed algorithm runs at 23 fps on a standard desktop GPU
targeting deployment on embedded platforms.

1 Introduction

The Autonomous Driving (AD) scenes are highly dynamic as they contain multiple object classes
that move at different speeds in diverse directions [2, 3]. It is critical to understand the motion model
of each of the surrounding elements for the purpose of planning the ego-trajectories considering
the future positions and velocities of these objects. Typically, there are two types of motion in a an
autonomous driving scene, namely motion of surrounding obstacles and the motion of the ego-vehicle.
It is challenging to successfully classify the surrounding objects as moving or static when the camera
reference itself is moving. In this case, even the objects that are not moving will be perceived as
dynamic ones. Moving object detection implies two tasks that are performed jointly, namely, generic
object detection which extracts specific classes such as pedestrians and vehicles. This is followed by
motion classification, in which a classifier identifies the motion state of the object at hand among
two classes, dynamic and static. Object detection and semantic segmentation has become a mature
algorithm for automated driving [4] but motion segmentation is relatively an unexplored problem.
Recent automated driving datasets [5] include moving object detection task.

Recent CNN-based algorithms [6, 7, 8] explored the problem of end-to-end motion segmentation
through usage of optical flow images providing the motion of the surrounding scene as a prior
information for the network which learns to generate a binary mask of two classes, "Moving" and
"Static". Motion segmentation can be integrated into a multi-task system along with segmentation
and other tasks [9, 10]. Motion Estimation also helps in better estimation of depth [11]. Motion
information can be perceived implicitly through a stack of temporally sequential images [12], or
explicitly through an external motion map such as optical flow map[13]. Implicit motion modelling
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Figure 1: Top: Our baseline architecture based on ShuffleNet [1]. Bottom: Our proposed architec-
ture after optical flow and time augmentation.

is prone to failure due to increased complexity of the task as the network learns to model motion
in addition to segmenting the interesting object classes. On the other hand, external optical flow
encodes motion between two consecutive frames only without considering previous states of the
scene which negatively affects the output in two ways. First, the network becomes sensitive to optical
flow errors because motion is being understood from two frames only. Second, the output masks
become temporally inconsistent as they are independent of each other across time and therefore
masks are more prone to errors and rapid changing. Moreover, optical flow encodes two pieces of
information, the motion of the surrounding obstacles, in addition to the motion of the ego-vehicle
which results in significant motion vectors associated with the static objects as well. This leads to
the incorrect perception of static objects as moving objects. Nevertheless, optical flow augmentation
has proven to improve accuracy of MOD compared to motion modelling from single color images
due to understanding the motion across two sequential images such as in [14, 6, 15]. These results
raised our question of how a CNN architecture would behave if it considers the previous states of the
surrounding obstacles.

In this work, we explore the benefit of leveraging temporal information through implementation of
time-aware CNN architecture in addition to explicit motion modelling through optical flow maps.
Moreover, we focus on real-time performance due to the nature of the autonomous driving task
[16, 17, 7]. To summarize, the contributions of this work include:

• Implementation of a novel CNN architecture for MOD utilizing spatio-temporal information.
Our model combines both explicit and implicit motion modelling for maximum performance,
and unlike previous baselines it ensures temporal consistency between successive frames.
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• Construction of real-time performance network which significantly outperforms state-of-the
art approaches and becomes suitable for time-critical applications such as the autonomous
driving.

• Ablation study for various time-aware architectures for maximum performance in terms of
accuracy, speed and temporal consistency.

The rest of the paper is organized as follows: a review of the related work is presented in Section 2.
Our methodology including the dataset preparation and the used network architectures is detailed
in Section 3. Experimental setup and final results are illustrated in Section 4. Finally, Section 5
concludes the paper.

2 Related Work

Classical approaches based on geometrical understanding of the scene such as [18] have been
suggested for motion masks estimation. Wehrwein et al. [19] introduced some assumptions to model
the motion of the background as homography. This approach is very difficult to be used in AD due
to the limited assumptions which causes errors such as camera translations assumptions. Classical
methods generally provide less performance than deep learning methods in addition to the need to
use complicated pipelines which introduce higher complexity in the algorithm. For instance, Menze
et al. [18] runs at 50 minutes per frame which is not suitable for AD.

Generic foreground segmentation using optical flow has been proposed by Jain et. al.[20], however
it does not provide information about the state of each obstacle whether it is moving or static. In
[21, 22] video object segmentation has been studied, however these networks are not practical for
AD due to high complexity where they depend on R-CNN as in [21], and DeepLab as in [22] which
run in 8 fps. Motion segmentation using deep network architectures has been explored by Siam et
al. [6, 15]. These networks rely only on explicit motion information from optical flow which makes
them sensitive to the optical flow estimation errors. Fisheye MOD has been studied in [12] using
publicly available fisheye dataset [5] proving the importance temporally sequential images in MOD.

LiDAR sensors have been explored for MOD as as well, where most of LiDAR-based methods used
clustering approaches such as [23] to predict the motion of points using methods such as RANSAC,
and then clustering takes place on the object level. Deep learning has been explored as well for
such problem. 3D convolution is used in [24] to detect vehicles. Other methods projected the 3D
points on images to make use of 2D convolutions on the image 2D space instead of 3D space [25].
Low-illumination MOD has been explored by [26] where optical flow has been utilized from both
camera and LiDAR sensors demonstrating the importance of explicit motion modelling. Recent work
[27] predicts motion of objects from two input Lidar scans. This method uses implicit learning for
motion information through two sequential Lidar scans and does not discuss the impact of time-aware
networks which motivates our work to towards this study.

In this work, we aim to provide a real-time cost-effective approach for the autonomous driving
application. Unlike LiDAR sensors, camera sensors have high efficiency compared to their cost.
Thus, we focus on camera-based motion segmentation approaches.

3 Methodology

In this section we discuss dataset preparation, and detail the proposed architectures for our experi-
ments.

3.1 Dataset Preparation

3.1.1 Annotations Generation

To be able to train our deep model for good generalization, a large dataset including motion masks
annotations is needed. There is huge limitation in MOD public datasets. For instance, Siam et al. [6]
provides 1300 images only with weak annotation for MOD task. On the other hand, 255 annotated
frames are provided by Valada et al. [14] on KITTI dataset, while 3475 frames are provided on
Cityscapes [28]. Cityscapes does not provide information about 3D motion which makes it not
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Figure 2: Detailed architecture for our approach demonstrating how temporal information is used
within the unfolded ConvLSTM cell.

suitable for us to extend the dataset. Behley et al. [29] provides MOD annotations for 3D point
clouds only, but not for dense pixels. Due to this limitation in datasets, we build our own MOD
dataset. We make use of the method in [6] to generate motion masks from KITTI in order to extend
the KittiMoSeg dataset. The bounding boxes provided by KITTI dataset are projected on 2D images
while the tracking information is used 3D velodyne coordinate system to compute the velocity of
each object compared to the ego-vehicle. The ego-vehicle velocity is provided via GPS annotation
which allows us to compute relative speed between the ego-vehicle and the surrounding objects. We
compare the relative speed to predefined thresholds to classify whether the obstacle is moving or
static. This method is used to generate semi-automatic annotation for 12k images and then manual
filtering is performed for fine tuning.

3.1.2 Color Signal

KITTI dataset[30] is used as it provides temporal sequences which we exploit to develop our time-
aware architecture. Moreover, it has 3D bounding box and GPS coordinates annotations which we
use to build our motion mask annotations. The upper part of the image is cropped as it is mainly
dominated by sky and has no information about moving objects. The final resolution we train our
network with is 256x1224.

3.1.3 Motion Signal

Motion can be either implicitly learned from temporally sequential frames, or provided explicitly to the
system through an input motion map, as for example optical flow maps. In our approach, we develop
a hybrid model that combines both methods together for maximum performance. FlowNet[31]
architecture is leveraged to generate the flow maps. We use color-wheel representation as it was
observed to provide the best performance for encoding both magnitude and direction of motion. This
is consistent with the observation of [6, 32].

3.2 Network Architecture

In this section, we detail our baseline architecture, discuss how to use motion information and how to
maximize the benefit of temporal sequences for MOD.

3.2.1 Baseline Architecture

Our baseline model is based on [33]. The network is composed of an encoder-decoder architecture
where feature extraction is performed by [1] reducing computational cost at high level of accuracy
which is perfect for AD application. The decoder is based on [34] which consists of 3 transposed
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Table 1: Quantitative comparison between different network architectures for MOD.
Experiment mIoU Moving IoU

RGB 65.6 32.7
RGB+Flow 74.24 49.36
RGB+Flow frame stacking 63 27
RGB+Flow 3D Convolution 64.3 29.8
RGB+Flow - LSTM (Early) 73.5 48
RGB+Flow - LSTM (Late) 69.2 39.3
RGB+Flow - LSTM (Multistage-2-filters) 73.7 48.5

RGB+Flow - GRU (Multistage) 75 50.9
RGB+Flow - LSTM (Multistage) 76.3 53.3

convolution layers that are used to upsample the low resolution feature maps to the original image
resolution. The network is trained to predict two classes, i.e, Moving and Non-Moving. There is huge
imbalance between the two classes because of the background pixels which are considered static
pixels as well. Weighted cross entropy is used to tackle the problem. The baseline architecture is
used to evaluate the impact of RGB images only on MOD as illustrated in Figure 1

3.2.2 Motion Augmentation

As demonstrated by [6], explicit motion modelling through optical flow provides more accuracy
than implicit learning of motion cues through temporal sequences. This is done through a 2-stream
mid-fusion architecture which combines the processed feature maps from both network branches.
It has been shown by [13, 32] that mid-fusion architecture outperforms early-fusion which is based
on raw data fusion before feature extraction. Feature-level fusion provides maximum accuracy at
the cost of network complexity as the number of weights in encoder part is doubled. We adopt this
approach for comparative study where semantic information is combined with motion information as
illustrated in Figure 1 and we demonstrate the impact on real-time performance.

3.2.3 Time Augmentation

The main contribution of this work is to study the impact of including temporal information for MOD.
For that purpose, we build upon the mid-fusion network and provide empirical study for various
time-aware network architectures. We discuss the effect of using Frame stacking, 3D convolution,
ConvLSTM[35], and simpler GRU[36] layers which are time-dependent. For such experiments, we
use a batch of 4 images as input as illustrated in Figure 2 which explains how ConvLSTM is unfolded
utilizing sequence of images for MOD. We design three network architectures leveraging ConvLSTM
layers and provide empirical study to demonstrate their benefit for MOD.

Early-LSTM: In this case, we refer to the usage of ConvLSTM layer in each encoder separately,
then fusion is done on the processed information.

Late-LSTM: In this case, we refer to the usage of ConvLSTM at the decision level before softmax
layer where the network learns to use time information before the final classification is done.

Multistage-LSTM: We implement several ConvLSTM layers across the network at 3 different
stages as illustrated in Figure 1 (Bottom). Finally, by "Multistage-2-filters" we refer to using 1x1
convolutional layers which squeezes the depth of the feature maps to num_classes and then apply
ConvLSTM to the output channels.

4 Experiments

4.1 Experimental Setup

In our experiments, ShuffleSeg [33] model was used with pre-trained ShuffleNet encoder on
Cityscapes dataset for semantic segmentation except for the 3D Convolution experiment as we
randomly initialized the encoder weights. For the decoder part, FCN8s decoder has been utilized with
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Table 2: Quantitative results on KITTI-Motion[14] dataset in terms of mean intersection over union
(mIoU) and running frames per second (fps) compared to state-of-the-art methods.

Experiment mIoU fps

CRF-M[37] 77.9 0.004
MODNet[6] 72 6
SmSNet[14] 84.1 7
RTMotSeg[15] 68.8 25
RST-MODNet-GRU (ours) 82.5 23
RST-MODNet-LSTM (ours) 83.7 21

Figure 3: Qualitative comparison of our algorithm on two samples of KITTI dataset each sample is
represented in a column. (a),(b) show the input RGB images and flow images. (c) shows ground truth.
(d) shows RGB-only output. (e) shows RGB+Flow output. (f) output of RGB+Flow-LSTM(Late).
(g) shows output of RGB+Flow-GRU(Multistage). (h) shows output of the proposed architecture
RGB+Flow-LSTM(Multistage).

randomly initialized weights. L2 regularization with weight decay rate of 5e−4 and Batch Normaliza-
tion are incorporated. We trained all our models end-to-end with weighted binary cross-entropy loss
for 200 epochs using 4 sequential frames. Adam optimizer is used with learning rate of 1e−4. For
frame stacking experiments we modified the depth of the first convolutional layer filters to match
the input by replicating the filters in the depth dimension to utilize Cityscapes weights instead of
randomly initializing them.
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4.2 Experimental Results

We provide a table of quantitative results for our approach evaluated on KITTI dataset and a table for
comparison with state-of-the-art baselines on KITTI-Motion dataset [14]. Qualitative evaluation is
illustrated in Figure 3. Table 1 demonstrates our results in terms of mIoU on both classes in addition
to IoU for the Moving class. RGB-only experiment result is used as a comparison reference where
color information only is used for classifying MOD without using either implicit or explicit motion
modelling. Significant improvement for 17% in moving class IoU has been observed after fusion
with optical flow, which is consistent with previous conclusions in [6, 15]. Naive frame stacking
showed inability of the network to benefit from the temporal information embedded into the sequence
of images while 3D convolution increased the network complexity dramatically which made it not
suitable for embedded platform for autonomous driving application. For that reason we focus our
experiments on usage of ConvLSTM layers where we provide an empirical evaluation to figure out
the best architecture utilizing ConvLSTM. Three architectures are implemented using ConvLSTM.
Early and Late LSTM show improved performance over the baseline RGB, however they perform
very close to standard two-stream RGB+Flow which means the information is not fully utilized. This
encourages the implementation of a mid-level ConvLSTM-based network that captures motion in
multiple stages. Using this architecture, we obtain absolute improvement of 4% in accuracy and
relative improvement of 8% over RGB+Flow showing the benefit of our approach. We provide two
versions of our multistage architecture comparing ConvLSTM and GRU. We observe very close
performance in terms of accuracy with slightly higher running rate using GRU which is expected due
to simpler internal architecture.

Table 2 shows a comparison between our approach and state-of-the-art baseline methods. For fair
comparison of model speed, we run all the tests on our Titan X Pascal GPU using the same input
resolution in [14]. RTMotSeg[15] has two models, one of which is using LiDAR point cloud in a
post processing step to minimize false positives. We report the model which does not use LiDAR
sensor as we mainly focus on camera-based solutions. It is shown that our method is on par with the
baseline methods where we provide almost the same accuracy as SMSNet[14], however at almost
double the inference speed using both our multistage time-aware architectures which makes them
more suitable for embedded platform for autonomous driving applications.

Figure 3 shows qualitative results on two KITTI samples demonstrating the benefit of using time-
aware networks for MOD where each column represents a sample. (a),(b) show the input RGB and
optical flow inputs. (c) shows the motion mask ground truth. (d) shows inability of CNN to understand
motion information from color images only without sequence of images or optical flow maps. (e)
shows improvement over RGB-only due to fusion with optical flow which encodes motion of the
scene. (f) shows the output of RGB+Flow after adding LSTM layer before softmax layer (Late) which
demonstrates the improvement over RGB-only as illustrated in Table 1. However, the network is still
unable to completely utilize the motion information embedded within the sequence of images. (g),(h)
show the output of our multistage models,namely RGB+Flow-GRU in (g) and RGB+Flow-LSTM
in (h). Results visually confirm the benefit of our algorithm through implementation of multistage
time-aware layers where motion information is fully exploited.

Figures 4,5 show the advantage of our approach across time where relationship between sequential
images has been modelled within the network. Each figure represents a sample sequence from KITTI
data where the left column represents the output of RGB+Flow while the right column shows the
impact of our algorithm considering time information. On the left column, the furthest car in time t-3
has been segmented correctly then accuracy is lost in t-2 and obtained again in t-1. This is also shown
on the close car on the left where the mask is sensitive to optical flow map. On the other hand, the
right column shows temporally consistent motion masks after the addition of our multistage-LSTM
layers within the network. The same conclusion is obtained from Figure 5, where these results
demonstrate the improved performance in Table 1.

5 Conclusions

In this paper, we propose a novel method for moving object detection which balances between high
accuracy and high computational efficiency. Our proposed method exploits both external motion
modelling and time-aware architectures to maximize benefit from temporal motion information. An
ablation study is provided for various time-aware architectures to evaluate the impact of our approach
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Figure 4: Qualitative evaluation demonstrating the temporal consistency obtained from our approach
on the right column compared to RGB+Flow on the left column as previous baselines.

Figure 5: Qualitative evaluation demonstrating the temporal consistency obtained from our approach
on the right column compared to RGB+Flow on the left column as previous baselines.

on MOD. The algorithm is evaluated on KITTI and KITTI-Motion datasets against state-of-the-art
baselines. We obtain 8% relative improvement in accuracy after augmentation of time-aware layers.
Competitive results are demonstrated in terms of accuracy compared to state-of-the-art SMSNet
model at three times the inference speed which makes our algorithm more suitable for autonomous
driving application.
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