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Abstract

The capability to learn and adapt to changes in the driving environment is crucial for
developing autonomous driving systems that are scalable beyond geo-fenced oper-
ational design domains. Deep Reinforcement Learning (RL) provides a promising
and scalable framework for developing adaptive learning based solutions. Deep RL
methods usually model the problem as a (Partially Observable) Markov Decision
Process in which an agent acts in a stationary environment to learn an optimal
behavior policy. However, driving involves complex interaction between multiple,
intelligent (artificial or human) agents in a highly non-stationary environment. In
this paper, we propose the use of Partially Observable Markov Games(POSG) for
formulating the connected autonomous driving problems with realistic assumptions.
We provide a taxonomy of multi-agent learning environments based on the nature
of tasks, nature of agents and the nature of the environment to help in categorizing
various autonomous driving problems that can be addressed under the proposed
formulation. As our main contributions, we provide MACAD-Gym, a Multi-Agent
Connected, Autonomous Driving agent learning platform for furthering research in
this direction. Our MACAD-Gym platform provides an extensible set of Connected
Autonomous Driving (CAD) simulation environments that enable the research and
development of Deep RL- based integrated sensing, perception, planning and
control algorithms for CAD systems with unlimited operational design domain
under realistic, multi-agent settings. We also share the MACAD-Agents that were
trained successfully using the MACAD-Gym platform to learn control policies for
multiple vehicle agents in a partially observable, stop-sign controlled, 3-way urban
intersection environment with raw (camera) sensor observations.

1 Introduction

Driving involves complex interactions between other agents that is near-impossible to be exhaus-
tively described through code or rules. Autonomous driving systems for that reason cannot be
pre-programmed with exhaustive rules to cover all possible interaction mechanisms and scenarios on
the road. Learning agents can potentially discover such complex interactions automatically through
exploration and evolve their behaviors and actions to be more successful in driving based on their
experiences gathered through interactions with the driving environment (over time and/or in simu-
lation). The Deep RL framework [18] [6] provides a scalable framework for developing adaptive,
learning-based solutions for such problems. But, it is hard to apply RL algorithms to live systems
[5], especially robots and safety-critical systems like autonomous cars and RL-based learning is
not very sample efficient [5] One way to overcome such limitations is by using realistic simulation
environments to train these agents and transfer the learned policy to the actual car. High-fidelity
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Figure 1: Figure shows a heterogeneous multi-agent learning environment created using MACAD-
Gym. An overview of the scenario is shown in the left image. The middle image shows the simulated
scenario and the right image shows tethered views of each agent’s observation

Autonomous driving simulators like CARLA [4] and AirSim [23] provide a simulation platform for
training Deep RL agents in singe-agent driving scenarios.

In single-agent learning frameworks, the interaction between other agents in the environment or
even the existence of other agents in the environment is often ignored. In Multi-Agent learning
frameworks, the interaction between other agents can be explicitly modeled.

Connectivity among vehicles are becoming ubiquitous and viable through decades of research
in DSRC and other vehicular communication methods. With the increasing deployment of 5G
infrastructure for connectivity and the increasing penetration of autonomous vehicles with connectivity
and higher levels of autonomy [22], the need for the development of methods and solutions that can
utilize connectivity to enable safe, efficient, scalable and economically viable Autonomous Driving
beyond Geo-fenced areas has become very important to our transportation system.

Autonomous Driving problems involve autonomous vehicles navigating safely and socially from their
start location to the desired goal location in complex environments which involve multiple, intelligent
actors whose intentions are not known by other actors. Connected Autonomous Driving makes use of
connectivity between vehicles (V2V), between vehicles and infrastructure (V2I), between vehicles
and pedestrians (V2P) and between other road-users.

CAD problems can be approached using homogeneous, communicating multi-agent driving simula-
tion environments for research and development of learning based solutions. In particular, such a
learning environment enables training and testing of RL algorithms. To that end, in this paper,... 1.
We propose the use of Partially Observable Markov Games for formulating the connected autonomous
driving problems with realistic assumptions. 2. We provide a taxonomy of multi-agent learning
environments based on the nature of tasks, nature of agents and the nature of the environment to
help in categorizing various autonomous driving problems that can be addressed under the proposed
formulation. 3. We provide MACAD-Gym, a multi-agent learning platform with an extensible set of
Connected Autonomous Driving (CAD) simulation environments that enable the research and devel-
opment of Deep RL based integrated sensing, perception, planning and control algorithms for CAD
systems with unlimited operational design domain under realistic, multi-agent settings. 4. We also
provide MACAD-Agents, a set of baseline/starter agents to enable the community to conduct learning
experiments and train agents using the platform. The results of multi-agent policy learning by one of
the provided baseline approach, trained in a partially observable, stop-sign controlled, 3-way urban
intersection environment with raw, camera observations are summarized in 5. experimental results in
a multi-agent settings with raw, simulated camera/sensor observations to learn heterogeneous control
policies to pass through a signalized, 4-way, urban intersection in a partially observable multi-agent,
CAD environment with two cars, a pedestrian and a motor cyclist where all the actors are controlled
by our MACAD-Agents. Figure 1 depicts an overview of one of the MACAD environments released
as a part of the MACAD-Gym platform.

The rest of the paper is organized as follows: We discuss how partially-observable markov games
(POMG) can be used to model connected autononomous driving problems in 2. We then provide an
intuitive classification of the tasks and problems in the CAD space in section 3 and discuss the nomen-
clature of the MACAD-Gym environments in section 3.4. We provide a quick overview of multi-agent
deep RL algorithms in the context of CAD in section 4 and conclude with a brief discussion about
the result obtained using MACAD-Agents in a complex multi-agent driving environment.
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2 Connected Autonomous Driving as Partially Observable Markov Games

In single-agent learning settings, the interaction between the main agent and the environment is
modeled as part of a Markov Decision Process (MDP). Other agents (if) present are and treated to be
part of the environment irrespective of their nature (cooperative, competitive), type (same/different as
the main agent) and sources of interactions with the main agent. Failing to account for the presence
of other intelligent/adaptive agents in the environment leads to conditions that violate the stationary
and Markov assumptions of the underlying learning framework. In particular, when other intelligent
agents that are capable of learning and adapting their policies are present, the environment becomes
non-stationary.

2.1 Formulation

One way to generalize the MDP to account for multiple agents in multiple state configurations is
using Markov Games [16] which re defines the game- theoretic stochastic games [24] formulation
in the reinforcement learning context. In several real-world multi-agent problem domains like
autonomous driving, assuming that each agent can observe the complete state of the environment
without uncertainty is unrealistic, partly due to the nature of the sensing capabilities present in the
vehicle (actor), the physical embodiment of the agent. Partially Observable Stochastic Games (POSG)
[7] extend stochastic games to problems with partial observability. In the same vein as Markov
Games, we re-define POSG in the context of reinforcement learning as Partially Observable Markov
Games, POMG in short, as a tuple 〈I,S,A,O, T ,R〉 in which,

I is a finite set of actors/agents

S is the finite set of states

A = ×i∈IAi is the set of joint actions where Ai is the set of actions available to agent i.

O = ×i∈IOi is the set of join observations where Oi is the set of observations for agent i.

T = P(s′,o|s,a) is the Markovian state transition and observation probability that taking a joint
action a = 〈a1, ...an〉 in state s results in a transition to state s′ with a join observation o = 〈o1, ...on〉
Ri : S ×A → R is the reward function function for agent i

At each time step t, the environment emits a joint observation o = 〈o1, · · · , on〉 from which each
agent i directly observes its component oi ∈ Oi and takes action ai ∈ Ai based on some policy
πi : Oi ×Ai → [0, 1] and receives a reward ri based on the reward functionRi .

Note that, the above formulation is equivalent to a POMDP when n = 1 (single-agent formulation).

While a POSG formulation of the autonomous driving problem enables one to approach the problem
with out making unrealistic assumptions, it does not enable computationally tractable methodologies
to solve the problem except under simplified, special structures and assumptions like two-player
zero-sum POSGs. In the next section, we discuss the practical usage in the CAD domain.

2.2 Practical usage in Connected Autonomous Driving

The availability of a communication (whether through explicit communication semantics or implicitly
through augmented actions) channel between the agents (and/or the env) in the CAD domain, enable
the sharing/transaction of local information (or private beliefs) that can provide information about
some (or whole) subset of the state which is locally observable by other agents, make solutions
computationally tractable even as the size of the problem (eg: num agents) increases. We realize that
such a transaction of local information would give rise to issue of integrity, trust and other factors.
The interaction between different agents and the nature of their interaction can be explicitly modeled
using a communication channel. In the absence of an explicit communication channel, the incentives
for the agents to learn to cooperate or compete, depends on their reward functions. The particular case
in which all the agents acting in a partially observable environment share the same reward function,
can be studied under the DEC- POMDP [19] formulation. But not all problems in CAD have the
agent’s rewards completely aligned (or completely opposite).

We consider Multi-Agent Driving environments with n actors, each controlled by an agent, indexed
by i. At any given time, t, the state of the agent i is defined to be the state of the actor under its
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control and it is represented as si ∈ S where S is the state space. The agent can choose an action
ai ∈ Ai , where Ai is the action space of agent i which, could be different for different actors. While
the environment is non-Markov from each of the agent’s point of view, the driving world as a whole is
assumed to be Markov i.e, given the configuration of all the n actors at time t : s = [s1, ...sn] , their
actions a = [a1, ...an], and the state of the environment E, the evolution of the system is completely
determined by the conditional transition probability T (s′,o, E′|s, E,a). This assumption allows us
to apply and scale distributed RL algorithms that are developed for the single-agent MDPs to the
Multi-Agent setting.

The explicit separation of the join state of the agents si from the state of the environment E at time t
in the driving world, facilitates agent implementations to learn explicit models for the environment,
in addition to learning models for other agents or the world model as a whole.

Under the proposed formulation for multi-agent CAD, at every time step t, each actor (and hence the
agent) receives an observation oi, based on its state si and the (partial) state of the environment Ei
and possibly, (partial) information I(s−i, E−i) about the state of other agents s−i = [sj ]j 6=i and the
state of the environment E−i that is not directly observable.

The observation oi can be seen as some degraded function φ(si, E) of the full state of agent i . In
reality, the nature and the degree of degradation arises from the sensing modalities and the type of
sensors (camera, RADAR, LIDAR, GPS etc.) available to the vehicle actors. Connectivity through
IEEE 802.11 based Dedicated Short-Range Communications (DSRC) [14] or cellular modems based
C-V2X [28] enables the availability of the information I(s−n, E−i) about other agents and non-
observable parts of the environment through Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure
(V2I) or Vehicle-to-Anything (V2X) communication.

The goal of each agent is to take actions ai for the vehicle actor that is under its control based on its
local state [oi, I(s−i,E−i)] in order to maximize its long term cumulative reward over a time horizon
T with a discount factor of γ.

3 Multi-Agent Connected Autonomous Driving Platform

The connected-autonomous driving domain poses several problems which can be categorized into
sensing, perception, planning or control. Learning algorithms can be used to solve the tasks in an
integrated/end-to-end fashion [13] [3] or in an isolated approach for each driving task like intersection-
driving [12] [21] and lane-changing [27].

Driving tasks falling under each of the above categories can be further divided and approached,
depending on the combination of the nature of the tasks, the nature of the environments and the nature
of the agents. The following subsections provide a brief discussion on such a classification of multi-
agent environments that are supported on the MACAD-Gym platform, to enable the development of
solutions for various tasks in the the CAD domain.

3.1 Nature of tasks

The nature of the task in a driving environment is determined based on the desired direction of focus
of the task specified through the design of experiments.

Independent Multi-agent driving environments in which each actor is self-interested/selfish and
has its own, often unique objective, fall under this category. One way to model such setup is by
treating the environment to be similar to a single-agent environment with all the actors apart from
the host actor are treated to be be part of the environment. Such environments help in developing
non-communicating agents that doesn’t rely on explicit communication channels. Such agents will
benefit from agents modeling agents [1].

Cooperative Cooperative CAD environments help in developing agent algorithms that can learn
near-globally optimal policies for all the driving agents that act as a cooperative unit. Such environ-
ments help in developing agents that learn to communicate [9] and benefit from learning to cooperate
[25]. This type of environments will enable development of efficient fleet of vehicles that cooperate
and communicate with each other to reduce congestion, eliminate collisions and optimized traffic
flows.
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Competitive Competitive driving environments allow the development of agents that can handle
extreme driving scenarios like road-rages. The special case of adversarial driving can be formulated
as a zero-sum stochastic game, which can be cast as a MDP and solved which has useful properties
and properties and results including: value Iteration, unique solution to Q*, independent computation
of policies and representation of policies using Q functions as discussed in [26]. Agents developed
in competitive environments can be used for law enforcement and or other use cases including the
development of strong adversarial driving actors to help improve handling capabilities of driving
agents.

Mixed Some tasks that are designed to be of a particular nature may still end up facilitating
approaches that stretch the interaction to other types of tasks. For example, an agent operating in
an environment on a task which is naturally (by design) an independent task can learn to use mixed
strategies of being cooperative at times and being competitive at times in order to maximize it’s own
rewards. Emergence of such mixed strategies [17] is another interesting research area supported in
MACAD-Gym, that can lead to new traffic flow behaviors.

3.2 Nature of agents/actors

Homogeneous When all the road actors in the environment belong to one class of actors (eg. only
cars or only motor-cyclists), the action space of each actor can be the same and the interactions are
limited to be between a set of homogeneous driving agents.

Heterogeneous Depending on the level of detail in the environment representation (a traffic light
could be represented as an intelligent actor), majority of autonomous driving tasks involve interaction
between a heterogeneous set of road actors.

Communicating Actors that are capable of communicating (through direct or indirect channels
[20] with other actors through Vehicle-to-Vehicle (V2V) communication channels can help to increase
information availability in partially-observable environments. Such communication capabilities allow
for training agents with data augmentation wherein the communication acts as a virtual/shared/crowd-
sourced sensor. Note that, Pedestrian (human) agents can be modeled as communicating agents that
use (hand and body) gestures transmit information and can receive information using visual (external
display/signals on cars, Traffic signals etc) and auditory (horns, etc).

Non-communicating While the environment provides or allows for a communication channel, if
an agent is not capable of communicating/making-use-of-the-communication channel by virtue of
the nature of the actor, it is grouped under this category. Example include vehicle actors that have no
V2X communication capability.

3.3 Nature of environments

Full/partial observability In order for an environment to be fully observable, every agent in
the environment should be able to observe the complete state of the environment at every point
in time. Driving environments under realistic assumptions are partially-observable environments.
The presence of connectivity (V2V, V2X/cloud) in CAD environments make the problems in PO
environments more tractable.

Synchronous/Asynchronous In a synchronous environment, all the actors are required to take an
action in a time synchronous manner. Whereas, in asynchronous environments, different actors can
act at different frequencies.

Adversarial If there exists any environmental factor/condition that can stochastically impair the
ability of the agents in the environment to perform at their full potential, such cases are grouped under
adversarial environments. For example, the V2X communication medium can be perturbed/altered by
the environment,which enables the study of the robustness of agents under adversarial attacks. Bad
weather including snowy, rainy or icy conditions also can be modeled and studied under adversarial
environments. Injection of "impulse"/noise that are adversarial in nature help in validating the
reliability of agent algorithms.
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Table A.2 in appendix B shows a short list of environments that are supported by the MACAD-Gym
platform.

3.4 MACAD-Gym Environment Naming Conventions

A naming convention that conveys the environment type, nature of the agent, nature of the task,
nature of the environment with version information is proposed. The naming convention follows
the widely used convention in the community introduced in [2] but, has been extended to be more
comprehensive and to accommodate more complex environment types suitable for the autonomous
driving domain.

The naming convention is illustrated below with HeteCommCoopPOUrbanMgoalMAUSID as the
example:

{Hete,
Homo}
↑︷︸︸︷

Hete

{Comm,
Ncom}
↑︷ ︸︸ ︷

Comm︸ ︷︷ ︸
↓

Nature of Agents

{Inde,
Coop,
Comp,
Mixd}
↑︷ ︸︸ ︷

Coop︸ ︷︷ ︸
↓

Nature of tasks

{PO,
FO}
↑︷︸︸︷

PO

{Bridg,
Freew,
Hiway,
Intrx,
Intst,
Rural,
Tunnl,
Urban}
↑︷ ︸︸ ︷

Urban

{,
Advrs,
Async,
Mgoal,
Synch,
...}
↑︷ ︸︸ ︷

Mgoal

{MA,
SA}
↑︷︸︸︷

MA︸ ︷︷ ︸
↓

Nature of environment

Unique
Scenario

ID
↑︷ ︸︸ ︷

USID - v0︸︷︷︸
↓

version

A few example environments that are part of the initial Carla-Gym platform release are listed in
Appendix B.

The above description summarizes the naming convention to accommodate various types of driving
environments with an understanding that several scenarios and their variations can be created by
varying the traffic conditions, speed limits and behaviors of other (human-driven, non-learning, etc)
actors/objects in each of the environments. The way these variations are accommodated in the
platform is by using an Unique Scenario ID (USID) for each variation in the scenario. The "version"
string allows versioning each scenario variation when changes are made to the reward function and/or
observation and actions spaces.

4 Multi-Agent Deep Reinforcement Learning For Connected Autonomous
Driving

In the formulation presented in section 2, formally, the goal of each agent is to maximize the expected
value of its long-term future reward given by the following objective function:

Ji(πi,π−i) = Eπi,π−i [Ri] = Eπi,π−1
[

T∑
t=0

γtri(s, ai)] (1)

Where π−i =
∏
j πj(s, aj), j 6= i is the set of policies of agents other than agent i. In contrast to

the single-agent setting, the objective function of an agent in the multi-agent setting depends on the
policies of the other agents.

4.1 Value Based Multi-Agent Deep Reinforcement Learning

V πi (s) =
∑
a∈A

π(s,a)
∑
s′∈S

T (s, ai,a−i, s
′)[R(s, ai,a−i, s

′) + γV πi (s′)] (2)

where, s = (St, Et), a = (ai,a−i), π(s,a) =
∏
j πj(s, aj)
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Figure 2: Centralized learner (left) and decentralized learner(right) architecture for connected-
autonomous driving

The optimal policy is a best response dependent on the other agent’s policies,

π∗i (s, ai,π−i) = argmax
πi

V
(πi,π−i)
i (s) (3)

= argmax
πi

∑
a∈A

πi(s, ai)π−i(s,a−i)
∑
s′∈S
T (s, ai,a−i, s′)[R(s, ai,a−i, s′) + γV

(πi,π−i)
i (s′)] (4)

Computing the optimal policy under this method requires T , the transition model of the environment
to be known. The state-action value function Q∗i (si, ai|π−i) is presented in appendix B.

4.2 Policy Gradients

If θ = {θ1, θ2, ..., θN} represents the parameters of the policy π = {πi, π2, ..., πN}, The gradient of
the objective function (equation 1) w.r.t the policy parameters can be written as:

∇θiJi(πi,π−i) = ESt,Et∼pπ (5)

4.3 Decoupled Actor - Learner architectures

For a given CAD situation with N homogeneous driving agents, the globally optimal solution is the
policy that maximizes the following objective:

Eπ[
N∑
i=1

Ri] =

N∑
i=1

Eπi,π−i [Ri] (6)

The straight-forward approach to optimize for the global objective (equation 6) amounts to finding
the globally optimal policy:

πg
∗
= argmax

π

N∑
i=1

Ji(πi,π−i) (7)

However, this approach requires access to policies of all the agents in the environment.

Centralized Learners Figure 2 (left) depicts decoupled actor-learner architecture with a centralized
learner which can be used to learn a globally-optimal driving policy πg

∗
.

Decentralized Learners In the most general case of CAD, each driving agent follows it’s own
policy that is independent of the other agent’s driving policy. Note that this case can be extended to
cover those situations where some proportion of the vehicles are driven by humans who have their
own intentions and policies.

Each agent can independently learn, to find policies that optimize their local objective function
(equation 1). One such architecture for CAD is shown in figure 2 (right).
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Figure 3: Figure shows a start state in the ‘HomoNcomIndePOIntrxMASS3CTWN3-v0‘ environment
(left) and the cumulative mean episode rewards (middle) and the cumulative max episode rewards
(right) obtained by the 3-agent system.

Shared Parameters With connectivity as in CAD, some are all the parameters of each agent’s
policy can be shared with one another. Such parameter sharing between driving agents can be
implemented with both centralized and decentralized learner architectures.

Shared Observations Sharing observations from the environment with other agents via communi-
cation medium, reduces the gap between the observation oi and the true state 〈si, E〉 and can drive
the degradation function φ(si, E) (discussed in section 2.2) to Identity (no degradation).

Shared Experiences This enables collective experience replay which can theoretically lead to
gains in a way similar to distributed experience replay [11] in single-agent setting.

Shared policy If all the vehicles follow the same policy πl, it follows from equation 1 that the
learning objective for each of the agents can be simplified, resulting in an identical and equal
definition:

J(πl) = Eπl [

T∑
t=0

γtri(S
t, Et, ati)] (8)

In this setting, challenges due to the non-stationarity of the environment is subsided due to the perfect
knowledge about other agent’s policies. In practice this case is of use in autonomous fleet operations
in controlled environments where all the autonomous driving agents can be designed to follow the
same policy

5 Experiments and Conclusion

We trained MACAD-Agents in the HomoNcomIndePOIntrxMASS3CTWN3-v0 environment, which
is a stop sign-controlled urban intersection environment with homogeneous, non-communicating
actors, each controlled using the IMPALA [8] agent architecture. The actors car1(red cola van),
car2(blue minivan), car3 (maroon sedan) learn a reasonably good driving policy to completely
cross the intersection without colliding and within the time-limit imposed by the environment. The
environment is depicted in Figure 3 along with the cumulative mean and max rewards obtained by
the 3-agent system. Complete details about the experiment including agent-wise episodic rewards are
presented in appendix C.

To conclude, we described a POSG formulation and discussed how CAD problems can be studied
under such a formulation for various categories of tasks. We presented the opensource MACAD-Gym
platform and the starter MACAD-Agents to help researchers to explore the CAD domain using deep
RL algorithms We also provided preliminary experiment results that validated the MACAD-Gym
platform by conducting a starter experiment with the MACAD-Agents in a multi-agent driving
environment and discussed the results showing the ability of the agents to learn independent vehicle
control policies from high-dimensional raw sensory (camera) data in a partially-observed, multi-agent
simulated driving environment. The MACAD-Gym platform enables training driving agents for
several challenging autonomous driving problems. As a future work, we will develop a benchmark
with a standard set of environments that can serve as a test-bed for evaluating machine-learning-based
CAD driving agent algorithms.
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A AppendixA

A.1 Actor - Agent disambiguation

In the context of this paper, to avoid any ambiguity between the usage of the terms, we consider an
actor to be a physical entity with some form of embodied intelligence, acting in an environment.
We consider an agent to be a (software/algorithm) entity that provides the intelligence to an actor.
The agent can learn and/or adapt based on its interaction with the environment by controlling the
(re)action of the actor.

A.2 Available and supported environments in the MACAD-Gym platform

A short-list of CAD environments made available on the MACAD-Gym platform are listed below
with a brief description:

Table 1: An example list of environments that are part of the carla-gym
platform with a description to explain the naming conventions to make it
easy for the community to add new classes of environments.

Environment Name Description

HomoNcomIndePOIntrxMASS3CTwn3-
v0

Homogeneous Noncommunicating, Independent,
Partially-Observable Intersection, Multi-Agent

Environment with a Stop Sign, 3Car scenario in Town03
version-0

HeteCommIndePOIntrxMAEnv-
v0

Heterogeneous Communicating, Independent,
PartiallyObservableIntersection Multi-Agent

Environment version 0
HeteCommCoopPOUrbanMAEnv-

v0
Heterogeneous Communicating, Cooperative, ,

Partially-Observable, Urban Multi-Agent Environment
version 0

HomoNcomIndeFOHiwaySynchMAEnv-
v0

Homogeneous Noncommunicating, Independent,
Fully-Observable, Highway, Multi-Agent Environment

version-0

Table 2: Supported MA environment types

Independent Cooperative Competitive
Homogeneous Communicating X X X

Non-Communicating X X X
Heterogeneous Communicating X X X

Non-Communicating X X X

B Appendix B

B.1 State-action value function

In a fully-observable, Single-Agent setting, the optimal action-value function Q∗(s, a) can be esti-
mated using the following equation:

Q∗(s, a) = Es′ [r + γmaxa′Q
∗(s′, a′)|s, a]. (9)

DQN [18] uses a neural network to represent the action-value function parametrized by θ, Q(s, a; θ).
The parameters are optimized iteratively by minimizing the Mean Squared Error (MSE) between the
Q-network and the Q-learning target using Stochastic Gradient Descent with the loss function given
by:

L(θ) = Es,a,r,s′∼D[(r + γmax′aQ(s′, a′; θ−)−Q(s, a; θ))2] (10)
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where D is the experience replay memory containing (st, at, rt, s
′) tuples.

For a fully-observable, Multi-Agent setting, the optimal action-value function Q∗(s, a|π−i) can be
estimated using the following equation:

Q∗(s, a|π−i) =
∑
a−i

π−i(a−i, s)Es′ [ri(s, a, s′)

+γEa′ [Q∗(s′, a′|π−i)]]
(11)

where π−i is the joint policy of all agents other than agent i, s and a are the state and action of agent
i at time-step t and s′, a′ are the state and action of agent i at time-step t+ 1.

Independent DQN [25] extends DQN to cooperative, fully-observable Multi-Agent setting, applied
to a two-player pong environment, in which all agents independently learn and update their own
Q-function Qi(s, ai; θi).

Deep Recurrent Q-Network [10] extends DQN to the partially-observable Single-Agent setting by
replacing the first post-convolutional fully-connected layer with a recurrent LSTM layer to learn
Q-functions of the form: Q(ot, ht−1, a; θi) that generates Qt and ht at every time step, where ot is
the observation and ht is the hidden state of the network.

For a Multi-Agent setting,

Q∗i (si, ai|π−i) =
∑
a−i

π−i(a−i|s)Esi [ri(s, E,a) + γEa′ [Qi(si, ai|π−i)] (12)

C Experiment description

C.1 Environment description

The ‘HomoNcomIndePOIntrxMASS3CTWN3-v0‘ follows the naming convention discussed in 3.4
and refers to a homogeneous, non-communicating, independent, partially-observable multi-agent,
intersection environment with stop-sign controlled intersection scenario in Town3. The SUID is ”
(empty string) and the version number is ‘v0‘. The environment has 3 actors as defined in the scenario
description (C.1.2). The description of each actor, their goal coordinates and their reward functions
are described below:

C.1.1 Actor description

{
" a c t o r s " : {

" c a r 1 " : {
" t y p e " : " vehic le_4W " ,
" e n a b l e _ p l a n n e r " : t r u e ,
" c o n v e r t _ i m a g e s _ t o _ v i d e o " : f a l s e ,
" e a r l y _ t e r m i n a t e _ o n _ c o l l i s i o n " : t r u e ,
" r e w a r d _ f u n c t i o n " : " c o r l 2 0 1 7 " ,
" s c e n a r i o s " : "SSUI3C_TOWN3_CAR1" ,
" m a n u a l _ c o n t r o l " : f a l s e ,
" a u t o _ c o n t r o l " : f a l s e ,
" camera_ type " : " rgb " ,
" c o l l i s i o n _ s e n s o r " : " on " ,
" l a n e _ s e n s o r " : " on " ,
" l o g _ i m a g e s " : f a l s e ,
" log_measu remen t s " : f a l s e ,
" r e n d e r " : t r u e ,
" x _ r e s " : 168 ,
" y _ r e s " : 168 ,
" u s e _ d e p t h _ c a m e r a " : f a l s e ,
" send_measuremen t s " : f a l s e

} ,
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" c a r 2 " : {
" t y p e " : " vehic le_4W " ,
" e n a b l e _ p l a n n e r " : t r u e ,
" c o n v e r t _ i m a g e s _ t o _ v i d e o " : f a l s e ,
" e a r l y _ t e r m i n a t e _ o n _ c o l l i s i o n " : t r u e ,
" r e w a r d _ f u n c t i o n " : " c o r l 2 0 1 7 " ,
" s c e n a r i o s " : "SSUI3C_TOWN3_CAR2" ,
" m a n u a l _ c o n t r o l " : f a l s e ,
" a u t o _ c o n t r o l " : f a l s e ,
" camera_ type " : " rgb " ,
" c o l l i s i o n _ s e n s o r " : " on " ,
" l a n e _ s e n s o r " : " on " ,
" l o g _ i m a g e s " : f a l s e ,
" log_measu remen t s " : f a l s e ,
" r e n d e r " : t r u e ,
" x _ r e s " : 168 ,
" y _ r e s " : 168 ,
" u s e _ d e p t h _ c a m e r a " : f a l s e ,
" send_measuremen t s " : f a l s e

} ,
" c a r 3 " : {

" t y p e " : " vehic le_4W " ,
" e n a b l e _ p l a n n e r " : t r u e ,
" c o n v e r t _ i m a g e s _ t o _ v i d e o " : f a l s e ,
" e a r l y _ t e r m i n a t e _ o n _ c o l l i s i o n " : t r u e ,
" r e w a r d _ f u n c t i o n " : " c o r l 2 0 1 7 " ,
" s c e n a r i o s " : "SSUI3C_TOWN3_CAR3" ,
" m a n u a l _ c o n t r o l " : f a l s e ,
" a u t o _ c o n t r o l " : f a l s e ,
" camera_ type " : " rgb " ,
" c o l l i s i o n _ s e n s o r " : " on " ,
" l a n e _ s e n s o r " : " on " ,
" l o g _ i m a g e s " : f a l s e ,
" log_measu remen t s " : f a l s e ,
" r e n d e r " : t r u e ,
" x _ r e s " : 168 ,
" y _ r e s " : 168 ,
" u s e _ d e p t h _ c a m e r a " : f a l s e ,
" send_measuremen t s " : f a l s e

}
}

}

C.1.2 Goals

The goal of actor car3 (maroon sedan) is to successfully cross the intersection by going straight. The
goal of actor car1 (Red cola van) is to successfully cross the intersection by taking a left turn. The
goal of actor car2 (blue minivan) is to successfully cross the intersection by going straight. For all the
agents, successfully crossing the intersection amounts to avoiding collisions or any road infractions
and reaching the goal state within the time-limit of one episode.

The start and goal coordinates of each of the actors in CARLA Town03 map is listed below for
ground truths:

SSUI3C_TOWN3 = {
"map" : " Town03 " ,
" a c t o r s " : {

" c a r 1 " : {
" s t a r t " : [ 1 7 0 . 5 , 80 , 0 . 4 ] ,
" end " : [ 1 4 4 , 59 , 0 ]
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Action [Steer, Throttle, Brake] Description
0 [0.0, 1.0, 0.0] Accelerate)
1 [0.0, 0.0, 1.0] Brake
2 [0.5, 0.0, 0.0] Turn Right
3 [-0.5, 0.0, 0.0] Turn Left
4 [0.25, 0.5, 0.0] Accelerate right
5 [-0.25, 0.5, 0.0] Accelerate Left
6 [0.25, 0.0, 0.5] Brake Right
7 [-0.25, 0.0, 0.5] Brake Left
8 [0.0, 0.0, 0.0] Coast

Table 3: Mapping between a discrete action space and the continuous vehicle control commands repre-
sented using the normalized steering angle (steer:[-1,1]), the normalized throttle values (throttle:[0,1])
and the brake values (brake:[0, 1]) for training vehicle control policies

} ,
" c a r 2 " : {

" s t a r t " : [ 1 8 8 , 59 , 0 . 4 ] ,
" end " : [ 1 6 7 , 7 5 . 7 , 0 . 1 3 ] ,

} ,
" c a r 3 " : {

" s t a r t " : [ 1 4 7 . 6 , 6 2 . 6 , 0 . 4 ] ,
" end " : [ 1 9 1 . 2 , 6 2 . 7 , 0 ] ,

}
} ,
" w e a t h e r _ d i s t r i b u t i o n " : [ 0 ] ,
" max_s teps " : 500

}

C.2 Observation and Action spaces

The observation for each agent is a 168x168x3 RGB image captured from the camera mounted on the
respective actor that the agent is controlling. The action space is Discrete(9). The mapping between
the discrete actions and the vehicle control commands (steering, throttle and brake) are provided in
table C.2

C.2.1 Reward Function

Each agent receives a reward given by ri(St, Et, ati). Where the dependence on Et, the environment
state is used to signify that the reward function is also conditioned on the stochastic nature of the
driving environment which includes weather, noisy communication channels etc.

Similar to [4] we set the reward function to be a weighted sum of five terms: 1. distance traveled
towards the goal D in km, speed V in km/h, collision damage C, intersection with sidewalk SW ∈
[0, 1], and intersection with opposing lane OL ∈ [0, 1]

ri = 1000 (Dt − 1−Dt) + 0.05 (Vt − Vt−1)− 0.00002

(Ct − Ct−1)− 2 (SWt − SWt−1)− 2 (OLtOLt−1)

+α+ β (13)

Where, optionally, α is used to encourage/discourage cooperation/competitiveness among the agents
and β is used to shape the rewards under stochastic changes in the world state Et .

C.3 Agent algorithm

The MACAD-Agents used for this experiment is based on the IMPALA [8] architecture implemented
using RLLib [15] with the following hyper-parameters:
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{
# D i s c o u n t f a c t o r o f t h e MDP

"gamma" : 0 . 9 9 ,
# Number o f s t e p s a f t e r which t h e r o l l o u t g e t s c u t

" h o r i z o n " : None ,
# Whether t o r o l l o u t " c o m p l e t e _ e p i s o d e s " o r " t r u n c a t e _ e p i s o d e s "

" batch_mode " : " t r u n c a t e _ e p i s o d e s " ,
# Use a background t h r e a d f o r s a m p l i ng ( s l i g h t l y o f f−p o l i c y )

" sample_async " : F a l s e ,
# Which o b s e r v a t i o n f i l t e r t o a p p l y t o t h e o b s e r v a t i o n

" o b s e r v a t i o n _ f i l t e r " : " N o F i l t e r " ,
# Whether t o LZ4 compress o b s e r v a t i o n s

" c o m p r e s s _ o b s e r v a t i o n s " : F a l s e ,
" num_gpus " : a r g s . num_gpus

# Impa la s p e c i f i c c o n f i g
# From Appendix G i n h t t p s : / / a r x i v . o rg / pdf / 1 8 0 2 . 0 1 5 6 1 . pdf
# V− t r a c e params .

" v t r a c e " : True ,
" v t r a c e _ c l i p _ r h o _ t h r e s h o l d " : 1 . 0 ,
" v t r a c e _ c l i p _ p g _ r h o _ t h r e s h o l d " : 1 . 0 ,

# System params .
# Should be d i v i s i b l e by num_envs_per_worker

" s a m p l e _ b a t c h _ s i z e " : a r g s . s ample_bs_pe r_worke r ,
" t r a i n _ b a t c h _ s i z e " : a r g s . t r a i n _ b s ,
" m i n _ i t e r _ t i m e _ s " : 1 0 ,
" num_workers " : a r g s . num_workers ,

# Number o f e n v i r o n m e n t s t o e v a l u a t e v e c t o r w i s e p e r worker .
" num_envs_per_worker " : a r g s . envs_pe r_worke r ,
" num_cpus_per_worker " : 1 ,
" num_gpus_per_worker " : 1 ,

# L e a r n i n g params .
" g r a d _ c l i p " : 4 0 . 0 ,
" c l i p _ r e w a r d s " : True ,

# e i t h e r " adam " or " rmsprop "
" o p t _ t y p e " : " adam " ,
" l r " : 6 e−4,
" l r _ s c h e d u l e " : [
[

0 ,
0 .0006

] ,
[

20000000 ,
0 .000000000001

] ,
# Anneal l i n e a r l y t o 0 from s t a r t 2 end
] ,
# rmsprop c o n s i d e r e d

" decay " : 0 . 9 9 ,
"momentum" : 0 . 0 ,
" e p s i l o n " : 0 . 1 ,

# b a l a n c i n g t h e t h r e e l o s s e s
" v f _ l o s s _ c o e f f " : 0 . 5 ,

# B a s e l i n e l o s s s c a l i n g
" e n t r o p y _ c o e f f " :−0 .01 ,

}

The agents use a standard deep CNN with the following filter configuration: [[32, [8, 8], 4], [64, [4, 4],
2], [64, [3, 3], 1]] followed by a fully-connected layer for their policy networks. In the shared-weights
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Figure 4: Figure shows the cumulative mean episodic rewards (legend:mean) and mean episodic
rewards of car1 (legend:car1), car2 (legend:car2) and car3 (legend:car3). The blue vertical lines and
the image at the top row indicate the states sampled during the corresponding training iteration (1.1M
and 4.6M

.

configuration, the agents share the weights of a 128-dimensional fully-connected layer that precedes
the final action-logits layer.

C.4 Results

The performance of the multi-agent system is shown in Figure 4.
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