Learning Adaptive driving behavior using
Recurrent Deterministic Policy Gradients

Kaustubh Mani!, Meha Kaushik?, Nirvan Singhanial
K. Madhava Krishna!#

November 30, 2019

Abstract

In this work, we propose adaptive driving behaviors for simulated cars using
continuous control deep reinforcement learning. Deep Deterministic Policy Gra-
dient(DDPG) is known to give smooth driving maneuvers in simulated environ-
ments. But simple feedforward networks, lack the capability to contain temporal
information, hence we have used its Recurrent variant called Recurrent Determin-
istic Policy Gradients. Our trained agent adapts itself to the velocity of the traffic.
In the presence of dense traffic, it is capable of slowing down to prevent collisions,
and in the case of sparse traffic, it speeds up and changes lanes to overtake. Our
main contributions are: 1. Application of Recurrent Deterministic Policy Gradi-
ents. 2. Novel reward function formulation. 3. Modified Replay Buffer called
Near and Far Replay Buffers, wherein we maintain two replay buffers and sample
equally from both of them.

1 Introduction and Background

1.1 Defining Adaptive Behavior

Adaptive nature can be described as quickly changing your own attributes or parame-
ters to suit the external conditions. For intelligent vehicles, adaptive behavior is char-
acterized by its ability to adjust its velocity, steering angle, etc according to the external
environment, which is majorly dependent on the velocities and relative positions of the
surrounding cars. Typically, if the traffic cars are moving at slow speeds, the agent
should also slow down to avoid collisions and if they are at higher speeds the agent
should speed up, as long as it can avoid crashing. If the space on road allows, then
the agent should be able to overtake the other vehicles, most importantly, it should also
avoid collisions at every step. Hence, adaptive behavior can be summed up as greedy
driving(with respect to velocity) but with safety as top most priority.

T1Robotics Research Center, IIT-Hyderabad
#2Meicrosoft Canada Development Center

1.2 Recurrent Deterministic Policy Gradients

Based on Deterministic Policy Gradients[1], DDPG is one of the most successful con-
tinuous control frameworks using deep reinforcement learning. It has shown promising
results for control in autonomous vehicles, both in simulators [2],[3], [4] and on self
driving hardware [5]. It is an off-policy actor critic[6] based neural network architec-
ture.

The actor network is updated according to:

1
VouJ =~ N ZVaQ(Sva)|s:s,-,a:u(s,-)V9“.u(s) |S:Si (H

where J is the performance objective which represents the agent’s goal to maximize the
cumulative discounted reward from the start state. N is the batch-size, 6€ are the critic
network parameters and 6" are the actor network parameters. Qr(sit1,Ur(si+1)) is
the target Q value for the state-action pair (s;1, U7 (s;+1)) where ur(s;y1) is obtained
from the target actor network, Q(s;,a;) is the Q value from the learned network. Target
actor and critic networks are clones of actor and critic networks but are keep fixed for a
given number of episodes. They prevent the corresponding network from tailing itself.
The target network updates can take place either by directly copying the weights or by
using soft update. The equation for soft update is given by:

097 + 102+ (1—1)09"

2
OHT < 7O + (1 —1)0*T @

where 6 & 69 are the network parameters for the actor and critic networks respec-
tively, 047 & 097 are their corresponding target network parameters and T << 1, is
the learning rate.

The updates of the critic network is given by:

R PPN
L= 3 E0i=0ls.a) N

yi = (ri +YQr (siv1, 17 (siv1)))

where r; is the reward at the i timestep, y; is the target value at the i’ timestep, N is
the batch-size and 7 is the discount factor. The rest of the terms have the same meaning
as those in Eq. 1.

Autonomous Driving falls under the domain of partially observable control prob-
lems . Occluded objects, unknown intent of other vehicles, sharp curves and blind
spots are characteristics of any driving scenario. Recurrent neural networks cannot
completely solve the problem of blind spots or occlusions but can give a fair estimate
because of the encoded history. Replacing the feed forward networks in the Actor
Critic Architecture with recurrent memory based networks gives rise to Recurrent De-
terministic Policy Gradients [7]. Mathematically, Q(s,a) is replaced by Q(h,a) and
W (s) by u(h). The policy update is given by:

V@“J’%E‘C Z’J/_IVGQIJ(hva)|h=h,,a=u9(h,)V9”nu(h)|h:ht)
t

where T = (s1,01,a1,52,02,a2,...) represents entire trajectories drawn from the trajec-
tory distribution induced by the current policy and #; is the observation-action history
at the 1" timestep.

Notice, how the expectation is now calculated for entire trajectory, unlike a single
state as in equation 1. Back Propagation for recurrent neural networks takes place
in form of BPTT i.e. Back Propagation Through Time. The network in unrolled for
number of timesteps, error for each step is accumulated, the network is rolled up again
and the weights are updated.

Other concepts like Target Network updates, Replay Buffer, they remain same as
in DDPG.

Critic Network

Actor Network

\
\

State
| Vector RNN (300 urits)
a
F——» stear (©5) e
sigmoid |

Qacceleratiori

Dense(600 units) \ Qsteer
Brake

sigmoid | - /

5 [T Accekraion Qbrake
" Action H / H
2 Veetor / H

state !

Vectar RAN (300 units) i /
) RELU :
Derse(600 urits) Dense Dens: ponge
RELU i G0 60 ey
wits) i) gy

Dense[600 uni:s)

Figure 1: Our RDPG architecture for autonomous driving.

2 Implementation Details

2.1 Simulator Details

We have used TORCS [8] which is a widely used, light weighted, platform for research
in autonomous driving. Unlike the other popular simulators [9] [10], TORCS is not
based on unreal engine,and has simpler graphics. It does not cater to the entire pipeline
of processing the raw sensor values but instead offers the processed sensor information,
this helped in avoiding higher computational resources.

Scr_server is a bot in TORCS which can connect to a controller using UDP con-
nections and then act as per the instructions it receives from the client(controller). The
actuator values (consisting of steer, acceleration and brake) are calculated in the con-
troller using our proposed framework and sent to the bot (server), which takes the
corresponding action and returns an array of sensor values. The sensor information,
which we use in our state vector of the neural networks are:

1. Angle between the car and the axis of the track.

2. Track Information: Readings from 19 sensors with a 200m range, present at
every 10° on the front half of the car. They return the distance to the track edge.

3. Track Position: Distance between the car and the axis of the track, normalized
with respect to the track width.

4. SpeedX, SpeedY, SpeedZ
5. Wheel Spin Velocity of each of the 4 wheels.
6. Rotations per minute of the car engine

7. Opponent information: 36 values, each corresponding to the distance of the
nearest obstacle(upto 200 mts), located at a difference of 10°. This can be
thought of as simplified LiDAR readings.

2.2 Reward function

Eq.5 and its variants have been the most commonly used reward functions, in similar
use cases [2],[3], [4]. The reward function encourages agent to move faster in the
desired direction(Vycos(0)) and penalizes the component of velocity perpendicular to
the desired direction V,sin(0), where V; is the longitudinal velocity of the agent and 6
is the angle between the agent’s velocity and the desired direction of motion. Ideally,
this reward function along with the collision penalty should be able to learn the desired
adaptive behavior but our experiments show that its difficult to learn adaptive driving
behavior using this reward function since collisions are rare and don’t get accounted
properly in the update signal. An agent trained with this reward function in dense traffic
scenarios converges to one of the following two policies:

* If the collision penalty is low, the agent acts greedily and in order to gain high
rewards drives in an unsafe manner, which results in high collision rates.

« If the collision penalty is high, the agent drives very conservatively at an unac-
ceptably slow speed, in order to avoid any collisions.

Both of the behaviours listed above are not ideal for an autonomous driving car. To
address this problem we propose a novel reward function for adaptive driving which
rather than giving discrete rewards to the agent on collision formulates the reward as a
function of the agent’s vicinity to the traffic ahead. We make use of the LiDAR sensor
data to find the distance to the closest obstacle and modulate the reward in order to
avoid collisions.

2.2.1 Adaptive Reward

Discrete collision penalty is the most common and simplest reward modification used
by RL agents for collision avoidance, but It has proven to be a difficult credit assign-
ment problem over large time horizons. We design a novel reward function for learning
adaptive driving behavior on road by manipulating the reward according to the vehi-
cle’s vicinity to traffic.

Our adaptive reward function Eq.6 is designed around a simple intuition - by re-
warding states closer to the traffic, the agent(in case of dense traffic) will learn a policy
to decelerate if the velocity of the agent is larger than the traffic infront(because it will
overtake and then leave the traffic far behind at higher velocities), or accelerate if its
velocity is smaller and maintain velocity close to the traffic’s velocity in order to posi-
tion itself closer to the traffic cars. In eq 6 minfront, is the distance to the nearest car
in the front direction at time ¢, which is calculated by using the opponent information
explained in 2.1. a and f; are hyperparameters which control the scale and shape of
the reward function respectively. 7 is the margin which controls how close the agent
needs to be to the traffic to get high adaptive reward. In Sec. 3, we discuss how this
margin can affect the behavior of the agent. One of the nice things about this reward
function is that the parameters values can be guessed very intuitively rather than doing
a hyperparameter search. Since, & controls the highest adaptive reward the agent can
get by staying closer to the traffic it needs to be much larger than the highest achievable
lanekeeping reward 5. Eq.7 is simply a scaled, shifted version of the sigmoid function,
where B, is the scale controlling the smoothness of the boundary between high and
low adaptive rewards on either side of the margin y . 7y can be set as the maximum
permissible margin from the traffic the agent should maintain.

Rlanekeep = Vx * (COS(Q) - Sll’l(e)) (5)

Radaptive = Q0* f(ﬁaa Y minf'vntt) * COS(O) (6)
1

F(Basv.x) = [y} %)

2.2.2 Overtaking Reward

To accelerate the training of opportunistic/overtaking behavior, we’ve defined an ad-
ditional reward function which is in many ways similar to those used by [2],[3]. The
important change from previous versions is that in Eq. 8 we are taking into account the
distance from the nearest car defined by mindist. The overtaking reward obtained by
the agent is lower if the agent overtakes from a close distance to the traffic and higher if
the agent overtakes with a bigger margin. This has been done in order to learn a policy
in which our agent avoids overtaking in dense traffic situations and overtakes from a
safe distance in case of sparse traffic. o, is the overtaking counter, which represents
number of cars overtaken by our agent at time ¢, 1] is the maximum possible overtaking
reward, mindist, is calculated by finding the minimum distance in the opponent vector
at time ¢. 3, controld the curvature of the overtaking reward function. For high values
of B,, the reward function saturates to 1 very rapidly, for low 3,, the reward gradually
increases to 1 as the mindist, is increased.

Rovertuke = (Ot - Ot—l) * (77 (1 - ef(ﬁg*mindislt))) (8)

Our final reward function Eq. 9 is simply the summation of lanekeeping, adaptive
and overtaking rewards.

R= Rlanekeep + Radaprive + Rovertake (9)

2.3 Near and Far Replay Buffer

The samples fed to the RL algorithm are derived from consecutive steps of an episode,
making consecutive samples highly correlated. To prevent this, a Replay Buffer is
maintained which stores all the samples and from which, the samples are randomly
picked during training. This improves the data efficiency of the agent and removes the
temporal structure from the data making it independent and identically distributed. The
quality of the learned behavior depends entirely upon the experiences populating the
replay buffer. Often in continuous control tasks, an agent may encounter experiences
belonging to one class more than others. This can lead to large class imbalance in the
training batch sampled from the replay buffer.

For learning adaptive driving behaviors, the agent has to learn how to drive in the
presence of both dense and sparse traffic. Intuitively, we can understand that the agent
will have to exhibit different behaviors in these cases. In the presence of dense traffic
the agent should slow down and maintain the velocity of the traffic in order to get high
adaptive reward. In case of sparse traffic or when the agent is away from the traffic the
total reward Eq. 9 converges to lanekeeping reward Rjuekeep- In this case the agent
must accelerate in order to get high lanekeeping rewards. As the agent slowly learns
the adaptive behavior, the replay buffer will be filled by only the states close to the
traffic, and the agent will forget how to behave in the case of no traffic or sparse traffic,
as each batch update will now contain state transitions belonging to dense traffic more
than those belonging to sparse traffic.

To show our agent enough examples of both the cases, when it receives high reward
with high velocity when it is far from the traffic and when it receives high reward
independent of velocity when it is close to the traffic, we sampled data points from
two replay buffers: Near replay buffer and far replay buffer. As the name suggests,
Near Replay Buffer stores samples wherein our agent is near the traffic vehicles and
Far Replay Buffer stores the samples wherein our agent is far from the traffic vehicles.
Near and far is defined by the same margin parameter Yy explained in Sec. 2.2.1, If
the minfront, parameter is smaller than the margin 7, the state transition is added to
the Near buffer. If minfront, is larger or equal to 7, the state transition is added to
the Far buffer. While sampling for batch update, equal number of samples are picked
from both of the replay buffers. As we will later see in Section 3, the addition of Near
and Far buffers leads to gain in sample efficiency resulting in faster training and better
generalization during test time.! 2

3 Results

3.1 Experimental Setup

We have performed extensive experiments to evaluate the performance of our reward
function and compare the two algorithms DDPG and RDPG and their variants. We have
trained our agent with 16 traffic cars with having velocities sampled from a uniform

ILink to the results: https://goo.gl/b8wyt1
2Link to the code:https://goo.gl/sqMZEh

160000

140000 -

120000 -

100000 -

80000 -

Reward

60000 -
40000 -

20000 - — RDPG

— DDPG
o

] 2000 4000 6000 8000 10000 12000
Steps

Figure 2: Comparision of DDPG and RDPG on the task of adaptive driving.

140000 4 —— Single Replay buffer
——— Near and Far buffers

120000 -

100000 -

80000 -

Reward

60000 -

40000 -+

20000 4

o

o 100 200 300 400 500 600 700 800
Episode

Figure 3: Comparision of RDPG with a single Replay Buffer and RDPG with our Near
and Far Replay Buffer on the task of adaptive driving.

distribution between 25km/hr and 35km/hr. Traffic is divided into two blocks of 8 cars
each, the velocity of cars in a block is kept the same. The positions of traffic cars are
also chosen randomly from a set of possible formations to simulate dense and sparse
traffic situations. During training, the traffic cars start in a dense formation, and then
randomly change their positions. Positions and velocity of traffic cars are randomly
chosen after every 50 timesteps. However, during testing, in order to measure the
robustness and generalizability of our agent, velocities of traffic agents are sampled
from a uniform distribution between Skm/hr and 105km/hr and the position of traffic
is also randomly chosen from a larger set of formations every 20 timesteps. To do a
fair comparison, we keep a random seed for all of our testing simulations in order to
generate the same sequence of random values. We use the following metrics to evaluate
the performance of our agents:

3.1.1 Collisions

In Table 1, the row Collisions represent the total number of collisions incurred by the
agent over a period of 1000 episodes each of 1000 timesteps. In this case, episodes
are immediately terminated if the agent collides with the traffic. In Table 2, we are
comparing the percentage of timesteps when there is a collision between our agent and
any of the traffic cars over the period of 1000 episodes each of 100 timesteps.

3.1.2 Min Front

In Table 1, Min Front is calculated by averaging the min front parameter explained in
Sec. 2.2.1 over the period of 1000 episodes, for the first 100 timesteps when the traffic
is in dense mode. Min Front value represents how close the agent is able to safely
drive in the presence of dense traffic. As we are testing with varying traffic velocities
different from those at the training time. A low value of Min Front tells us that the
agent is able to stay close to the traffic which means the agent is able to better adapt to
the velocity of the traffic and thus shows better generalizability.

3.1.3 Cars Overtaken

In Table 1 Cars overtaken is calculated by finding the average of overtaking counter
o, explained in Sec. 2.2.2 obtained at the end of each episode over a period of 1000
episodes. This parameter comments on the overtaking capabilities of the agent. The
agent which is able to overtake more cars on average adapts better to the diverse traffic
scenarios.

During training, we are adding Ornstein-Uhlenbeck [11] noise to each of three
actions(Steering, Acceleration, Brake) for exploration using €-greedy method. For lane
keeping, we train our agent for 100000 timesteps and for another 200000 timesteps to
learn adaptive and overtaking behaviors. Fig. 4 and 5 shows the training plots for lane
keeping and adaptive behaviors respectively. The agent was trained with & equal to
1000, B, equal to -0.5, y equal to 30m, B, equal to 0.2, N equal to 10000, learning
rate for actor being 0.0001 and 0.001 for critic, buffer size of 200000 for single buffer
and near and far buffers each of size 100000 in case of two buffers, batch size of 32.

The value of 7 for target network is set to 0.001. RDPG is trained with every sample
in a batch having 10 timesteps, one for the current state transition and 9 past state
transitions. Analysis for both Table 1 and 2 are done with the agent trained with the
hyperparameters mentioned above.

60000

—— RDPG

—— DDPG
50000 4

40000

30000 -

Reward

20000 +

10000

o 10000 20000 30000 40000 50000 60000
Number of Steps

Figure 4: Comparision of RDPG and DDPG on the task of lane keeping.

3.2 Comparing DDPG and RDPG

We compare the two deterministic policy gradients algorithms on their training time
and performance. Fig. 4 uses the reward versus steps plot to compare the two algo-
rithms on the task of lane keeping. It can be observed from the plot that RDPG learns
faster than DDPG and also saturates to a higher reward which means that the RDPG
agent is able to drive faster while maintaining its lane in comparison to the DDPG
agent. Fig. 2 compares the two algorithms on the task of adaptive driving and overtak-
ing. The plot shows that RDPG is more sample efficient and learns faster in comparison
to DDPG. Also, From Table 1, we can see that RDPG performs better than DDPG in
both scenarios i.e with or without Near and Far buffers. Because of the recurrent con-
nections, it can encode temporal information about the traffic i.e. (the relative velocity
and acceleration of the surrounding traffic) which helps RDPG to learn a better policy.
The resultant policy is better at avoiding collisions and generalizes better than DDPG to
the traffic not seen during training time. Table 2 shows that the RDPG agent performs
far better than DDPG agent even in the case of lanekeeping reward. Qualitative results
show that RDPG with lanekeeping reward learns defensive behavior which means that
the agent brakes instantaneously to avoid collisions once it is very close to the traffic.
This is not the desired behavior as it leads to oscillations in the movement of the agent.

3.3 Results indicative of our Reward Function

The objective of this work has been to learn an agent which can navigate safely in
dense traffic environments by adapting itself to the velocity of the traffic, and show op-
portunistic/overtaking behaviors once there is enough space for the agent to overtake

DDPG DDPG RDPG RDPG

Track Parameter standard | Near Far | standard | Near Far
Name Replay Replay Replay Replay
buffer Buffer buffer Buffer
Collisions | 98 91 48 42
CGl1 Min Front | 56.592 39.452 49.754 35.182
Cars 10452 | 14.532 | 10.878 | 14.978
overtaken

Collisions | 104 93 57 59

CG2 | Min Front | 62.821 42.122 57.964 40.151
Cars 9819 | 12.112 | 8882 | 14.084
overtaken
Collisions | 87 88 42 31

CG3 | Min Front | 49.213 36.197 42.991 31.886
Cars 11213 | 15128 | 12.527 | 15.741
overtaken
Collisions | 94 96 61 36

Streetl | Min Front | 55.123 41.125 50.986 44.746

Cars 10972 | 13.926 | 12.123 | 13.984
overtaken

Table 1: The above table compares DDPG and RDPG with and without Near Far Re-
play Buffers. This data has been calculated over the period of 1000 episodes, with each
episode having 1000 steps.

Lanekeeping Adaptive

Track IC\;‘;SOf DDPG | RDPG | DDPG | RDPG
4ears | 4987 | 2762 | 0.0116 | 0.00812
CG1 [Ocars | 9.871 | 4902 | 0.0136 | 0.00791
T6cars | 42.842 | 19.773 | 0.0231 | 0.0113
4ears | 3.749 | 1.858 | 0.0127 | 0.0104
CG2 [Ocars | 10.081 | 6.134 | 0.0157 | 0.00926
T6cars | 33.624 | 17.782 | 0.0312 | 0.0203
4ears | 3.782 | 1.212 | 0.00913 | 0.00428
CG3 [Ocars | 5.925 | 1.984 | 0.0148 | 0.00948
T6cars | 36.795 | 12.489 | 0.0382 | 0.0185
Gears | 4852 | 2.097 | 0.0104 | 0.00752
Street | Ocars | 10.328 | 4.892 | 0.0144 | 0.0082
T6cars | 39.792 | 22.196 | 0.0331 | 0.00906

Table 2: Comparing reward functions in terms of % of colliding timesteps

Figure 5: Figure showing adaptive behavior. Blue cars are the traffic cars and green
is the trained agent. The speedometer in the images displays the speed of our agent.
In image 1, the traffic cars are densely populated infront of the agent, hence agent is
driving at 39kmph. In the second image, the row ahead has some empty space, hence
we observe the agent’s speed is increased to 45kmph. 45kmph. In the third and fourth
image, as the traffic congestion increases agent decreases its velocity. In the rest of
the images, as the traffic shifts to the opposite side of the agent, it speeds up from 39
to 58kmph, overtaking the cars in the scene. The direction of arrow represents the
direction of the flow of the traffic.

safely. Figure ?? displays the behavior of the agent trained using the old reward func-
tion(i.e. Rjanekeep)- As can be seen from the figure that even in dense traffic situations,
the agent tries to unsafely overtake traffic cars and eventually leading to a collision.
Analysis shows that although the agent is able to navigate through sparse traffic with-
out many collisions it always ends up colliding with the traffic in case of dense traffic
scenarios.

Figure 5 shows the results of the adaptive behavior learned using the proposed
reward function. We can observe that in our approach the agent always maintains a
safe distance from the traffic by adapting to the traffic’s velocity and it’s also able to
overtake other cars within safety limits. The agent drives less aggressively when it is
close to the traffic and display behaviors similar to human drivers in the same situation.

Table 2 gives a quantitative comparison between the two reward functions. It can be
seen that our proposed reward function drastically decreases the number of collisions
on all tracks. We can also see that when the number of traffic cars is low, the collision
rate is low for both reward functions but as we increase the number of traffic cars and
make the traffic more and more denser, the collision rate for lane-keeping reward rises
dramatically. In comparison, the collision rate for the agent trained with our proposed
reward function increases only slightly as the traffic gets denser.

3.4 Importance of Near and Far Replay Buffer

As discussed in Sec. 2.3, the addition of Near and Far Replay Buffer can lead to better
sample efficiency and generalization. We can see in figure 3, the traditional use of
replay buffer leads to our trained agent converging to a sub-optimal policy, on the other
hand, the use of Near and Far Replay Buffers leads to a high value of reward after 400
episodes of training. We can infer from it that, near and far replay buffers, lead to a
high value of reward and hence facilitated the learning of better policy in less number
of episodes than the traditional, single replay buffer. From Table 1 we can see that
the for both DDPG and RDPG with the addition of Near and Far Replay buffers, the
collision rate goes down slightly, but more importantly the average front distance from
the traffic significantly decreases indicating that the agent is able to stay more close to
the traffic which means that the agents get high adaptive rewards during test time and
hence shows more generalization.

3.5 Effect of Hyperparameters on Optimal Policy

As we mentioned in Sec. 2.2.1, the margin parameter Y in our reward function can
control the behavior of the agent. Fig. 6 shows that for low margin values the collision
is high and also that the minimum front distance maintained by the agent(Min Front)
with the traffic is low. As we increase the margin value in our reward function Eq. 6, the
number of collisions decreases and the agent maintains increasingly higher distances
and becomes safer.

B, in Eq. 8 controls how quickly the overtaking reward saturates to 1] as we increase
the mindist value. If 3, is small, it means that the agent will not get a high overtaking
reward if it overtakes by a smaller distance. If 3, is high, it means that the agent can get
a high reward even for overtaking by a small distance. Fig. 6 shows that as we increase
the value of 3, the average Overtaking distance which is the distance to the nearest car
when our agent is overtaking another car decreases which means that the agent is not
overtaking safely leading to higher number of collisions. It can also be seen that as we
increase the value of 3,, the agent overtakes less safely and collision increases.

mmm Collisions mmm Collisions
mmm Overtaking Distance

100 mmm Min Front =

¥ o
margin B =005 B=01 B=02 B=05
beta

Figure 6: The figure in the left analyzes how margin ¥ in Eq. 6 affects the adaptive driv-
ing behavior. The one on the right depicts how how 3, in Eq. 8 affects the overtaking
behavior

References

[1] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.

[2] Meha Kaushik, Vignesh Prasad, K Madhava Krishna, and Balaraman Ravindran.
Overtaking maneuvers in simulated highway driving using deep reinforcement
learning. In 2018 IEEE Intelligent Vehicles Symposium (1V), pages 1885-1890.
IEEE, 2018.

[3] Meha Kaushik and K Madhava Krishna. Learning driving behaviors for auto-
mated cars in unstructured environments. In European Conference on Computer
Vision, pages 583-599. Springer, 2018.

[4] Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. End-
to-end deep reinforcement learning for lane keeping assist. In NIPS Workshop on
Machine Learning for Intelligent Transportation Systems (MLITS), 2016.

[5] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda,
John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to
drive in a day. arXiv preprint arXiv:1807.00412, 2018.

[6] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in
neural information processing systems, pages 1008-1014, 2000.

[7] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-
based control with recurrent neural networks. arXiv preprint arXiv:1512.04455,
2015.

[8] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,
Rémi Coulom, and Andrew Sumner. TORCS, The Open Racing Car Simulator.
www.torcs.org, 2014.

[9] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-
fidelity visual and physical simulation for autonomous vehicles. In Field and
Service Robotics, 2017.

[10] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st
Annual Conference on Robot Learning, pages 1-16, 2017.

[11] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian
motion. Physical review, 1930.

