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Abstract

To develop a safe autonomous driving system, the delay from camera to output of
its object detection module should be thoroughly analyzed and optimized. However,
surprisingly little attention has been paid to this end-to-end delay of DNN-based
object detectors. To the best of our knowledge, this study is one of the first attempts
to analyze the internal architecture of Darknet YOLO object detector in terms of
its end-to-end delay. Based on the analysis result, we propose an optimized system
architecture by our modified pipeline strategy that satisfies the object detector’s
needs in general. Our empirical evaluation shows that the end-to-end delay drops
to 229 ms (from 1,335 ms) on our evaluation platform, which is an 83% reduction.
Note that we only modify the system architecture and do not change the DNN
architecture itself; hence there is no penalty on the detection accuracy. Our demo
is available at https://youtu.be/n3pr3s09Fs4.

1 Introduction

For safe autonomous driving, a vehicle’s camera-based perception should detect hazardous on-road
obstacles as early as possible to reduce the risk of collision. In that sense, the delay from camera
capture to detection should be thoroughly analyzed and optimized. In this regard, lots of studies try
to reduce inference delay by developing light-weight deep neural network (DNN) architectures. On
the contrary, however, surprisingly little attention has been paid to end-to-end delay optimization,
which includes not only the inference delay but also other delay components such as the time taken
from the image capture by the camera to the start of the inference engine.

Table 1: End-to-end delay and frame rate measurement results
YOLOv3 YOLOv2 YOLOv3-tiny YOLOv2-tiny

Jetson TX2 DELAY(ms) 3,710 1,881 328 317
FPS 1.62 3.22 20.6 21.1

Jetson AGX Xavier DELAY(ms) 1,335 761 99 198
FPS 4.48 8.33 30.2 29.7

Drive PX2 DELAY(ms) 1,206 590 122 108
FPS 4.9 10 31.2 31

PC with 2080ti GPU DELAY(ms) 199 76 83 80
FPS 28.6 30.2 30.3 30.2

Table 1 shows our measurement results for the end-to-end delay and frames per second (fps) of
various versions of Darknet YOLO (You Only Look Once) object detector [1, 2, 3] on four different
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Nvidia graphics processing unit (GPU)-based hardware platforms. Note that Darknet YOLO is the
most well-known reference implementation of object detection in the research community. Moreover,
it has been readily used for developing real autonomous vehicles to be deployed on the road [4, 5].
As shown in the table, besides the fact that the delays are significantly affected by the GPU hardware
performance and specific DNN architectures, another important finding is that the end-to-end delay
is too long in relation to the corresponding fps values. For example, let’s take a look at the Jetson
AGX Xavier and YOLO v3 case. Since its fps is 4.48, we can naively expect the end-to-end delay
to be approximately 223 ms, which is less than one-fourth of one second. However, the actual
measurement result of the end-to-end delay is surprisingly high, that is 1,335 ms, which is almost six
times compared to the expected one. Starting from this observation, our research questions are given
in the following:

• What is happening inside the object detection system within the end-to-end delay?

• How can we reduce this end-to-end delay, and by how much?

To answer the first question, we first analyzed the internal architecture of Darknet YOLO v3 and
thoroughly measured every delay component. From the investigation, we found out that Darknet
is currently employing a multithreaded four-stage pipeline architecture, which is optimized for
multicore systems with the aim of maximizing its frame rate, while sacrificing the end-to-end delay.
In this architecture, the reason behind the long delay is the misbalanced pipeline architecture with
different-length stages; the pipeline cycle time should be aligned to the longest one, which causes
significant idle times to short-length stages. Also, we have found that between the camera driver
and Darknet, there was an unnecessary queuing delay of considerable length that was caused by an
inappropriate queuing strategy.

To answer the second question, we first removed the unnecessary queuing delay by eliminating
the queue between the camera driver and Darknet. This simple hack reduced the average delay on
the Nvidia Jetson AGX embedded platform from 1,335 ms to 438 ms, which was a 67% reduction.
Second, we empirically searched for the optimal pipeline architecture that could minimize the end-to-
end delay. The resulting optimal architecture was a two-stage pipeline architecture with an offset
optimization technique. With this optimization, the end-to-end delay was even further reduced to
229 ms, which was an 83% reduction compared with that of the original architecture. While adapting
the four stages into the final two-stage architecture, cycle time increase was inevitable, which affects
the frame rate. However, the impact on the frame rate was minimal, that is, from 4.48 to 4.3 (4%
decrease) compared to the end-to-end delay reduction.

Related Work. In the recent deep learning literature, there are many studies that aim to develop faster
deep neural network architectures. For example, to target efficient inference on embedded systems,
single-stage object detectors have been developed [6, 7]. Also, to reduce the computational load,
techniques such as fixed-point quantization [8], model compression [9, 10], and neural networks for
mobile systems [11, 12, 13] have been proposed. They share the same goal as our work of reducing the
inference delay. To achieve this goal, the above studies tried to advance neural network architectures;
however, our study does not try to make a better neural network architecture. Instead, we investigate
the neural network inference system from the system’s perspective to eliminate unnecessary delays
within the end-to-end delay. This way, we hope to extract the best possible performance for a given
neural network architecture. The other studies tried to develop a more efficient inference system
by exploiting the internal (generally unknown) behaviors of the Nvidia GPU drivers [14]. Recently,
they modified the internal architecture of a Darknet YOLO object detector to improve real-time
performance [15] on Nvidia Drive PX2 embedded systems. Although their work and our research use
the same code base to improve real-time performance, their objective was to maximize the throughput,
that is, the number of concurrently supported cameras, slightly sacrificing the delay. On the contrary,
our work tries to reduce the end-to-end delay assuming only a single camera.

The remainder of this paper is organized as follows: The next section gives the analysis result of
Darknet’s internal architecture and clarifies the reason why we have such a long end-to-end delay.
In Section 3, we determine an alternative pipeline architecture with a minimized end-to-end delay.
Finally, Section 4 concludes this paper.
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2 End-to-end delay analysis

This section explains the internal architecture of Darknet YOLO v3 from the perspective of its end-to-
end delay. We had a number of reasons for choosing Darknet as the base reference implementation.
One reason is that it is written purely in the C language with minimal dependencies, which makes
it very easy to port from a high-end desktop to a minimal embedded system. The other reason is
Darknet is being used in practice by many autonomous driving systems like Autoware and Apollo. The
repository of the baseline Darknet source code is at https://github.com/pjreddie/darknet.

2.1 Four stages of object detection

This subsection explains the four stages of object detection from camera capture to the display of the
object detection result.

Capture. For the object detection module to perceive an external scene, the scene image first enters
through the camera lens, making an image pattern on the CCD or CMOS sensor, and the digitized
image is finally sent to the operating system’s kernel driver memory through a communication
bus, which is USB in our experiments. Usually, image capture occurs continually at the camera’s
predefined frequency. For our camera, the frequency is 30 fps.

Fetch. Next, the object detection module fetches the image from the driver’s memory to its memory
buffer. Specifically, Linux’s Video4Linux framework uses streaming I/O to directly map the driver
memory to Darknet’s address space. Thus there is no actual memory copy. Instead only the pointer
is passed between the driver and Darknet. Additionally, at this stage, the resizing is done, which
changes the size of the input image so that it is acceptable by the backend neural network.

Detect. This stage feeds the resized input image to the neural network which runs on the GPU. First,
the image is copied from the host memory to the GPU device memory. The neural network code
written in the CUDA programming language with the pretrained neural network parameters executes
the forward propagation process to find relevant objects in the input image. The result is composed of
a set of detected object classes, e.g., car and bicycle, and their locations in the input image. Finally,
the result is copied to the host memory.

Display. Finally, the result of the object detection is visualized by drawing bounding boxes around
the detected objects on top of the input image. One could argue that the display task is not necessary
for production vehicles. However, in most autonomous vehicles, the visualization of how the vehicle
is recognizing the environment is crucial to making the passenger feel confident that the autonomous
driving system is working correctly and is traveling in the right direction. For this reason, we decided
to include the display stage in the experiment.

Assuming the above stages happen consecutively, the average end-to-end delayD can be given simply
as

D = dcapture + dfetch + ddetect + ddisplay, (1)
where each d∗ represents the average delay component for each stage. Each d∗ was believed to be
very close to the actual execution times because there was no other workload in the experimental
platform. However, this statement is not always guaranteed since we are using Linux with its fair
scheduling policy instead of a real-time operating system. Thus, we use the term delay instead of
execution time. Besides the end-to-end delay, frame rate or fps is also a crucial performance metric.
Let us define the average cycle time C instead of fps, which is the inverse of fps or frequency. C
is defined as the time distance between two consecutive image captures, which can also be simply
calculated as

C = dcapture + dfetch + ddetect + ddisplay. (2)
Note that C is inherently the same as D in the sequential architecture. Figure 1 shows this simple
sequential architecture. In the figure, we have four image frames from i to i+ 3. Each image frame
goes through the four stages, which are capture, fetch, detect, and display. After completing all the
stages, the next image frame is captured, and the four stages are completed consecutively.

In Figure 1, a small time gap is depicted between the beginning of the capture stage and the image
arrivals. When the capture stage begins, there is a wait for the next frame according to the camera’s
fps. The precise definition of the end-to-end delay should be from when the image arrives at the
driver buffer. However, for the simplicity of explanation, the end-to-end delay is depicted from the
very beginning of the capture stage in our figures.
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2.2 Multithreaded pipeline architecture

By looking into Darknet’s internal thread architecture, we found that Darknet employs a multithreaded
pipeline architecture where there are separate threads for each of the capture, fetch, detect, and display
stages. These threads are designed to run in parallel on multicore hardware to maximize the fps.
Figure 2 shows an ideal pipeline architecture. In the figure, four threads are looping within a cycle
time, which is a popular thread architecture called fork-join model. Each image frame should
experience four pipeline cycles to finish a single object detection job. The cycle time C is given as
the longest value of {dcapture, dfetch, ddetect, ddisplay}. In other words,

C = max{dcapture, dfetch, ddetect, ddisplay}. (3)

In the figure, for example, the detect stage is the longest, and all the other stages should loop following
this common cycle time. Then the average end-to-end delay D is given as the sum of the three cycle
times plus the delay caused by the display stage which is at the end of the pipeline, that is,

D = 3× C + ddisplay. (4)

From the above observation, we understand that object detection can attain a very high fps with an
unreasonably long end-to-end delay in a pipeline architecture. However, even with this explanation,
we still cannot tell why the end-to-end delay is more than six times longer than the cycle time.

Among the four stages, the fetch, detect, and display stages are implemented in Darknet. However,
the capture stage is performed by the operating system kernel driver and OpenCV library [16]. The
fetch thread calls the driver function ioctl, which dequeues an image frame from the camera driver
queue. This is a typical producer-consumer model. The camera driver produces image frames into
the camera driver queue, and Darknet consumes the image at the head of the queue. In this model,
if Darknet can consume the image frames at a rate above the camera’s fps, there will no additional
delay caused by the queue. However, if the consumption is slower than the production speed, the
queue eventually fills up and the driver can no longer put a fresh image frame into the queue.

Let the queue length be denoted by Nq. It then takes Nq × C time for the new image at the tail to
reach the head of the queue. After the fetch thread retrieves the image frame, the remaining cycles
continue, that are, fetch, detect, and display. Thus the average end-to-end delay D can be given as

D = Nq × C + 2× C + ddisplay = (Nq + 2)× C + ddisplay, (5)
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assuming C = max{dcapture, dfetch, ddetect, ddisplay}. The default driver queue length is Nq = 4.
With this observation, we can see the reason why the end-to-end delay is more than six times longer
than the cycle time in our measurement results in Table 1. Figure 3 shows this pipeline architecture
with the kernel driver queue.

3 End-to-end delay optimization

3.1 Eliminating unnecessary queueing delay

To reduce the end-to-end delay, the first approach is to eliminate the unnecessary queuing delay in
the kernel driver queue. To do so, we combine the capture stage and the fetch stage into a single
capture/fetch thread such that the fetch thread retrieves the image frame from the camera in its own
execution context. Figure 4 shows this synchronous fetch architecture. With this enhancement, the
end-to-end delay D is reduced to

D = 2× C + ddisplay. (6)

Note that even with the original Darknet architecture, if the consumption (fetch) is faster than the
production (capture), it performs just like the synchronous fetch architecture. Thus, the original
architecture might work well with a high-speed GPU. However, with a low-performance embedded
system, we cannot expect this scenario. Therefore, it is a natural design choice to eliminate the queue
between the capture and the fetch stages.

3.2 Modified pipeline architecture

While carefully looking at Figure 4, we can see repeated overlapped executions of the display thread
and the detect thread. Another critical finding from our measurement study is that the parallel
execution of the display and detect threads badly hurts each other’s execution delays, since they use
common GPU resources. Thus, our next design change is to remove this overlap by combining the
detect thread and the display thread into a single thread.
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Figure 5 shows our new two-stage pipeline architecture with the combined detect and display stage,
where the end-to-end delay becomes

D = 2× C. (7)
In the figure, note that the cycle time looks a little bit lengthened compared to the previous archi-
tectures since we now have a combined detect/display stage, which is naively expected to have its
length equal to the sum of the two stages. However, we have a counter-intuitive result about the cycle
time after combining the two stages. Before combining them, ddetect = 223 ms and ddisplay = 15 ms.
Thus the combined stage is expected to have its length of 238 ms. However, it is only increased
from 223 ms to 228 ms, which is a very minor increase. The reason is that the two stages no longer
compete for the shared GPU resource. Thanks to the elimination of this resource conflict, the detect
stage’s length is decreased from 223 ms to 216 ms, and the length of the display stage is decreased
from 15 ms to 12 ms. As a result, the final end-to-end delay is slightly decreased from 461 ms to
456 ms after combining the two stages. Note that we have a very slight penalty on the cycle time,
anyway.

3.3 Offset optimization

In Figure 5, we still see unnecessary time gaps between the capture/fetch stage and the detect/display
stage. In this subsection, we try to remove this time gap. To do so, Figure 6 introduces two new
notions, which are offset and slack. By controlling the offset, we try to release the capture/fetch
thread sometime later than the beginning of the cycle. Then, increasing the offset eventually reduces
the slack, which is the unnecessary time gap between the end of the capture/fetch thread and the
beginning of the next cycle. Then the end-to-end delay is reduced to

D = 2× C − θcapture+fetch, (8)

where θcapture+fetch is the offset of the capture/fetch stage. Then we can simply expect the optimal
end-to-end delay at the point when the slack touches zero. If we further increase the offset, the
capture/fetch thread will finish even after the detect/display thread, which will eventually increase the
cycle time and the delay. Note that the cycle time is defined as

C = max{dcapture+fetch + θcapture+fetch, ddetect+display}. (9)
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From the above assumption, let us define the problem as an optimization problem which minimizes
D with a free variable θcapture+fetch. Although the problem looks fairly simple, what makes the
problem challenging is that dcapture+fetch and ddetect+display also vary with θcapture+fetch due to
the shared resource conflict caused by the overlapped execution of the two threads. To empirically
solve the problem, we measured the slack times, end-to-end delays, and cycle times with varying
offset values from 0 ms to 200 ms at 5 ms intervals. The measurement was conducted 1,000 times for
each offset value. Additionally, the individual delays of detect, fetch, and display stages were also
measured. Note the fetch stage itself includes the capture stage.

Figure 7 shows the actual measurement result of slack times with varying offset values. The shaded
area shows the distribution of the repeatedly measured results while the line with dots is the average
values. In the figure, the slack reaches zero right after the offset 150 ms. After the offset 160 ms, the
slack becomes negative, which means the cycle time is extended by that value by the finishing time
of the capture/fetch thread. Figure 8 shows that the end-to-end delay is linearly decreasing according
to the increasing offset before the slack reaches zero, that is, until the offset 145 ms. After the offset
145 ms, the end-to-end delay is rapidly decreasing until when it becomes the optimal value 229.1 ms
at the offset 165 ms.

This rapid decrease is due to the rapid decrease of the detect stage’s execution time between the
offset 160 ms and 165 ms as shown in Figure 9. Note that, at the offset 165 ms, its slack time is
-41.14 ms as shown in Figure 7, which means the capture/fetch thread has less overlapped execution
with the detect/display thread. This minimized overlapped execution has a significant effect to the
detect/display thread’s execution time since it incurs less shared resource conflict. Figure 10 shows
the cycle times with varying offset values, which is constant until the offset 145 ms. Between the
offset 150 ms and 160 ms, the cycle time is a little bit less than the initial cycle time. It is also due to
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the decreased execution time of the detect stage. At the offset 165 ms, the cycle time is 232.7 ms,
which is marginally longer than the initial cycle time 223 ms.

From the above experiment, we conclude that the optimal end-to-end delay is 229.1 ms at the offset
165 ms. Although it has a minor effect on the cycle time and also the frame rate, it is marginal
compared to the 83% reduction of its end-to-end delay.

3.4 Evaluation

Our evaluation hardware platform is Nvidia Jetson AGX Xavier, which has 16 GB of RAM with an
8-core ARM CPU and a 512-core Volta GPU. For the camera, Logitech USB camera C920 with 30 fps
frequency was used. As our software platform, we used Nvidia Ubuntu Linux-18.04, Jetpack-4.2.2,
and custom compiled OpenCV-3.3.1.

As the baseline implementation, Darknet source code from https://github.com/pjreddie/
darknet was used. From the source code, we modified the internal architecture trying various system
configurations and pipeline architectures. To measure the end-to-end delay, each image frame’s meta
data was tagged with the exact time it arrives at the driver buffer. For the comparison, we specifically
implemented the following three architectures:

• The unmodified architecture with the four-stage pipeline and the kernel driver queue as in
Figure 3, which is denoted as Original.

• The modified architecture after removing the unnecessary kernel driver queue as in Figure 4,
which is denoted as SyncFetch.

• The final architecture with the two-stage pipeline with the offset optimization as in Figure 6,
which is denoted as OurOptimal.
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Figure 11: Evaluation results

Figure 11 shows the average end-to-end delays and cy-
cle times after processing 1,000 real-time camera images
in a highway driving scenario for the above three archi-
tecture. Note that SyncFetch dramatically reduces the
end-to-end delay from 1,335 ms to 438 ms comapred
to Original. This is due to the elimination of the un-
necessary queueing delay between the camera driver and
Darknet. Also, OurOptimal was able to further reduce
it down to 229 ms by our modified pipeline architecture.
Although OurOptimal shows little decrease in its frame
rate, the effect (about 0.2 fps) is minimal. A visual com-
parison between Original and OurOptimal is available at
https://youtu.be/n3pr3s09Fs4.

4 Conclusion

Our study simply began by looking at the first installation of Darknet YOLO object detector, which
was believed to be very fast. However, the first impression was it’s so slow. By saying slow, we
have two different meanings; one is the time lag from the real world through the camera to the
output of the object detection, which is called the end-to-end delay. The other is how fast the object
detection is looping, that is, the cycle time or the frame rate. By a preliminary measurement study, we
concluded that we have a good enough frame rate considering the hardware performance. Meanwhile
the end-to-end delay is too long considering the frame rate. With this motivation, this paper presents
a detailed measurement and analysis study of the internal software architecture of Darknet. Based
on that, we developed an enhanced pipeline architecture that exhibits an optimal end-to-end delay,
which proved to be an 83% reduction on our evaluation platform.

Although we developed a promising object detection architecture, one limitation is that we considered
only the average delays and did not take the worst-case scenario into consideration. In the autonomous
driving application, however, the worst-case scenario is important to guarantee the safety of the
system. Thus, in our future work, we plan to consider the worst-case delays.
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