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Abstract

While autonomous vehicle (AV) technology has shown substantial progress, we
still lack tools for rigorous and scalable testing. Real-world testing, the de-facto
evaluation method, is dangerous to the public. Moreover, due to the rare nature
of failures, billions of miles of driving are needed to statistically validate perfor-
mance claims. Thus, the industry has largely turned to simulation to evaluate AV
systems. However, having a simulation stack alone is not a solution. A simulation
testing framework needs to prioritize which scenarios to run, learn how the chosen
scenarios provide coverage of failure modes, and rank failure scenarios in order of
importance. We implement a simulation testing framework that evaluates an en-
tire modern AV system as a black box. This framework estimates the probability
of accidents under a base distribution governing standard traffic behavior. In or-
der to accelerate rare-event probability evaluation, we efficiently learn to identify
and rank failure scenarios via adaptive importance-sampling methods. Using this
framework, we conduct the first independent evaluation of a full-stack commercial
AV system, Comma AI’s OPENPILOT.

1 Introduction

The risks of autonomous vehicle (AV) technologies remain largely unknown. A handful of fatal
accidents involving AVs highlight the importance of testing whether the system, as a whole, can
safely interact with humans. Unfortunately, the most straightforward way to test AVs—in a real-
world environment—requires prohibitive amounts of time due to the rare nature of serious accidents.
Specifically, a recent study demonstrates that AVs need to drive “hundreds of millions of miles and,
under some scenarios, hundreds of billions of miles to create enough data to clearly demonstrate
their safety” [Kalra and Paddock, 2016]. To reduce the time, cost, and dangers of testing in the real
world, the field has largely turned to simulation-based testing methods.

Most popular strategies for simulation-based testing are built upon decades of techniques developed
for validating traditional software systems. Nevertheless, the complexities of modern AV pipelines
push the boundaries of these approaches and draw out significant limitations (see Section 1.1 for spe-
cific shortcomings of each technique). We broadly illustrate these limitations by outlining desiderata
for an AV-testing framework to enable continuous integration and improvement. The term policy is
used in the rest of this paper to describe an AV’s behavior, which is defined as a mapping from
observations to actions. In order to tractably measure and improve performance of an AV policy, a
testing framework should have the following features:

• Safety: Real-world public road testing puts lives in danger. Testing must begin in a controlled
setting (e.g. simulation or closed courses).
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• Efficiency: Industrial AV systems have regular updates. Safety testing must efficiently find fail-
ures and compare to previous performance at the pace of development (e.g. daily).
• Coverage: Understanding coverage of test scenarios is essential to evaluating the true perfor-
mance of an AV policy. Finding a one-off adversarial situation amounts to finding a minimum in
the landscape of AV performance. In contrast, coverage means finding all high-likelihood failure
scenarios, or the area of the performance landscape which is below an acceptable level. This latter
quantity is required for accurate estimates of risk.
• Black-box interaction: Testing a whole system as a black box maintains its integrity and con-
fidentiality. Integrity ensures we capture as accurately as possible the true risk of an AV policy.
Combining tests of individual components does not yield this result, and inserting a scaffolding for
testing interfaces between components can fundamentally change the nature of failures. Confiden-
tiality of internal system behavior ensures there is no leakage of proprietary knowledge about the
AV policy’s design; this is especially important to establish cooperation of AV manufacturers with
regulators or third-party testers.
• Adaptivity: Since AV policies have regular updates, testing on a static set of previously-defined
scenarios or failure modes results in overfitting and false confidence in safety. Adaptive testing
automatically modifies test scenarios as AV policies (and their failure modes) change.
• Unbiasedness: Unbiasedness implies that estimates of risk are not systemically warped by pri-
ors, previous performance, or artifacts of the testing environment that deviate from true operating
conditions.
• Prioritized results: For actionable insights, safety testing must rank and prioritize failures. In
particular, the relative importance of modes within the long tail of failures should be quantified.

Now we outline our approach to satisfying these requirements. We utilize a probabilistic paradigm—
which we describe as a risk-based framework [O’Kelly et al., 2018]—where the goal is to evaluate
the probability of an accident under a base distribution representing standard traffic behavior. By as-
signing learned probabilities to environmental states and agent behaviors, the risk-based framework
considers performance of the AV policy under a data-driven model of the world. Accompanying this
framework, we develop an efficient method to adaptively find failures, return unbiased estimates of
risk, and rank failures according to the learned probabilistic model. We implement this framework
in a black-box simulation environment that requires minimal interaction with the policy under test.

With these three components—the risk-based framework, an efficient failure-search algorithm, and a
black-box simulation environment—we perform the first independent evaluation of a commercially-
available AV policy, Comma AI’s OPENPILOT. OPENPILOT is an open-source highway driver-
assistance system that includes industry-standard components such as deep-learning based per-
ception and model-predictive control. It has driven more than 10 million miles on public high-
ways [Comma AI, 2019a]. By evaluating our approach on this policy, we demonstrate the viability
of our framework as a tool for rigorous risk quantification and scalable continuous integration (CI)
of modern AV software.

In Section 2, we formally define our risk-based framework. Since we aim to test policies with reason-
able performance, our search for failures is a rare-event simulation problem [Asmussen and Glynn,
2007]; we illustrate an adaptive nonparametric importance-sampling approach to search for rare
events efficiently and in an unbiased manner. In Section 3, we describe a scalable, distributed sim-
ulation system. Notably, OPENPILOT’s codebase operates on a bespoke distributed architecture in
Python and C++, uses hardware acceleration, and has never been ported to a simulation environment.
We describe how this integration was performed allowing deterministic, synchronized execution of
the otherwise real-time, asynchronous software. Finally, in Section 4 we perform a case study an-
alyzing failures of OPENPILOT over highway scenarios. Our approach estimates OPENPILOT’s
failure rate of 1 in 1250 miles by using two orders of magnitude fewer simulations than standard
methods.

1.1 Related work

A simplistic approach to using simulation for AV policy testing is through a static set of predeter-
mined challenges (e.g. Schram et al. [2013]). However, the repeated use of a small number (relative
to the variations present in reality) of test-cases often leads to overfitting; passing these tests gives no
guarantees of generalization to real-world performance. “Fuzzing” [Hutchison et al., 2018, Dreossi
et al., 2019] attempts to improve generalization performance by adding slight variations to prede-
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termined scenarios. Fuzzing considers coverage of code execution paths as opposed to realism or
likelihood of failure modes [Koopman and DeVale, 1999, Wagner and Koopman, 2015, Drozd and
Wagner, 2018]. As such, this approach is best applied when the space of allowable perturbations is
bounded and tractable to cover exhaustively, such as for a subcomponent of a system. Fuzzing to
test AV performance as a whole system is challenging for two reasons. First, exhaustively cover-
ing a high-dimensional parameter space requires assumptions that can bias results (see e.g. Wagner
and Koopman [2015]). Second, the space of allowable perturbations for the whole system is usu-
ally unbounded or only loosely bounded by physical/biological constraints; these spaces are best
described by a probabilistic distribution that weights the importance of perturbations by their likeli-
hoods. For example, the space of all physically attainable human-driving behaviors contains many
failure scenarios that are extremely improbable in the real world. Regardless of the code executions
they spawn, these improbable failures are much less relevant to understanding safety than higher-
likelihood failures. Finally, it is not obvious how to translate performance on a fuzzed testing set to
a statistical claim on generalization performance.

Formal verification of an AV policy’s “correctness” [Kwiatkowska et al., 2011, Althoff and Dolan,
2014, Seshia et al., 2015, O’Kelly et al., 2016] is a potential candidate to reduce the intractabil-
ity of empirical validation. However, formal verification is exceedingly difficult because driving
policies are subject to crashes caused by other stochastic agents, and thus policies can never be com-
pletely safe under all scenarios [Shalev-Shwartz et al., 2017]. Furthermore, verification of systems
with deep neural networks is an active research question (see e.g. Arora et al. [2014], Cohen et al.
[2016], Bartlett et al. [2017], and Sinha et al. [2017]) and the problem is NP-hard for most modern
deep-learning architectures with non-smooth activations (e.g. ReLUs) [Katz et al., 2017, Tjeng and
Tedrake, 2017]. Sometimes, verification of individual subcomponents is tractable, but there is no
guarantee that this translates to overall safety when all subsystems operate together. One avenue
to reduce intractability is to systematically rule out scenarios where the AV is not at fault [Shalev-
Shwartz et al., 2017]. Unfortunately, this is a task subject to logical inconsistency, combinatorial
growth in specification complexity, and subjective assignment of fault [O’Kelly et al., 2018].

Falsification [Tuncali et al., 2016]—finding any failure scenario in the parameter space—is an obvi-
ous relaxation of formal verification. Similar to fuzzing, this approach does not account for failure
likelihoods. As such, falsification algorithms often return collections of exotic adversarial scenar-
ios, which do not yield actionable insights into prioritizing system updates. Probabilistic variants of
falsification [Lee et al., 2018, Koren et al., 2018] attempt to find the highest-likelihood failures, but
they require a white-box Markov decision process (MDP) model of the system; defining this model
can be challenging for complex systems, and its behavior may deviate from that of the real system.

2 Proposed approach

Below, we formally define our risk-based framework. This framework prioritizes failures based on
likelihood and requires minimal, black-box access to the AV policy under test. Additionally, we
illustrate the computational challenges of finding failures and then describe our approach which is
efficient, adaptive, and unbiased. Finally, we outline various approaches to building a generative
model over behaviors for environmental agents that interact with the AV policy under test.

2.1 Risk-based framework

We let P0 denote the base distribution that models standard traffic behavior and X ∼ P0 be a
realization of the simulation (e.g. weather conditions and driving policies of other agents). For a
continuous objective function f : X → R that measures “safety”—so that low values of f(x)
correspond to dangerous scenarios—our goal is to evaluate the probability of a dangerous event

pγ := P0(f(X) < γ), (1)
for some threshold γ. Examples of this objective function f include simple performance measures
such as the (negative) maximum magnitude acceleration or jerk during a simulation. More sophis-
ticated measures include the minimum distance to any other object during a simulation or the mini-
mum time-to-collision (TTC) during a simulation. The objective can even target specific aspects of
system performance. For example, to stress-test a perception module, the objective can include the
(negative) maximum norm of off-diagonal elements of the perception system’s confusion matrix.
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Importantly, this approach is agnostic to the complexity of the AV policy under test, as we view it as
a black box: given simulation parameters X , the black box evaluates f(X) by running a simulation.
In particular, analysis of systems with deep-learning based perception systems is straightforward
in this paradigm, whereas such systems render formal verification methods intractable. Moreover,
this framework requires the output of only a single floating point number f(X) from a simulation.
This means that neither the simulation nor ego-policy codebases needs to be modified for testing
apart from changes already present to run the policy in a simulated environment rather than on a
real vehicle. Furthermore, potentially sensitive information about the precise meaning of X within
the simulation environment and the AV’s decision-making behavior remains confidential from the
testing algorithm. One limitation of this approach is the inherent bias introduced by the single
objective f . To alleviate this shortcoming, one can also consider extensions that evaluate multiple
risk metrics or a stochastic framework where f itself is sampled from a probabilistic distribution.
The latter is particularly useful for nondeterministic AV policies. Of course, these extensions also
leak more information about the ego policy.

Inefficiency of naive Monte Carlo in rare-event simulation For AV policies which approach or
exceed human-level performance, adverse events are rare and the probability pγ is close to 0. Thus,
estimating pγ is a rare-event simulation problem (see Asmussen and Glynn [2007] for an overview
of this topic). For rare probabilities pγ , the naive Monte Carlo method is prohibitively inefficient.

Specifically, for a sample Xi
i.i.d.∼ P0, naive Monte Carlo uses p̂N,γ := 1

N

∑N
i=1 1 {f(Xi) < γ} as

an estimate of pγ . When pγ is small, relative accuracy is the appropriate measure of performance.
From the central limit theorem, relative accuracy follows∣∣∣∣ p̂N,γ

pγ
− 1

∣∣∣∣ dist
=

√
1− pγ
Npγ

|Z|+ o(1/
√
N) for Z ∼ N(0, 1).

In order to achieve ϵ-relative accuracy, we need N ≳ 1−pγ

pγϵ2
simulations. For light-tailed f(X), then

pγ ∝ exp(−|γ|) so that the required sample size for naive Monte Carlo grows exponentially in |γ|.
In the next section, we use adaptive sampling techniques that sample unsafe events more frequently
to make the evaluation of pγ tractable.

2.2 Nonparametric importance-sampling approach

To address the shortcomings of naive Monte Carlo in estimating rare event probabilities pγ , we
use a multilevel splitting method [Kahn and Harris, 1951, Botev and Kroese, 2008, Guyader et al.,
2011, Webb et al., 2018] combined with adaptive importance sampling (AIS) [Asmussen and Glynn,
2007]. Multilevel splitting decomposes the rare-event probability pγ into conditional probabilities
with interim threshold levels ∞ =: L0 > L1 . . . > LK := γ,

P0(f(X) < γ) =

K∏
k=1

P(f(X) < Lk|f(X) < Lk−1). (2)

This decomposition introduces a product of non-rare probabilities that are easy to estimate individu-
ally. Markov chain Monte Carlo (MCMC) is used to estimate each term; obtaining an accurate esti-
mate is tractable as long as consecutive levels are close and the conditional probability is therefore
large. Intuitively, the splitting method iteratively steers samples Xi to the rare set {X|f(X) < γ}
through a series of supersets {X|f(X) < Lk} with decreasing objective values Lk > Lk+1 ≥ γ.

Since it is a priori unclear how to choose the levels ∞ =: L0 > L1 . . . > LK := γ, adaptive
variants of multilevel splitting choose these levels online. An elementary instantiation of adaptive
multilevel splitting (AMS) chooses each intermediate level Lk, k ≤ K − 1 by fixing δ ∈ (0, 1), the
fraction of samples that is discarded at each intermediate step (Algorithm 1 in Appendix A). The
discarding fraction δ trades off two dueling objectives; for small values, each term in the product (2)
is large and hence easy to estimate by MCMC; for large values, the number of total iterations K
until convergence is reduced and more samples (δN ) at each iteration can be simulated in parallel.
See Appendix A for discussion on the benefits of AMS compared to parametric AIS.

The nonparametric nature of AMS allows efficient discovery of disparate failure modes. However,
AMS does not generate an efficient sampler over these modes for further investigation. Instead, we
learn a generative model of failures from the empirical distribution of failure modes discovered by
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AMS. Specifically, we use normalizing flows as our class of generative models.2 Normalizing flows
transform a base distribution (usually a standard normal distribution) through a series of determinis-
tic, invertible functions. Using the standard change-of-basis transform, the density ρ(g(x)) for some
invertible map g : X → Y is given by:

y = g(x) =⇒ ρ(y) = ρ(g−1(y)) · |detJ(g−1(y))|,
where J(·) denotes the Jacobian. Composing a sequence of such transforms g1(x), g2(g1(x)) . . .
gives expressive transformations of the base density. Rezende and Mohamed [2015] describe a mod-
ern form of the approach which ensures the Jacobian is triangular, rendering the determinant com-
putation efficient. Since each transform is parameterized by trainable weights, one can learn a
distribution with this architecture of composed transformations by maximizing the log-probability
of the observed data in the transformed distribution. Further enhancements to this approach can be
found in Kingma et al. [2016] and Papamakarios et al. [2017].

2.3 Data-driven generative modeling of agent behaviors for P0

To implement our risk-based framework, we first learn a base distribution P0 of nominal traffic
behavior. Although this is a challenging open problem, there are a variety of approaches in the
literature to do so via imitation learning [Russell, 1998, Ross and Bagnell, 2010, Ross et al., 2011,
Ho and Ermon, 2016] on data of real human drivers. Behavior cloning [Bansal et al., 2018] simply
treats imitation learning as a standard supervised learning problem, whereas reinforcement-learning
techniques such as generative adversarial imitation learning [Ho and Ermon, 2016] improve gener-
alization performance [Ross and Bagnell, 2010, Ross et al., 2011]. Recent advances in imitation-
learning techniques specifically for driving vehicles can be found in Kuefler and Kochenderfer
[2018], Codevilla et al. [2018], Rhinehart et al. [2018], Codevilla et al. [2019], and Rhinehart et al.
[2019]. In this paper, we use an agent modeling framework previously validated on highway scenar-
ios in the NGSim dataset [US Department of Transportation – FHWA, 2008] by Kuefler et al. [2017]
and O’Kelly et al. [2018].

3 Systems

In this section we describe the integration of a widely-deployed autonomous vehicle system, OPEN-
PILOT [Comma AI, 2019b], and a popular simulation environment, CARLA [Dosovitskiy et al.,
2017], with the theoretical framework of the previous section.3

Creating a test-harness for OPENPILOT OPENPILOT is a SAE Level 2 [SAE, 2014] driver-
assistance system designed to be integrated with Comma AI’s proprietary camera hardware and a
customized software platform based on the Android operating system. At the time of writing, OPEN-
PILOT has been installed on more than 4500 vehicles and driven more than 10 million miles [Comma
AI, 2019a]. A lack of publicly-discussed incidents suggests that it is a capable system, but no rigor-
ous statistics have been released regarding its safety or performance.

Unlike end-to-end systems, OPENPILOT contains a relatively standard set of modules for perception,
planning, and control. Figure 1 gives a high-level overview of the four primary components of
OPENPILOT: (1) State information is collected from the target vehicle’s steering, throttle, and brake
modules as well as processed-radar outputs. (2) The EON dash camera contains a camera, processor,
and an interface to the vehicle. (3) The collected sensor observations, including images from the
camera, are sent to the perception system where camera calibration is performed and a model of the
driving environment is created. (4) Finally, the driving environment data is fed to a model-predictive
control system which outputs a trajectory to be tracked by a low-level PID controller.

Despite public availability of the source code, the majority of the system has not previously been
compiled for x86 hardware, even, to the best of our knowledge, by Comma AI. We develop TEST-
PILOT, a minimally invasive fork of OPENPILOT which enables deterministic execution of all com-
ponents on x86 hardware with support for simulator-time synchronization and optional GPU accel-
eration within a distributed, containerized environment (see Appendix B for further details).

2As with any importance sampling technique, estimates of risk from our sampler are unbiased.
3The authors of this paper are not affiliated with Comma AI.
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Figure 1: Components of OPENPILOT.

There are several differences between the experiments conducted using TESTPILOT below and what
a user might experience in an OPENPILOT-equipped vehicle. First, OPENPILOT contains a driver-
monitoring system that disengages when a user diverts attention from the road. We do not model
these disengagement events in our experiments. Second, most OPENPILOT-equipped vehicles utilize
a radar system to aid vision-based vehicle detection. At the time of writing, open-source vehicle
simulators such as CARLA do not contain a radar sensor model. Thus, it is possible that a radar-
equipped OPENPILOT vehicle may be able to avoid some of the crashes reported in Section 4.

4 Case study

We consider a highway scenario consisting of six agents, five of which are part of the environment.
All vehicles are constrained to start within a set of possible initial configurations consisting of pose
and velocity, and each vehicle has a goal of reaching the end of an approximately 1 kilometer stretch
of road within CARLA’s built-in “Town04” environment [Dosovitskiy et al., 2017]. We also modify
continuous weather parameters as well as the behaviors of the environment agents. See Appendix
C for a full description of the distribution P0. We cap simulations at 10 seconds in length (and they
may be shorter if there is a collision). Throughout these experiments, we employ minimum time-
to-collision (TTC) over a simulation (see Sontges et al. [2018] and Appendix D for a more detailed
discussion) as our objective function f(X). First, we compare the efficiency of our approach with
naive Monte Carlo in generating statistically-confident estimates of rare-event probabilities. We then
characterize the failure scenarios and their implications for OPENPILOT’s policy.

4.1 Comparison with naive Monte Carlo

We begin by comparing the output of AMS (without the flow-based importance sampler) to naive
Monte Carlo. Namely, we run AMS with a given threshold TTC value γ and allow naive Monte
Carlo to use same number of resulting samples (e.g. evaluations of the simulator). Figure 2 com-
pares performance of the two algorithms. In Figure 2(a), we show confidence intervals for the
estimated probabilities along with a ground-truth value estimated using naive Monte Carlo with
roughly 160,000 samples. In Figure 2(b), we plot the ratio of the variance of the two estimators. For
events with probability lower than 10−3 (γ ≤ 0.8 seconds), AMS outperforms naive Monte Carlo,
and the variance of the failure probability is reduced by up to 10× (when γ ≤ 0.1 seconds). On the
other hand, naive Monte Carlo is more efficient than AMS at estimating non-rare events (γ > 0.8
seconds). Interestingly, for this scenario and metric f , there is a steep exponential drop in likeli-
hood for events near γ ≈ 1 second, which happens to correspond with the regime below which our
adaptive methods outperform naive Monte Carlo.

Figure 3 shows results from the flow-based importance sampler built upon the output of AMS. Im-
portantly, to compare the performance of this sampler properly with that of naive Monte Carlo, we
allow naive Monte Carlo to have a number of samples equal to the amount sampled by the flow in
addition to the amount required to run AMS. In Figure 3(a), we illustrate the fact that the flow-based
importance sampler places high likelihood in failure regions, sampling three orders of magnitude
more failures than naive Monte Carlo for very dangerous events (γ ≤ 0.1 seconds). In Figure 3(b)
we see that the importance-sampling estimate has variance two orders of magnitude smaller than
that of naive Monte Carlo for events with γ ≤ 1 second. In other words, naive Monte Carlo re-
quires two orders of magnitude more simulations than our approach to generate estimates of failure
probabilities with the same level of statistical confidence.

4.2 Analysis of failure probability and failure modes

Failure probability We choose γ = 0.1 seconds as our threshold for failure, so that we are in-
terested in the probability of events with TTC < 0.1 seconds. This threshold encompasses both
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Figure 2. (a) 95% confidence intervals for p̂γ for 7 runs of AMS with 450 initial samples and naive
Monte Carlo with the same number of simulation evaluations. ‘True’ corresponds to naive Monte Carlo
with 160,000 samples. (b) Ratio of the variance for naive Monte Carlo and AMS. As expected, AMS
boosts in performance increase with rarity (γ smaller).
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Figure 3. Ratios for event frequency and variance of p̂γ for flow-based importance sampler built upon
AMS output vs. naive Monte Carlo sampling. The naive sampling budget is the number of samples
drawn by the flow-based importance sampler plus the total number of samples required by AMS.

situations where there is no actual crash but the event is still extremely dangerous as well as situa-
tions that result in actual impact. As illustrated in Figure 2(a), the failure rate is roughly 1 in 104

simulations, which, given the average speeds of the vehicles (roughly 20 meters per second) and the
simulation length (10 seconds), corresponds to 1 in 1250 miles.

The only reference values with which to compare this estimated failure rate are the reported disen-
gagement rates by AV manufacturers, but we do so with strong caveats. Disengagements are defined
as situations where a human safety driver takes control of a vehicle that was operating autonomously.
Importantly, there is no accepted standard for when a disengagement should occur nor do AV man-
ufacturers publish their internal definitions. In 2018, Comma AI claimed a rate of 1 disengagement
per hour of driving [Bigelow, 2018]. Other manufacturers reported a slightly more transparent met-
ric: Waymo claimed a disengagement rate of 1 per 11000 miles, Cruise claimed 1 per 5200 miles,
Zoox claimed 1 per 1900 miles, and Nuro claimed 1 per 1000 miles [Crowe, 2018].

Failure modes Since we have access to the OPENPILOT codebase, we can investigate the failure
modes. An elementary linear dimensionality reduction of the failure conditions X into 2 dimensions
(via PCA) yields 4 visible clusters, as depicted in Figure 4(a). Whereas the first PCA mode largely
characterizes changes in weather conditions (e.g. sunlight in clusters 1 and 3 vs. rain in clusters 2 and
4), the second PCA mode characterizes changes in relative velocities between vehicles (low relative
velocity in clusters 1 and 2 vs. high relative velocity in clusters 3 and 4). The predominant culprit
of failures is the vision system; it has high uncertainty about vehicles ahead of it as well as lane
boundaries when there is direct sunlight on the camera or heavy rain (Figures 4(b)-(c) and 4(d)-(e)).
The crashes are either glancing collisions when relative velocities are low or high-impulse collisions
when relative velocities are high. Furthermore, the median likelihood of failure due to precipitation
is two times higher than that due to direct sunlight using our generative model. The implications
of these failures for potential improvements in OPENPILOT are clear: (a) the vision system can be
improved to better handle these adverse weather conditions, and (b) the feedback loop between the
vision and the control stacks can be made more conservative in the presence of high uncertainty.
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Figure 4. Analysis of failure modes. (a) Graphical depiction of failure modes in 2 dimensions via
PCA. (b)-(c) Views from a crash simulation where direct sunlight caused errors in the deep-learning-
based vision system, and OPENPILOT failed to see the blue lead car and rear-ended it. (d)-(e) Views
from a crash simulation where rain caused errors in the vision system and OPENPILOT misjudged
lane boundaries. A playlist of failure mode examples can be viewed at https://www.youtube.com/
playlist?list=PL4lTzImUFh3xhx7kvjrIh6EZudg2n5R3C.

5 Conclusion

Our risk-based framework, combined with efficient adaptive search in black-box simulation, is an
approach to efficiently quantify risk and achieve scalable CI for AVs. Real-world testing is still the
(slow, expensive, and dangerous) gold standard for asserting a given level of safety for an AV policy,
and it is best applied to confirm rather than replace evidence from simulations. Verified subsys-
tems also provide evidence that components meet their design specifications. However, verification
is limited by computational intractability, the quality of the specification, and access to white-box
models. Rule-based systems for evaluating failures do not yield tangible or actionable safety results,
whereas risk-based models for evaluating AV policies are both more objective and actionable. Ad-
ditionally, while obvious adversarial “corner cases” are sometimes evocative, the failures that need
prioritization are those in the seemingly benign long-tail of less-exotic but more-frequent failure
situations. Automating the discovery of these less-exotic yet more-frequent failures is paramount to
understanding, deploying, and improving AV systems beyond human-level performance.

The risk-based framework is most useful when the base distribution P0 is accurate, and otherwise it
can suffer from systemic biases. Namely, the unbiasedness of the search algorithm is conditioned on
the search space—no search algorithm can inherently correct for a poor simulation environment that
has an unrealistic rendering engine or unrealistic models of human behavior. Nevertheless, although
an estimate of pγ suffers from bias when P0 is misspecified, our adaptive sampling techniques still
efficiently identify dangerous scenarios which are independent of potentially subjective assignments
of blame. Principled techniques for building and validating the model of the environment P0 repre-
sent open research questions.

Importantly, the risk-based framework can easily be combined with existing approaches to testing
in simulation. The family of nonparametric importance-sampling algorithms outlined in Section
2.2 is a drag-and-drop replacement for existing methods that perform grid search, fuzzing, or naive
Monte Carlo search over a parameter space. Furthermore, metrics that assign blame, such as those
outlined by Shalev-Shwartz et al. [2017], can be incorporated into the objective function f and used
to guide the search for failures. Finally, even though it is designed to work with the whole black-
box system, our risk-based framework can be applied to search for failures in subsystems (e.g. the
post-perception planning module) as well.

Overall, our framework offers significant speedups over real-world testing, allows efficient, auto-
mated, and unbiased analysis of AV behavior, and ultimately provides a powerful tool to make
safety analysis a tractable component in AV design. We believe that rigorous safety evaluation of
AVs necessitates adaptive benchmarks that maintain system integrity and prioritize system failures.
The framework presented in this paper accomplishes these goals by utilizing adaptive importance-
sampling methods which require only black-box access to the policy and testing environment.
As demonstrated on Comma AI’s OPENPILOT, our approach provides a principled, statistically-
grounded method to continuously improve AV software. More broadly, we believe this methodology
can enable the feedback loop between AV manufacturers, regulators, and insurers that is required to
make AVs a reality.
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A Adaptive multilevel splitting

Algorithm 1 Basic adaptive multilevel splitting (AMS)

1: Input: Discarding factor δ, # of MCMC steps T , termination threshold γ, N initial samples Xi
i.i.d.∼ P0

2: Initialize L0 ←∞, log(p̂γ)← 0, k ← 0
3: while Lk > γ do
4: k ← k + 1
5: Evaluate and sort f(Xi) in decreasing order
6: Lk ← max{γ, f(X(δN))}
7: P̂k ← 1

N

∑N
i=1 1 {f(Xi) < Lk} .

8: log(p̂γ)← log(p̂γ) + log(P̂k)
9: Discard X(1), . . . , X(δN) and resample with replacement from X(δN+1), . . . , X(N)

10: Apply T MCMC transitions to each of X(1), . . . , X(δN)

11: end while

The nonparametric AMS approach complements parametric AIS methods such as the cross-entropy
method [Rubinstein and Kroese, 2004]. Parametric AIS methods postulate models for the form of
the optimal importance sampling distribution P0(·|f(·) < γ), and they require iterative optimiza-
tion of objectives with likelihood ratios. Both of these issues can be challenging in high dimensions,
wherein failure regions are likely discontinuous and likelihood ratios are numerically unstable. AMS
does not require optimization over terms with likelihood ratios nor does it need to postulate models
for the failure region(s). On the other hand, the “modes” of failure AMS discovers are limited by
the number of samples and the mixing properties of the MCMC sampler employed. Furthermore,
contrary to parametric AIS methods, AMS has several convergence guarantees including those for
bias, variance, and runtime (see Bréhier et al. [2015] for details). Notably, AMS is unbiased and
has relative variance which scales as log(1/pγ) as opposed to 1/pγ for naive Monte Carlo (cf. Sec-
tion 2.1). Intuitively, AMS computes O(log(1/pγ)) independent probabilities, each with variance
independent of pγ .

B TESTPILOT implementation

A primary challenge associated with testing OPENPILOT in a simulated environment is the tight
integration between the neural networks in the perception system and the EON hardware. The
networks are distributed in binary form and use the Snapdragon Neural Processing Engine (SNPE)
accelerator [Ignatov et al., 2018]. The first network, “posenet,” infers the motion of the camera
sensor (rather than to localize the vehicle in a map as in Kendall et al. [2015]). The predicted
motion allows OPENPILOT to estimate the three-dimensional locations of objects detected by the
“driving_model” network. TESTPILOT utilizes an SNPE SDK feature which enables the execution
of network binaries using OpenCL. Additionally, we create a “fake” camera driver which inputs
simulated, recorded, or real images from any source into an OpenCL memory buffer.

Deploying the planning and control elements together with the perception pipeline in a simulation
environment requires further refinements. The perception and planning elements use a real-time
clock to stamp vehicle-state messages. However, the simulation clock does not necessarily match
wall-clock time. To address this problem, TESTPILOT supplies OPENPILOT with a clock signal
from the simulator. Furthermore, OPENPILOT heavily utilizes asynchronous message passing; this
induces non-determinism in the execution order of the control stack. In order to improve the re-
peatability of the experiments in Section 4, TESTPILOT forces sequential execution of the control
components. Lastly, OPENPILOT utilizes a PID controller operating at 100Hz to actuate steering and
throttle mechanisms and track the desired state (updated by the planning module at 20Hz). In order
to avoid significant time costs and execute the simulator at 20Hz, we send the planning module’s
desired state to the simulator and perform tracking on the simulator side.

Running simulations at scale To support running simulations at scale, we package OPENPILOT
modules and CARLA simulation servers as containerized applications within a standard container
orchestration scheme on commodity cloud servers. Our adaptive sampling algorithm coordinates
jobs via the open-source remote-procedure-call framework gRPC [Google, 2019]. For some context,
we simulated roughly 40,000 miles to generate the results in Section 4 comparing naive Monte Carlo
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with our proposed approach. As we show below, our approach requires orders of magnitude fewer
simulations to estimate risk with a given precision compared to naive Monte Carlo. A sample of
naively drawn simulations can be found here: https://youtu.be/6nuiLkecik8.

C Simulation parameters

The 1 kilometer stretch of road that we consider consists of a straight section followed by a right-
turning bend and a final straight section. Our search space P0 consists of weather parameters, initial
positions and velocities of the vehicles, and the behaviors of the environmental agents.

4 parameters of the weather are varied: precipitation on the ground (Pg), the altitude angle of the
sun (A), cloudiness (C), and precipitation in the air (Pa). Precipitation on the ground follows
the distribution Pg ∼ 50Uniform(0, 1), where the units are proprietary for the CARLA simulator.
Sun altitude follows the distribution A ∼ 90Uniform(0, 1), whose units are in degrees. Letting
Cb ∼ Beta(2, 2) and Cu ∼ Uniform(0, 1), cloudiness has a distribution given by the following
mixture:

C ∼ 30Cb1{Cu < 0.5}+ (40Cb + 60)1{Cu ≥ 0.5},
where 1{·} is the indicator function and the units of C are in proprietary units for CARLA. Precip-
itation in the air is a deterministic function of cloudiness, Pa = C1{C ≥ 70}, where the units are
again proprietary CARLA units.

Initial positions for each vehicle are independently given by the pair (S, T ), where S ∼
500Beta(2, 2) + 200 denotes the longitudinal position along the stretch of road with respect to the
start of the road, and T ∼ 0.5Beta(2, 2) − 0.25 denotes the lateral distance from the lane center
with left being positive. Both have units in meters. Initial velocities are independently given by
V ∼ 10Beta(2, 2) + 15 with units in meters/second.

For the behaviors of the environment vehicles we follow the parametrization of O’Kelly et al. [2018].
Namely, we search over the last layer of a neural network GAIL generator model. We use ξ ∈
R404 to denote the weights of the last layer of the neural network trained to imitate human-like
driving behavior with ξ ∼ N (µ0,Σ0), with the mean and covariance matrices learned via empirical
bootstrap. The input for this GAIL generator is described in O’Kelly et al. [2018]. The single
network defined by ξ drives the behavior for all environment agents in a particular simulation rollout.

Together, the weather, position, velocity, and behavior variables form samples X ∈ R426.

D TTC calculation

Let Ti(t) be the instantaneous time-to-collision between the ego vehicle and the i-th environment
vehicle at time step t. For a given simulation rollout X , the TTC metric is given by

f(X) := min
t

(
min
i

Ti(t)
)

The value Ti(t) can be defined in multiple ways [Sontges et al., 2018]. In this study, we define it as
the amount of time that would elapse before the two vehicles’ bounding boxes intersect assuming
that they travel at constant fixed velocities from the snapshot at time t.
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