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Abstract

Dynamical models estimate and predict the temporal evolution of physical systems.
State Space Models (SSMs) in particular represent the system dynamics with many
desirable properties, such as being able to model uncertainty in both the model
and measurements, and optimal (in the Bayesian sense) recursive formulations
e.g. the Kalman Filter. However, they require significant domain knowledge
to derive the parametric form and considerable hand-tuning to correctly set all
the parameters. Data driven techniques e.g. Recurrent Neural Networks have
emerged as compelling alternatives to SSMs with wide success across a number
of challenging tasks, in part due to their ability to extract relevant features from
rich inputs. They however lack interpretability and robustness to unseen conditions.
In this work, we present DynaNet, a hybrid deep learning and time-varying state-
space model which can be trained end-to-end. Our neural Kalman dynamical
model allows us to exploit the relative merits of each approach. We demonstrate
state-of-the-art estimation and prediction on a number of physically challenging
tasks, including visual odometry, sensor fusion for visual-inertial navigation and
pendulum control. In addition we show how DynaNet can indicate failures through
investigation of properties such as the rate of innovation (Kalman Gain).

1 Introduction

From catching a ball to tracking the motion of planets across the celestial sphere the ability to
estimate and predict the future trajectory of moving objects is key for interaction with our physical
world. With ever increasing automation e.g. self-driving vehicles and mobile robotics, the ability to
not only estimate system states based on sensor data, but also to reason about latent dynamics and
therefore predict states with partial or even without any observation is of huge importance to safety
and reliability [41].

Newtonian/Classical Mechanics has been developed as an explicit mathematical model which can
be used to predict future motion and infer how an object has moved in the past. This is commonly
captured in a State Space model (SSM) that describes the temporal relationship and evolution of
states through first-order difference equations. For example, in the visual ego-motion estimation task,
also known as Visual Odometry (VO) [35, 10, 12], velocity, position, and orientation are usually
used as physically attributable states for mobile agents. Models are typically hand-crafted based on
domain knowledge and require significant expertise to develop and tune. Simplifying assumptions are
often made e.g. to treat the system as being linear, time-invariant with uncertainty being additive and
Gaussian. A canonical example of an optimal Bayesian filter for linear systems is the Kalman Filter
[21], which is an optimal linear quadratic estimator. Although capable of controlling sophisticated
mechanical systems (e.g. the Apollo 11 lander used a 21 state Kalman Filter [32]), it becomes more
challenging to use in complex, nonlinear systems, giving rise to alternative variants such as the
Sequential Monte Carlo [28] or nonlinear graph optimisation [25]. However, even when using these
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Figure 1: The DynaNet framework (a) consists of the neural observation model to extract latent states
z, the neural transition model to generate the evolving relation A, and a recursive Kalman Filter to
infer and predict system states. Two transition generation strategies - (b) deterministic transition or
(c) resampled transition are proposed to achieve desired system behaviours.

sophisticated approaches, imperfections in model parameters and measurement errors from sensory
data contribute to issues such as accumulative drift in visual navigation systems. Furthermore, there
is a disconnect between the complexities of rich sensor data e.g. images and derived states.

Identifying the underlying mechanism governing the motion of an object is a hard problem to
solve for dynamical systems operating in real world. As a consequence, in recent years, there
has been an explosive growth in applying deep neural networks (DNNs) for motion estimation
[5, 44, 47, 6, 29, 1, 3, 46, 45]. These learning based approaches can extract useful representations
from high-dimensional raw data to estimate the key motion states in an end-to-end fashion. Although
these learned models demonstrate good performance in both accuracy and robustness, they are
’black-boxes’ regressing measurements with implicit latent states and difficult to interpret. In contrast
to neural networks, state-space-models (SSMs) are able to construct a parametric model description
and offer an explicit transition relation that describes the evolution of system states and uncertainty
into the future. They can also optimally fuse measurements from multiple sensors based on their
innovation gain, rather than simply stacking them as in a neural network.

In this work, we propose DynaNet - neural Kalman dynamical models, combining the respective
advantages of deep neural networks (powerful feature representation) and state space models (explicit
modelling of physical processes). As illustrated in Figure 1, our proposed end-to-end model enables
automatic feature extraction from raw data and constructs a time-varying transition model. The
recursive Kalman Filter is incorporated to provide optimal filtering on the feature state-space and
estimate process covariance to reason about system behaviour and stability. This allows for accurate
system identification in an end-to-end manner without human effort.

Specifically, our model benefits from: (1) A novel approach that can learn a linear-like state-
space model directly from raw data. (2) A Kalman filter is adopted on the feature level for latent
state inference. It works efficiently across a number of challenging situations e.g. when only
partial/corrupted observations are available or even without any observations. 3) By resampling the
transition matrix from a Dirichlet distribution, the neural system could be ensured asymptotically
stable. 4) The explicit parameters inside the state-space-model show an interpretability of system
behaviours, for example, kalman gain indicates observation failures.

To demonstrate the effectiveness of the proposed technique, we have conducted extensive experiments
and a systematic study on challenging real world motion estimation and prediction tasks, including
pendulum control, visual odometry and visual-inertial odometry. We show how the proposed method
outperforms state-of-the-art deep-learning techniques, whilst yielding valuable information about
model performance.
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2 Neural Kalman Dynamic Models

We consider a time-dependent dynamical system, governed by a complex evolving function f :

zt = f(zt−1,wt) (1)

where z ∈ Rd is d-dimensional latent state, t is the current timestep, and w is a random variable
capturing system and measurement noise. The evolving function f is assumed to be Markovian,
describing the state-dependent relation between latent states zt and zt−1. The model in Equation (1)
can be reformulated as a linear-like structure, i.e. the state-dependent coefficient (SDC) form, with a
time-varying transition matrix A:

zt = Atzt−1 (2)
Notably, system nonlinearity is not restricted by this linear-like structure [4], as there always exists a
SDC form f(z) = A(z)z to express any continuous differentiable function f with f(0) = 0. In this
regard, our problem of the dynamic model is how to recover the latent states z, and their time-varying
transition relation A from high-dimensional measurements x (e.g. a sequence of images) without
resort to a hand-crafted physical model. This work aims to construct and reparameterize this dynamic
model using the expressive power of deep neural networks. Figure 1 shows the main framework,
which is discussed in detail in the following sections.

To avoid confusion, in the rest of this paper, latent states z are exclusively used for dynamical models
and hidden states h exclusively represent the neurons in a deep neural network.

2.1 Neural Emission Model

Intuitively, the system states containing useful information often lie in a different latent space different
to the original measurements. For example, given a sequence of images (the measurements), the key
system states of visual odometry are velocity, orientation and position. However, it is non-trivial for
conventional models to formulate a temporal linear model that can precisely describe the relation
between these physical representations [27]. Rather than explicitly specifying physical states as in a
classical SSM, we use a deep network to automatically extract latent state features and constrain these
through optimisation to follow the linear-like relation in Equation (2). Importantly, this linearization
allows us to use a Kalman Filter directly for state feature inference.

In our neural emission model, an encoder fencoder is used to extract both features at and an estimation
of uncertainty σa

t from the data xt at timestep t:

at,σt = fencoder(xt). (3)

The features a act as observations of the latent feature state space. The coupled uncertainties σ
represent the measurement belief that can be used as the observation noise R in a Kalman Filter.
However, the observations a are sometimes unable to provide sufficient information for all latent
states z in a dynamical system, for example, the occasional absences of sensory data. Hence, a
deterministic emission matrix H is defined to connect with the full latent states z:

at = Hzt (4)

In a practical setting, when the extracted features contain all the information for dynamical systems,
the emission matrix H is set to d-dimensional identity matrix Id as features and states are identical at
this moment. On the other side, the identity matrix needs to adapt to H = [Im,0m×(d−m)], when
observations only give rise to m features. In this case, the rest (d−m) latent states will be attained
from historical states. Our experiment in Section 3.3 demonstrates the superiority this neural emission
model in addressing the issue of observation absences for sensor fusion in visual-inertial odometry.

2.2 Neural Transition Model

In a SSM, the temporal evolution of latent states is determined by the transition matrix A as in
Equation 2. Obviously, the transition matrix is of considerable importance as it directly describes
the governing mechanism of a system. Nevertheless, such a matrix is difficult to specify manually,
especially when it is time-varying. Figure 1 demonstrates two methods we propose to estimate A on
the fly, based on prior system states: (1) a deterministic way to learn it end-to-end from raw data; (2)
a stochastic way to resample it from a distribution, e.g. the Dirichlet distribution in this work.
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2.2.1 Deterministic Transition

Intuitively, movement change depends on historical system states, which are encoded in the latent
states z0:t−1. Previous work mostly applied a recurrent neural network (RNN) to specify dynamic
weights for choosing and interpolating between a fixed number of different transition modes [22, 13].
Inspired by [38], our model generates the transition matrix directly from the latent states z. In our
neural transition model, the dependence of the transition matrix on historical latent states is specified
by a RNN. This RNN recursively processes previous hidden states (zt−1,ht−1) of the dynamic
model and Long Short-Term Memory (LSTM) cell respectively, and outputs the time-dependent
transition matrix At:

At = LSTM(zt−1,ht−1). (5)

2.2.2 Resampled Transition

The linear-like SSM structure in Equation (2) allows for a quadratic Lyapunov stability analysis,
whilst advances in stochastic optimisation allow to construct neural probabilistic models [39]. We
thus propose to resample the transition matrix from a predefined probability distribution to enforce
a desired property, namely stability. Based on the findings in [43], if the state transition follows a
Dirichlet distribution in a positive system, it will lead to a model being asymptotically stable i.e. it
will be Bounded Input Bounded Output (BIBO) stable. Constructing the stochastic variable and deter-
mining the parameters of the distribution are easy to achieve with the widely used reparameterisation
trick [19].

Specifically, in this work, the concentration α of the Dirichlet distribution is generated from historical
system states via an LSTM based RNN:

α = LSTM(zt−1,ht−1) (6)
A small Gaussian random noise is also added to improve model robustness. At each timestep, a
realisation of the transition matrix A is drawn from the constructed Dirichlet distribution:

At ∼ Dirichlet(α) (7)
Note that in DynaNet the transition states are in the latent feature rather than the final target states,
i.e. VO states. The latent features are extracted by the encoder, which ensures the transition strictly
positive through ReLU activation and a tiny random positive number on the last layer of the DNN
based encoder.

2.3 Prediction and Inference with a Kalman Filter
The neural emission model estimates system states from noisy sensor measurements, while the
generated transition model describes the system evolution and predicts the system states with previous
ones. However, uncertainties exist in both of them and motivate us to integrate a Kalman Filter into
our framework. The Kalman Filter recursively deals with the uncertainties, and produces a weighted
average of the state predictions and fresh observations. With the aforementioned neural emission and
transition models, the prediction and inference are performed on the feature state space and follow a
standard Kalman filtering pipeline. We also note that the Kalman Filter’s gain controls how much to
update the residual error (i.e., the difference between prediction and observation), which is a useful
metric to represent the relative quality of measurements (as shown in Section 3.5).

More specifically, the Kalman Filter consists of two blocks: prediction and update. In the prediction
stage, prior estimates of the mean value and covariance (zt|t−1,Pt|t−1) at the current timestep are
derived from the posterior state estimates (zt−1|t−1,Pt−1|t−1) in the previous timestep:

zt|t−1 = Atzt−1|t−1,

Pt|t−1 = AtPt−1|t−1A
T
t +Qt.

(8)

When current observations at are available, the update process allows us to produce a posterior mean
and covariance of hidden states (zt|t,Pt|t) as follows:

rt = at −Htzt|t−1,

St = Rt +HtPt|t−1H
T
t ,

Kt = Pt|t−1H
T
t S
−1
t ,

zt|t = zt|t−1 +Ktrt,

Pt|t = (I−KtHt)Pt|t−1,

(9)

4



where r is the residual error (aka. innovation), S is the residual covariance and K is Kalman gain. In
contrast to hand-tuning process noise Q and measurement noise R in a conventional KF, these two
terms are jointly learned by our proposed neural dynamical model. Finally, the predictor (e.g. a FC
network) outputs the target values yt from the estimated optimal hidden states zt|t:

ỹt = fpredictor(zt|t). (10)

In the case that current measurements i.e. at are unavailable, the reconstructed values ŷt are inferred
from the prior estimate zt|t−1:

ŷt = fpredictor(zt|t−1). (11)

All parameters θ in our model are end-to-end trained with a mean square loss function. This loss
function jointly compares the ground truth yt with posterior predictions ỹt and prior prediction ŷt:

L(θ) =
1

T

T∑
t=1

(||yt − ỹt||2 + ||yt − ŷt||2) (12)

3 Experiments
We systematically evaluate our system through extensive experiments including (1) Section 3.2 - pose
estimation and prediction for visual odometry, (2) Section 3.3 - sensor fusion and prediction with
partial observations for visual-inertial odometry and (3) Section 3.4 - learning with control signals
for pendulum prediction. Moreover, an interpretability study is also conducted in Section 3.5.

3.1 Experiment Setup and Datasets

KITTI Odometry Dataset [15] is a commonly used benchmark dataset that contains 11 sequences
(00-10) with images collected by car-mounted cameras and ground-truth trajectories provided by
GPS. We used it for visual odometry experiment, with Sequences 00-08 for training and Sequences
09, 10 for testing. The images and ground truth are collected at 10 Hz.

KITTI Raw Dataset [15] contains both images (10 Hz) and high-frequency inertial data (100Hz).
Since inertial data are only available in unsynced data packages, we selected the raw files with the
corresponding to KITTI Odometry Dataset. Inertial data and images are manually synchronized
according to their timestamps. We adopted the same data split mentioned above, discarding Sequence
03 as its raw data is unavailable.

Pendulum Dataset [22] is a simulation of a dynamic torque-controlled pendulum. We follow the
original dataset description and split it into different sets of 500 sequences for training, validating and
testing respectively. Each sequence has 15 frames of 16× 16 pixels and 1-dimensional control signal.

Experiment Setup: We implemented the proposed framework with Pytorch, and trained on a
NVIDIA Titan X GPU. In VO and VIO experiments, we chose LSTMs (1-layer and 2-layers) as our
baselines. The detailed framework structures are desribed in Supplementary Material. All the other
modules for LSTMs including encoder and predictor, and the dimension of latent states (128) are kept
the same as in our proposed models for a fair comparison. We also compare the trajectories from our
model with two visual odometry/SLAM frameworks 1, i.e. Deep-VO-Feat [46] and ORB-SLAM [33].
In the pendulum control experiment, our model is compared with a state-of-the-art model Kalman
VAE [13]. All of the models including the baselines are trained with the Adam optimizer with a
batch-size of 32 and a learning rate of 1e−4.

3.2 Visual Egomotion Estimation

Our evaluation starts with a set of visual ego-motion (Visual Odometry) experiments for 6 DoF
pose estimation and prediction. Table 1 reports on relative translation and orientation error [40],
and summarises the comparison results in terms of root mean squared errors (RMSE). According
to the findings from [40], the translational RMSE is sufficient enough to be a evaluation metric for
visual odometry, as the rotational drifts show up as translational drifts when the camera is moving.
Therefore, we mainly compare the different models based on their translational errors in Table 1, but
only highlighted the rotational error when there is large discrepancy.

1The results are taken from https://github.com/Huangying-Zhan/Depth-VO-Feat

5



-200 -100 0 100 200 300 400 500
East (m)

-400

-200

0

200

400

600

N
o

rt
h

 (
m

)

Ground Truth

LSTM 1-Layer

LSTM 2-Layers

Ours (Deterministic)

Ours (Dirichlet)

Depth VO Feat

ORB SLAM

(a) Poses estimation in Seq 09

-139 -138.5 -138 -137.5 -137 -136.5

East (m)

162

164

166

168

170

172

174

176

178

180

N
o
rt

h
 (

m
)

Ground Truth

Ours (Dirichlet)

Ours (Deterministic)

LSTM 1-Layer

LSTM 2-Layers

Start Point

Start Predicting

10 Steps Prediction

Driving Direction

(b) Turning pred. w/o inertial data

-138 -137.5 -137 -136.5
East (m)

160

165

170

175

180

N
o
rt

h
 (

m
)

Ground Truth

Ours (Dirichlet)

Ours (Deterministic)

LSTM 1-Layer

LSTM 2-Layers

Start Point

10 Steps Prediction

Start Predicting

Driving Direction

(c) Turning pred. with inertial data

300 600 900 1200 1500
Distance (m)

0

50

100

150

200

250

L
o
c
a
ti
o
n
 E

rr
o
r 

(m
)

ORB SLAM

Depth VO Feat

Ours (Dirichlet)

Ours (Deterministic)

LSTM 2-Layers

LSTM 1-Layers

(d) Localisation error of Seq. 09

2 5 8 11 14
Timestep

0

2

4

6

8

10

L
o
c
a
ti
o
n
 E

rr
o
r 

(m
)

Ours (Dirichlet)

Ours (Deterministic)

LSTM 1-Layer

LSTM 2-Layers

(e) Error Bar of Straight line pred.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Timestep

4

4.5

5

5.5

6

K
al

m
an

 G
ai

n 
(2

-n
or

m
) With Degradation Without Degradation

(f) The 2-Norm of Kalman gain

Figure 2: The trajectories (a) and location errors (d) of Seq. 09 indicate that our models produce
robust and accurate pose estimates in visual odometry. For future poses prediction without visual
observations, our Dirichlet based model clearly outperform others when predicting the straight driving
(e). In turning, the future poses are estimated in a tangent direction (b). With the aid of inertial data,
our model can predict both the translation and rotation well (c). To interpret model, the Kalman gain
reflects the measurements quantities, which decreases with the rising degree of data corruption (f).

Table 1: Visual Odometry on KITTI Odometry Dataset (Translation RMSE [0.01 m], Rotational
RMSE [0.01 deg]).

Pose Estimation 5 Steps Prediction 10 Steps Prediction
ORB-SLAM 17.7, 46.69 - -

VO-Feat 10.99, 16.03 - -
LSTM (1-layer) 5.81, 8.71 16.8, 50.7 23.4, 58.4
LSTM (2-layers) 5.76, 8.78 11.0, 36.3 17.7, 49.3

Our Model (Deterministic) 5.60, 8.86 10.8, 38.4 16.3, 47.1
Our Model (Dirichlet) 5.73, 8.72 9.14, 32.9 13.5, 49.2

VO Pose Estimation. In this experiment, a sequence of images are given to models to produce pose
transformations. Both of our proposed models outperform the baselines of LSTMs and the largest
gain is achieved by our deterministic model, as shown in Table 1. This experiment implies that
the nonlinearities of VO systems are not lost despite the linear-like structures inside our models.
Figure 2a illustrates the trajectories of Sequence 09 predicted by our models, showing competitive
results compared with LSTMs, the classical ORB-SLAM [33] and a learning based model Depth-
VO-Feat [46]. Sequence 09 is a difficult scenario, as the driving car experienced large movement in
height. This degrades the accuracy of ORB-SLAM and Depth-VO-Feat, whereas our models can
still provide robust and accurate results, which is clear to see the comparison of the absolute location
errors in a travelled distance of 300m, 600m, 900, 1200m, 1500m in Figure 2d.

VO Pose Prediction. In another experiment, we fed models a sequence of 5 images for initialisation,
and then let them predict the next 5 and 10 states without any further observations. As shown in Table
1, it is clear that our proposed Dirichlet based model performs best. This is because the resampled
transition matrix from the Dirichlet distribution enables the dynamic model to be stable, and hence
gives rise to long-term prediction in higher accuracy. As straight driving routes dominate driving
behaviours for autonomous vehicles, we thus begin our performance report with them first. Figure 2e
plots the error bar of predicted locations for straight driving, with the best and worst results among all
tested segments to show the variance of the model predictions. In both cases, our proposed Dirichlet
based model consistently outperforms other baselines by providing more accurate and robust location
predictions. Figure 2b further shows the prediction performance in turning. As we can see, without
timely observation, it is hard for deep neural networks to estimate accurate orientation changes, but
they predict the future poses in a tangent direction. We will soon show how to integrate inertial
information to aid the turning prediction in the Section 3.3.
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Table 2: Visual-Inertial Navigation on KITTI Raw Dataset (Translation RMSE [0.01 m], Rotational
RMSE [0.01 deg]).

Poses Est. Visual only Pred. Inertial on Pred. Pred. w/o Inputs
LSTM (1-layer) 6.24, 6.36 7.86, 150 23.7, 48.1 32.5, 118
LSTM (2-layers) 6.12, 6.99 6.90, 50.0 24.3, 26.4 21.2, 96.6

Ours (Deterministic) 5.92, 3.56 6.27, 27.3 11.3, 20.6 13.0, 39.2
Ours (Dirichlet) 6.03, 3.61 6.40, 32.3 12.3, 11.0 12.3, 40.9

3.3 Sensor Fusion for Visual-Inertial Navigation

How to effectively integrate and fuse two modalities to provide accurate and robust pose remains
a challenging problem. In this experiment, we demonstrate that our proposed models can learn a
compact state-space-model for sensor fusion from two modalities, i.e. visual and inertial data, and
enable robust prediction under the circumstances with partial observations. Initially, a visual encoder
and an inertial encoder extract m-dimensional visual features avisual ∈ Rm and n-dimensional
inertial features ainertial ∈ Rn separately. These two features are then concatenated together as
a = [avisual,ainertial] ∈ Rm+n. Notably, our emission matrix is defined as identity matrix H = Im+n,
when both modalities are available. If visual or inertial cues are absent, the emission matrix is
changed to H = [Im,0m×n] or H = [0n×m, In]. The training and testing of the visual-inertial
dynamic model follows the same procedures as in visual odometry.

VIO Pose Estimation. Table 2 reports the RMSE of the relative translation and orientation between
the proposed models and LSTMs. Similar observations are found in this evaluation that our proposed
models outperform 1-layer and 2-layers LSTMs when given both visual and inertial observations,
with an especially high margin in orientation estimation. Although all models integrated inertial data
to reduce the orientation errors of visual odometry, our proposed models excel at fusion.

VIO Pose Prediction. We also evaluate our models in scenarios of prediction with visual-only
observations, inertial-only observations and no observations, in which all models are given a sequence
of 5 images for initialisation and need to predict the next 5 poses. As can be seen in Table 2, our
models greatly outperform the comparable deep learning approaches. Figure 2c plots the predicted
trajectories with only inertial data, when no visual observation is given. Clearly, our models are
capable of predicting future pose evolution accurately and robustly. We note that robust fusion is
important for safe operation with missing sensor inputs e.g. for self-driving cars.

3.4 Pendulum Control

Table 3: Pendulum Prediction

BCE Accuracy
KVAE (Det.) 2.71 0.922
KVAE (Stoc.) 2.72 0.921

Ours (Det.) 2.66 0.923
Ours (Dir.) 2.66 0.923

Last, we evaluate our models on the experiment of a dynamic
torque controlled pendulum used in [22, 13] and we compare
the performance of our model to two variants of Kalman VAE
(KVAE) [13]. Following [22, 13], training, validation and
test sets are formed by 500 sequences of 15 frames of 16 ×
16 pixels. In the training phase, all models are learnt with
the full length of 15 frames. However, in order to test the
ability of prediction, we only feed the first 2 frames to these
models and let them predict the following 13 frames with only
control signals. In table 3, we see that our models achieve better performance compared with both
deterministic and stochastic KVAE in terms of Binary Cross Entropy (BCE) and the accuracy of pixel
agreement. This experiment implies that, beyond VO and VIO, our models are also able to reason
about motion dynamics from visual data and use them to predict future observations when explicit
control signals are given, e.g. the external forces placed on the pendulum.

3.5 Towards Model Interpretability

We are now in a position to discuss model interpretability. Recall that in the update process (see
Section 2.3), the Kalman gain is an adaptive weight that balances the observations and the model
predictions. If there is high confidence in measurements, the Kalman gain will increase to selectively
upweight measurement innovation and vice versa.
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To understand model behaviours deeper, we deliberately fed our Dirichlet model with degraded
images and use Kalman gain to capture the belief in measurements. This experiment generated 113
sequences with 15 frames of images from Sequence 09 in KITTI dataset. In each sequence, the
images are corrupted with an increasing size of blanked blocks on the time steps 0-3 (no blocks),
4-5 (192 pixels * 192 pixels), 6-7 (192 pixels * 320 pixels), 8-9 (192 pixels * 480 pixels), 10-14
(192 pixels * 640 pixels). The values of Kalman gain are averaged over all the sequences on each
timestep. We then test our model with this modified dataset in the same fashion as the VO experiment
described in Section 3.2. The Frobenius norm (2-norm) of the Kalman gain matrix is calculated, and
averaged across all sequences as an aggregated indicator of changes in Kalman gain matrix. Figure
2f shows that this indicator gradually decreases with increasing data corruption, comparing with
the case without degradation. It implies that our model can adaptively place more trust on model
predictions when observing low-quality data and signal to higher control layers that estimation is
becoming more uncertain, allowing safer operation. It is critical to note that data corrupted in this
way have never been seen in the training phase.

4 Related Work

State-Space-Models (SSMs) are a convenient and compact way to represent and predict system
dynamics. In classical control engineering, system identification techniques are widely employed to
build parametric SSMs [8]. In order to alleviate the effort of analytic description, data-driven methods,
such as Gaussian Processes [23], Expectation–Maximization (EM) [16], or Gradient Descent [30],
emerged as alternatives to identify nonlinear models. With advances in DNNs, deep SSMs have
been recently studied to handle very complex nonlinearity. Specifically, [17, 20] used DNNs to
extract effective features and feed them to a predefined physical model to improve filtering algorithms.
Besides feature extraction, DNNs have also been used in re-parameterizing the transition matrix
in SSMs from raw data [24, 14, 13, 22]. Unlike prior art, our work exploits recent findings on
stable dynamical models [43] and use resampling to generate the transition matrix from Dirichlet
distribution, whose concentration is learnt through RNNs. The specific Dirichlet distribution ensures
the stability of dynamic systems, which is an important yet absent property of previous DNNs based
SSMs.

Motion Estimation has been studied for decades and plays a central role in robotics and autonomous
driving. Conventional visual odometry/SLAM methods rely on multiple-view geometry to estimate
motion displacement between images [35, 7, 34, 10, 9, 12, 33]. Due to the huge availability and
complementary property of inertial and visual sensors, effectively integrating these two sensor
modalities has raised great attentions to give more robust and accurate inter-frame motion estimates
[11]. A large portion of work in this direction is visual-inertial odometry, where filtering [27, 2]
and nonlinear optimisation [26, 11, 36] are two mainstream model-based methods for sensor fusion.
Meanwhile, recent studies also found that the methods based on state-of-the-art DNNs are able
to provide competitive robustness and accuracy over some model-based methods. These DNN
methods often use CNNs to learn useful geometry features from images for camera relocalization
[47, 3, 46, 45, 42], and/or employ RNNs to model the temporary dependency in motion dynamics
[6, 31, 44, 18]. Nevertheless, DNN based methods are hard to interpret and expect/modulate their
behaviours [41, 37]. Our DynaNet aims to bridge the gap of performance and interpretability through
a deeply coupled framework of model-based and DNN-based methods.

5 Conclusion

DynaNet, a neural Kalman dynamical model was introduced in this paper to learn temporal linear-
like structure on latent states. Through deeply coupled DNNs and SSMs, DynaNet can scale to
high-dimensional data as well as model very complex motion dynamics in real world. By using
Kalman filter on feature space, DynaNet is able to reason about latent system states, allowing reliable
inference and predictions even with missing observations. Furthermore, the transition matrix in our
model is sampled from the Dirichlet distribution learned by a RNN, which ensures system stability.
DynaNet is evaluated on a variety of challenging motion-estimation tasks, including single-modality
estimation under data corruption, multiple sensor fusion under data absence, and learning with control
signals. Experimental results demonstrate the superiority of our approach in accuracy, robustness and
interpretability.
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