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Abstract

Prediction of future states of the environment and interacting agents is a key
competence required for autonomous agents to operate successfully in the real
world. Prior work for structured sequence prediction based on latent variable
models tend to impose priors with limited expressiveness or which are difficult to
optimize e.g. determining the number of Gaussian mixture components. This makes
it challenging to fully capture the multi-modality of the distribution of the future
states. In this work, we introduce Conditional Flow Variational Autoencoders (CF-
VAE) using our novel conditional normalizing flow based prior and demonstrate
state of the art results on two multi-modal structured sequence prediction tasks.

1 Introduction

Anticipating future states of the environment is a key competence necessary for the success of
autonomous agents. In complex real world environments, the future is highly uncertain. Therefore,
structured predictions, one to many mappings (Sohn et al., 2015; Bhattacharyya et al., 2018) of the
likely future states of the world, are important. In many scenarios, these tasks can be cast as sequence
prediction problems. Particularly, conditional variational autoencoders (CVAE) (Sohn et al., 2015)
have been successful for such problems (Lee et al., 2017; Bhattacharyya et al., 2018; Pajouheshgar
and Lampert, 2018; Babaeizadeh et al., 2018). CVAEs model diverse futures by factorizing the
distribution of future states using a set of latent variables which are mapped to likely future states.
However, CVAEs assume a standard Gaussian prior on the latent variables which induces a strong
model bias (Hoffman and Johnson, 2016; Tomczak and Welling, 2018) and makes it difficult for the
model to capture multi-modal distributions.

Recent work (Tomczak and Welling, 2018; Wang et al., 2017; Gu et al., 2018) has therefore focused
on more expressive Gaussian mixture based priors. However, Gaussian mixtures still have limited
expressivity and optimization suffers from complications e.g. determining the number of mixture
components. In contrast, normalizing flows are more expressive and enable the modelling of complex
multi-modal priors. Recent work on flow based priors (Chen et al., 2017; Ziegler and Rush, 2019),
have focused only on the unconditional (plain VAE) case. However, this not sufficient for CVAEs
because in the conditional case the complexity of the distributions are highly dependent on the
condition. In this work, in order to model complex multi-modal conditional distributions, we propose
Conditional Flow Variational Autoencoders (CF-VAE) with novel conditional normalizing flow based
priors. Furthermore, we propose a novel regularization scheme that stabilizes training and prevents
degenerate solutions during optimization of the evidence lower bound. Finally, we show that our
regularized CF-VAE outperforms the state of the art on two important structured sequence prediction
tasks – handwriting stroke prediction on MNIST and traffic participant prediction on Stanford Drone.
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2 Conditional Flow Variational Autoencoder

Our Conditional Flow Variational Autoencoder is based on the conditional variational autoencoder
(Sohn et al., 2015) which models conditional data distributions p�(yjx) with a prior latent variable
distribution p(zjx). The posterior distribution of latent variables q�(zjx) is learnt using amortized
variational inference.The ELBO is maximized, given by,

log(p�(yjx)) � Eq�(zjx;y) log(p�(yjz; x))�DKL(q�(zjx; y)jjp(zjx)): (1)

In practice, a simple unconditional standard Gaussian prior N (0; I) is used (Sohn et al., 2015).
Although in theory a strong enough encoder/decoder pair should be able to perfectly encode and
decode from a unit Gaussian, in practice this is difficult to achieve. On complex conditional multi-
modal data, simple Gaussian priors have been shown to induce strong model bias resulting in missing
modes (Tomczak and Welling, 2018; Ziegler and Rush, 2019). Moreover, the ground truth conditional
distribution p(yjx) can differ considerably depending upon the data point x – a unconditional prior
p(z) leaves the burden of learning the dependence on the condition completely on the decoder.

Conditional Normalizing Flows. Recently, normalizing flow Tabak et al. (2010); Dinh et al. (2015)
based priors for VAEs have been proposed (Chen et al., 2017; Ziegler and Rush, 2019). However,
these flow based priors are unconditional. Here we propose conditional priors, through the use of
conditional normalizing flows. Our conditional normalizing flow based prior starts with a simple base
distribution p(�jx), which is then transformed by n layers of invertible normalizing flows fi, with
parameters  , to a more complex prior distribution (dependent on number of layers n) on the latent
variables p (zjx),

�jx f1 ! h1jx
f2 ! h2jx � � �

fn ! zjx: (2)

Given the base density p(�jx) and the Jacobian Ji of each layer i of the transformation, the log-
likelihood of the latent variable z can be expressed using the change of variables formula,

log(p (zjx)) = log(p(�jx)) +

nX
i=1

log(jdet Jij): (3)

We consider simple spherical Gaussians as base distributions, p(�jx) = N (0; I) for efficient sampling.
In contrast to prior work on conditional normalizing flows (Lu and Huang, 2019; Atanov et al., 2019;
Ardizzone et al., 2019) which use affine flows, we build upon (Ziegler and Rush, 2019) and introduce
conditional non-linear normalizing flows. Conditioning is achieved by making each fi a non-linear
function of the condition x (more details in Appendix A). Next, we derive the form of ELBO with our
conditional normalizing flow based prior using the change of variables formula (3) to easily compute
the KL divergence. The ELBO can be expressed as, (full derivation in Appendix A)

log(p�(yjx)) � Eq�(zjx;y) log(p�(yjz; x)) +H(q�) + Eq�(zjx;y) log(p(�jx)) +

nX
i=1

log(jdet Jij) (4)

To learn complex conditional priors, we jointly optimize both the variational posterior distribution
q�(zjx; y) and the conditional prior p (zjx) in (4) (akin to (Tomczak and Welling, 2018)). The
variational posterior tries to match the conditional prior and vice-versa so that the ELBO (4) is
maximized. This is our Conditional Flow Variational Autoencoder (CF-VAE). Next, we discuss
instabilities during training which leads to degenerate solutions and our novel regularization scheme.

Regularizing Posteriors for Stability. In (4), the entropy and the log-Jacobian of the joint objective
are at odds with each other. The log-Jacobian favours the contraction of the base density. Therefore,
log-Jacobian at the right of (4) is maximized when the conditional flow maps the base distribution to
a low entropy conditional prior (and thus a low entropy variational distribution q�(zjx; y)). Ideally,
the CF-VAE should learn to balance these terms. However, in practice we observe instabilities during
training. Degenerate solutions emerge where either the entropy or the log-Jacobian terms dominate
and the data log-likelihood is fully or partially ignored. Therefore, we regularize the posterior
q�(zjx; y) by fixing the variance to C. This leads to a constant entropy term which in turn bounds
the maximum possible amount of contraction, thus upper bounding the log-Jacobian. Therefore,
during training this encourages our model to concentrate on explaining the data. Note that, although
q�(zjx; y) has fixed variance, this does not significantly effect expressivity as the marginal q�(zjx) can
be arbitrarily complex due to our conditional flow prior. Moreover, we observe that the LSTM based
decoders employed demonstrate robust performance across a wide range of values C = [0:05; 0:25].
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Condition BMS-CVAE Modes (Bhattacharyya et al., 2018) Our CF-VAE Modes Our CF-VAE Prior

Figure 1: Random samples clustered using k-means. The number of clusters is set manually to the number of
expected digits. The corresponding priors of our CF-VAE on the right. Note, our 64D CF-VAE latent distribution
is (approximately) projected to 2D using tSNE and KDE.

3 Experiments

We evaluate our CF-VAE on two multi-modal sequence prediction datasets. In line with prior work
(Lee et al., 2017; Pajouheshgar and Lampert, 2018), we use the negative conditionallog-likelihood
(-CLL) metric and the mean Euclidean distances of the oracle Topk% of K predictions. We include
a detailed analysis of this metric in the Appendix F. We use a conditional �ow architecture with
16 layers of conditional non-linear �ows. Increasing the number of conditional non-linear �ows
generally led to “over-�tting” on the training latent distribution.

MNIST Sequences.The MNIST Sequence dataset (D. De Jong, 2016) consists of sequences of
handwriting strokes of the MNIST digits. The state-of-the-art approach is the Gaussian prior CVAE
based “Best-of-Many”-CVAE (Bhattacharyya et al., 2018). We follow the evaluation protocol of
Bhattacharyya et al. (2018) and predict the complete stroke given the �rst ten steps. Additionally, we
compare with, 1. A standard CVAE with uni-modal Gaussian prior; 2. A CVAE with a data dependent
conditional mixture of Gaussians (MoG) prior; 3. A CF-VAE without regularization – without a
�xed variance posteriorq� (zjx; y); 4. A CF-VAE without the conditional non-linear �ow layers
(CF-VAE-Af�ne, replaced with af�ne �ows (Lu and Huang, 2019; Atanov et al., 2019)). Although
up to our knowledge, no prior work integrates MoG priors with CVAEs, we experiment with a
conditional MoG prior for fairness (see Appendix D and E). We use the same model architecture
(Bhattacharyya et al., 2018) across all baselines.

Table 1: Evaluation on MNIST Sequences
(CLL: lower is better).

Method -CLL

CVAE (Sohn et al., 2015) 96.4
BMS-CVAE (Bhattacharyya et al., 2018) 95.6

CVAE - optimized architecture(Ours) 94.5

MoG-CVAE, M = 3 84.6
CF-VAE - no regularization(Ours) 104.3
CF-VAE - Af�ne, regularized(Ours) 77.2
CF-VAE - regularized, C = 0 :2 (Ours) 74.9

We report the results in Table 1. We see that our CF-
VAE performs best. It has a performance advantage
of over 20% against the state of the art BMS-CVAE.
We further illustrate the modes captured and the learnt
multi-modal conditional �ow priors in Figure 1. In
contrast, the BMS-CVAE is unable to fully capture all
modes – its predictions are pushed to the mean due to
the strong model bias induced by the Gaussian prior.
The results improve considerably with the multi-modal
MoG prior (M = 3 components work best). We also
experiment with optimizing the standard CVAE archi-
tecture. This improves performance only slightly (in-
creasing LSTM encoder/decoder units to 256 from 48). Moreover, our experiments with a conditional
AAE/WAE (Gu et al., 2018) based baseline did not improve performance beyond the standard CVAE,
because the discriminator based KL estimate in AAE/WAEs tends to be an underestimate (Rosca
et al., 2019). This illustrates that in practice it is dif�cult to map highly multimodal sequences to a
Gaussian prior and highlights the need of a data-dependent multi-modal priors. Our CF-VAE still
signi�cantly outperforms the MoG-CVAE as normalizing �ows are better at learning complex multi-
modal distributions (Kingma and Dhariwal, 2018). Next, we see that without regularization (C = 0 :2)
there is a 40% drop in performance, highlighting the effectiveness of our novel regularization scheme.
We also see that af�ne conditional �ow based priors leads to a drop in performance (77.2 vs 74.9
CLL) illustrating the advantage of our non-linear conditional �ows.

Stanford Drone. The Stanford Drone dataset (Robicquet et al., 2016) consists of trajectories of
traf�c participant e.g. pedestrians, bicyclists, cars in videos captured from a drone. The scenes are
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Table 2: Five fold cross validation on the Stanford Drone dataset. Euclidean error at (1=5) resolution.
Method Visual Error@1sec Error@2sec Error@3sec Error@4sec -CLL

“Shotgun” (Top 10%) (Pajouheshgar and Lampert, 2018) None 0.7 1.7 3.0 4.5 91.6
DESIRE-SI-IT4 (Top 10%) (Lee et al., 2017) RGB 1.2 2.3 3.4 5.3 x
STCNN (Top 10%) (Pajouheshgar and Lampert, 2018) RGB 1.2 2.1 3.3 4.6 x
BMS-CVAE (Top 10%) (Bhattacharyya et al., 2018) RGB 0.8 1.7 3.1 4.6 126.6

MoG-CVAE, M = 3 (Top 10%) None 0.8 1.7 2.7 3.9 86.1
CF-VAE - regularized(Ours, Top 10%) None 0.7 1.5 2.5 3.6 84.6
CF-VAE - regularized(Ours, Top 10%) RGB 0.7 1.5 2.4 3.5 84.1

Sampled Predictions Latent Prior Sampled Predictions Latent Prior Sampled Predictions Latent Prior

Figure 2: Randomly sampled predictions of our CF-VAE model on the Stanford Drone dataset. We observe that
our prediction are clearly multi-modal and is re�ected by the Conditional Flow Priors. Note, our 64D CF-VAE
latent distribution is (approximatly) projected to 2D using tSNE and KDE.

dense in traf�c participants with multi-model trajectories. Prior work follows two different evaluation
protocols, 1. (Lee et al., 2017; Bhattacharyya et al., 2018; Pajouheshgar and Lampert, 2018) use 5
fold cross validation, 2. (Robicquet et al., 2016; Sadeghian et al., 2018, 2019; Deo and Trivedi, 2019)
use a single standard train-test split. We evaluate our CF-VAE using the �rst protocol in Table 2 and
the second in the Appendix G.

In addition to these state of the art models, (Pajouheshgar and Lampert, 2018) suggests a “Shotgun”
baseline. This baseline obtains results at par with the state-of-the-art because it a good template which
covers the most likely possible futures (modes) for traf�c participant motion in this dataset. We report
the results using 5 fold cross validation in Table 2. We additionally compare to a mixture of Gaussians
prior (details in Appendix D). We use the same model architecture as in (Bhattacharyya et al., 2018)
and a CNN encoder with attention to extract features from the last observed RGB image (details in
Appendix C). These visual features serve as additional conditioning (xm ) to our Conditional Flow
model. We see that our regularized CF-VAE model with RGB input andC = 0 :2 performs best –
outperforming the state-of-art “Shotgun” and BMS-CVAE by over 20% (Error@4sec). We see that
our conditional �ows are able to utilize visual scene (RGB) information to improve performance
(3.5 vs 3.6 Error@4sec). We also see that the MoG-CVAE and our CF-VAE outperforms the
BMS-CVAE, even without visual scene information. This again reinforces our claim that the standard
Gaussian prior induces a strong model bias and data dependent multi-modal priors are needed for
best performance. The performance advantage of CF-VAE over the MoG-CVAE again illustrates
the advantage of normalizing �ows at learning complex conditional multi-modal distributions. The
performance advantage over the “Shotgun” baseline shows that our CF-VAE not only learns to capture
the correct modes but also generates more �ne-grained predictions.

4 Conclusion

In this work, we presented the �rst variational model for learning multi-modal conditional data
distributions with Conditional Flow based priors – the Conditional Flow Variational Autoencoder
(CF-VAE). Our rigorous experiments on diverse sequence prediction datasets show that our CF-VAE
achieves state-of-the-art results. Furthermore, we address degenerate solutions leading to latent
variable collapse using �xed variance posteriors. Additionally, we also show that our powerful
Conditional Flow Variational Autoencoder can take advantage of diverse sources of conditioning
information including scene context and interacting agents, leading to state of the art performance.
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Appendix A. ELBO with Conditional Non-Linear Normalizing Flows

First, we provide a complete derivation of (4). We begin from (1) and use (3) to determine the KL
divergence,

� DKL (q� (zjx; y)jjp (zjx)) = � Eq� (zjx;y) log(q� (zjx; y)) + Eq� (zjx;y) log(p (zjx))

= H(q� ) + Eq� (zjx;y) log(p(� jx)) +
nX

i =1

log(jdet J i j):
(5)

Plugging 5 into (1) gives us (4).

Next, we describe the backward operation of our non-linear conditional normalizing �ow. Note that
while the forward operation is necessary to compute the likelihood in (4) during training, the forward
operation is necessary to sample from the latent prior distribution of our CF-VAE. We use conditional
non-linear normalizing �ows with split coupling. Split couplings ensure invertibility by applying a
�ow layer f i on only half of the dimensions at a time. To compute (3), we split the dimensionszD of
the latent variable into halfs,zL = f 1; � � � ; D=2g andzR = f D=2; � � � ; dg at each invertible layerf i .
We then apply the following transformation each dimension zj alternatively from zL or zR ,

f � 1
i (zj jzR ; x) = � j = a(zR ; x) + b(zR ; x) � zj +

c(zR ; x)

1 + ( d(zR ; x) � zj + g
�
zR ; x)

� 2 : (6)

where,zj 2 zL . Note that, in (6) and in the corresponding forward operationf i , the coef�cients
f a; b; c; d; gg 2 R are functions of both the other half of the dimensions ofz and the conditionx
unlike Ziegler and Rush (2019). Thus, the latent prior distribution on z is conditioned on x.

Next, we describe the forward operation. The forward operation consists of solving for the roots of
the following equation (more details in (Ziegler and Rush, 2019)),

� bd2(� j )3 + (( zj � a)d2 � 2dgb)( � j )2

+ (2 dg(zj � a) � b(g2 + 1)) � j + (( zj � a)(g2 + 1) � c) = 0
(7)

This equation has one real root which can be found analytically (Holmes). As mentioned above,
note that the coef�cientsf a; b; c; d; gg are also functions of the conditionx unlike Ziegler and Rush
(2019).

Appendix B. Additional Evaluation of Conditional Non-Linear Flows

We compare conditional af�ne �ows of (Atanov et al., 2019; Lu and Huang, 2019) and our conditional
non-linear (Cond NL) �ows in Figure 3 and Figure 4. We plot the conditional distributionp(yjx)
and the corresponding conditionx in the second and �rst columns. We use 8 and 16 layers of �ow
in case of the densities in Figure 3 and Figure 4 respectively. We see that the estimated density
by the conditional af�ne �ows of (Atanov et al., 2019; Lu and Huang, 2019) contains distinctive
“tails” in case of Figure 3 and discontinuities in case of Figure 4. In comparison our conditional
non-linear �ows does not have distinctive “tails” or discontinuities and is able to complex capture
the multi-modal distributions better. Note, the “ring”-like distributions in Figure 4 cannot be well
captured by more traditional methods like Mixture of Gaussians. We see in Figure 5 that even with
64 mixture components, the learnt density is not smooth in comparison to our conditional non-linear
�ows. This again demonstrates the advantage of our conditional non-linear �ows.

Appendix C. Additional Details of Our Model Architectures

Here, we provide details of the model architectures used across both the datasets.

MNIST Sequences.We use the same model architecture as in Bhattacharyya et al. (2018). The
LSTM condition encoder on the input sequencex, the LSTM recognition networkq� and the decoder
LSTM network has 48 hidden neurons each. Also as in Bhattacharyya et al. (2018), we use a 64
dimensional latent space.
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