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Abstract

Autonomous cars need to understand the complex and dynamic environment
around them. The solutions for tasks such as classification, segmentation, and de-
tection provide information required to understand this environment. The state-of-
the-art solutions for these tasks are based on a supervised learning, which requires
a large amount of annotated data. It is extremely expensive and labour-intensive to
produce such data. Unlabelled images and videos are available in large quantities
at a negligible cost, but are rarely used. Self-supervised learning is a new concept
that exploits unlabeled data. In this study, we use it to improve the performance
of a single supervised task (i.e., semantic segmentation). We explore two self-
supervised tasks: colorization and depth prediction. The performance is assessed
on two datasets: Cityscapes and KITTI. Overall, we show an improvement of up
to 3 % when self-supervised tasks are trained with semantic segmentation. In
conclusion, self-supervised learning improves the performance of semantic seg-
mentation at no additional annotation nor inference-related computational costs.

1 Introduction

Autonomous cars and advanced driver-assistance systems (ADASs) have advanced substantially in
the last decade. To operate successfully, they need to understand the dynamic environment around
them. This implies that they need information about the surrounding objects. A large proportion of
this information may be obtained through the visual systems integrated within the ego-vehicle.

In the recent years, computer vision and machine learning have advanced rapidly and deep learning
is now regarded as a standard approach for tasks such as classification [23, 50], segmentation [7, 3],
and detection [45, 34]. A large number of the state-of-the-art methods are based on supervised learn-
ing which requires manual data labeling, a time-consuming and an expensive process. For example,
it takes 1.5 h on average to perform annotation and quality control for one image of Cityscapes [11].

Unlabelled images and videos are available in large quantities at a negligible cost. Unfortunately,
their potential is rarely exploited. Unsupervised learning is used to find hidden structures within
unlabelled data. It works well on problems such as clustering [4] and dimensionality reduction [60].
However, since unsupervised learning is not designed to solve a particular problem, it fails to capture
relevant information needed to successfully perform vision tasks (e.g., segmentation).

Self-supervised learning, as an emerging concept, has potential to overcome limitations and exploit
the benefits of supervised and unsupervised learning. It is a special type of supervised learning in
which the labels are automatically generated from the unlabelled data. More specifically, problems
are modelled through self-supervision and objectives are measured similarly to those of supervised
learning. As such, in contrast to unsupervised learning, self-supervised learning focuses on an
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Figure 1: The overview of the proposed system, which consists of a single shared encoder and three task
specific decoders (semantic segmentation, depth estimation, and colorization).

optimization of a particular task, which forces the network to better learn semantic information with
no additional label-related issues. For additional details on the topic, we refer the reader to [26].

Most prior work on supervised and self-supervised learning solves a single task at a time (e.g.,
[6] and [21]). This gives good performance, but ignores a lot of useful information. In contrast,
when multiple tasks are jointly trained, domain-specific information is used to a larger extent, which
results in a better generalization [5]. Indeed, multi-task learning is deployed successfully in many
applications [10, 12, 44, 27]. In contrast, to the best of our knowledge, self-supervised multi-task
learning is yet to be explored in a greater extent.

In this paper, we exploit self-supervised multi-task learning to improve the performance of a single
supervised task (i.e., semantic segmentation). Two self-supervised tasks are explored: colorization
and depth prediction. Different multi-task weighting strategies are used and the corresponding re-
sults are reported. Performance is evaluated on two datasets: Cityscapes [11] and KITTI [18]. The
goal of the paper is not to outperform the state-of-the-art semantic segmentation methods. The goal
is to improve the performance with self-supervised learning at no additional annotation costs. The
rest of the paper is organized as follows. Section 2 presents the related work. Section 3 describes
the proposed model. Section 4 presents the experiments and the results. The conclusion is drawn in
section 5.

2 Related works

Details on two self-supervised tasks (i.e., image colorization and depth prediction) are presented in
subsection 2.1. An overview of semantic segmentation in the context of deep learning follows in
subsection 2.2. Finally, related work on multi-task learning is given in subsection 2.3.

2.1 Self-supervised learning

Self-supervised learning is an emerging concept that exploits automatic generation of ground truth
labels. Image colorization [61, 24, 30, 56] and depth estimation [21, 65, 17, 59, 57, 55, 37, 22]
are used in the context of self-supervised learning. Other tasks, which are beyond the scope of this
paper, are proposed in [13, 40, 41, 19, 43, 31, 39, 51]. A more detailed overview on colorization and
depth prediction is given below.

Image colorization Image colorization is a task of adding color to a grayscale image. The most
noted approaches [61, 24, 30] solve colorization with a convolutional neural network. Iizuka et
al. [24] use colors as classes and the network is trained jointly with classification (cross-entropy)
and colorization (L2) loss. Zhang et al. [61] use only classification loss, but instead of color value
prediction, they predict color histograms and use class weights to increase diversity of colors. Con-
currently, Larsson et al. [30] propose a similar network that achieves comparable accuracy.
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Depth prediction Supervised depth prediction shows promising results [54], but as it requires ex-
pensive depth sensors, the focus has shifted towards self/un-supervised methods [21, 65, 17, 59, 57,
55, 37, 22]. Garg et al. [17] use stereo image pairs to introduce self-supervised depth prediction, in
which depth is an intermediate step, and self-supervision is defined through the reconstruction loss.
Godard et al. [21] further improve the consistency of depth prediction. Zhou et al. [65] propose
a fully differentiable approach where depth and ego-motion are predicted jointly from a monocular
video. Vijayanarasimhan et al. [55] learn moving objects masks and rigid motion parameters for
objects and ego-motion. Many of the subsequent work improve these initial results [59, 57, 37, 22].

2.2 Semantic segmentation

Semantic segmentation provides a label for each pixel in an image. Long et al. [36] propose the first
fully convolutional network for semantic segmentation. SegNet [2] introduces shortcut connections.
Yu and Kotlun [58] propose dilated convolutions. DeepLab [6] is based on these convolutions and its
latest version [7] is among the best performing solutions for semantic segmentation. Other solutions
include networks such as PSPNet [64], PANet [33], and DANet [16]. Due to computational require-
ments, many of these solutions are not suitable for the automotive industry. To enable semantic
segmentation in real-time, smaller networks are proposed. ENet [42], MobileNet [48], ICNet [63],
and ShuffleNet [62] are a few examples of these networks.

2.3 Multi-task learning

Multi-task learning aims to leverage shared domain information contained in multiple tasks to im-
prove the generalization of all tasks. MultiNet [52] is the first architecture with a shared encoder for
classification, detection, and segmentation. In [38], a network with cross-stitch units is proposed to
learn an optimal combination of shared and task-specific representations. UberNet [29] is a network
that learns a large number of tasks under one architecture.

Different strategies are available to achieve a good balance across multiple tasks. A standard, brute
force, optimization schemes for task weighting are the grid search and random search. More advance
methods are also proposed. For example, task-dependent uncertainty is proposed to find weights
for multiple objectives [27], GradNorm framework exploits gradients to weight multiple tasks [8].
Dynamic weight average exploits the rate of change of task loss to weight the objectives [32].

The most similar to our work is multi-task self-supervised learning done by Doersch and Zisserman
[14], where four self-supervised tasks are jointly trained. ResNet101 [23] is used as their base archi-
tecture. Such a large network is problematic for the automotive industry due to the computational
complexity and memory requirement. Further, no advance task weighting scheme are explored.

Our work exploits colorization and depth prediction as self-supervised tasks. With colorization,
the network learns contextual information, whereas with the depth it learns about the 3D world.
Additionally, we use a small network and explore the use of advance weighting schemes.

3 Joint supervised and self-supervised learning

In the present study, we use self-supervised tasks to boost the performance of a supervised task.
Colorization and depth prediction are used as self-supervised tasks and semantic segmentation as a
supervised task. Inference may be performed jointly or separately. Thus, self-supervised tasks do
not have any influence on the run-time of the semantic segmentation. We propose an architecture
with a shared encoder and task-specific decoders, as illustrated in Figure 1.

Each task has a separate loss. All losses are weighted and summed. The tasks are trained at the same
time in an end-to-end fashion. Subsections 3.1 and 3.2 provide details on self-supervised tasks and
semantic segmentation, respectively. Subsection 3.3 provides details on multi-task learning.

3.1 Self-supervised learning

Image colorization Inspired by previous work [24, 61, 30], our colorization operates in the CIE
Lab space. Given the lightness channel L, the proposed method predicts the corresponding a and b
channels of the color image. In this study, colorization is formulated as a multinomial classification
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problem. The a and b channels are quantized into a small number of bins. The quantized channels
are used as colorization ground truth, where the value of each pixel corresponds to a colorization
class. To reduce the range of values in each bin and the total number of classes, the values of the
a and b channels are clipped before the quantization. To ensure the majority of values that appear
in the a and b channels are taken into account, we apply “two-sigma rule”. From the training data,
we estimate means (µa, µb) and standard deviations (σa, σb) of the color values for the a and b
channels. The lower and upper values for clipping of the a and b channels are defined as µa ± 2σa
and µb± 2σb, respectively. The resulting range for each of the two channels is divided into six bins,
which results in a total of 36 classes. To predict colors, a softmax classifier is used. As some colors
appear more frequently than others, class weighting is utilized, where median frequency balancing
[15] is used to calculate the weights. Finally, the colorization loss is modelled as the weighted
cross-entropy objective:

Lcolor(C, Ĉ) = −
1

N

N−1∑
i=0

wi Ci log(Ĉi) (1)

where N denotes the total number of pixels, wi denotes the class specific weight for the i-th pixel,
Ci denotes the colorization ground truth, and Ĉi = ezci/

∑
c e

zci,c denotes the class predictions
given the output zc of the final convolutional layer of the colorization decoder and the total number
of color classes c.

Depth prediction Similar to prior work [21, 65, 17, 59, 57, 55, 37, 22], we propose depth prediction
in which image reconstruction is used as self-supervision during training. Starting from a rectified
pair of stereo images, our network learns how to reconstruct one image from the other. More specif-
ically, during training, both left (I l) and right (Ir) images are used and the network is trained to
predict a field that transforms the right image into the left. The predicted field corresponds to image
disparity (d). From the predicted disparity and the right image, we reconstruct the left image:

Î l = bilinear(Ir, d) (2)

where Î l denotes the reconstructed left image, and bilinear(·, ·) denotes the bilinear interpolation
function. The reconstruction loss is modelled as the L2 objective:

Ldepth(I
r, I l, Î l) =

1

N

N−1∑
i=0

(I li − Î li)2 (3)

The sigmoid function (d = ezd/(ezd+1)) is used to convert the output zd of the final convolutional
layer of the depth decoder to the disparity. Finally, from the output disparity, the depth can be
obtained by using d̂ = bf/d, where b and f denote the focal length and the baseline, respectively.

3.2 Semantic segmentation

Unlike the self-supervised tasks, semantic segmentation requires ground truth labels. The loss of
semantic segmentation is modelled as the standard cross-entropy objective:

Lseg(S, Ŝ) = −
1

N

N−1∑
i=0

Si log(Ŝi) (4)

where Si denotes the semantic ground truth for the i-th pixel, and Ŝi = ezsi/
∑

s e
zsi,s denotes the

class prediction given the output zs of the final convolutional layer of the segmentation decoder and
the total number of semantic classes s.

3.3 Multi-task learning

We use self-supervised tasks (i.e., colorization and depth prediction) to boost the performance of
semantic segmentation. Hence, the total loss in this study is a weighted sum of task-specific losses:

Ltotal = λ1Lcolor + λ2Ldepth + λ3Lseg (5)

where λ1, λ2, and λ3 denote the task weights. As mentioned, it is important to achieve a good
balance between the tasks. Consequently, we explore multiple task-weighing strategies (i.e, grid
search, uncertainty based weighting [27], and dynamic weight average [32]).
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4 Experiments and results

Implementation and evaluation details on both single-task and multi-task training with several task-
weighting strategies are provided in sections 4.1 and 4.2, respectively. The results are presented on
Cityscapes and KITTI datasets. Finally, we discuss our results in the context of existing approaches.

4.1 Implementation details

Network architecture In this study, we use a network architecture that is based on a U-net [46], in
which the outputs of the encoder layers are combined with the inputs of the decoder layers through
concatenation. The backbone of our network, is ResNet18 [23]. Each convolutional layer is followed
by the batch normalization [25] and the rectified linear unit (ReLU), except for the last decoder layer,
which is followed by a task-specific activation function as mentioned in sections 3.1 and 3.2.

Training procedure The proposed method is implemented in Keras [9]. As shown in Figure 1, the
method operates in CIE Lab space. CIE Lab images are inputs to semantic segmentation and depth
prediction, while colorization has theL channel repeated three times as an input. For all experiments,
Adam gradient descent [28] is used, with β1 = 0.9 and β2 = 0.999, and initial learning rate of 0.001.
A mini-batch of size 2 (batch size was limited by the hardware) is used in all experiments. Training
is done for 100 and 20 epochs for Cityscapes and KITTI datasets, respectively. Additionally, as
different inputs (Lab vs. L channel repeated three times) to the shared encoder may be problematic,
experiments involving colorization were performed with an embedding convolutional 1x1 layer (i.e.,
L channel is feed into embedding layer which is used as an input to a shared encoder). However, the
use of such embedding layer resulted in worse results that the use of L channel repeated three times.

We explore uncertainty based weighting, dynamic weight average, and a grid search as task-
weighting strategies. For grid search, the weight of semantic segmentation is set to one (i.e., λ3 = 1),
while the weights of colorization (λ1) and depth prediction (λ2) are chosen from the following val-
ues: 0.1, 1, 10, 100.

4.2 Evaluation

Extensive set of experiments is done to evaluate the performance of the proposed method. Dif-
ferent task combinations and weighting strategies are considered and the corresponding results are
reported. We use only the standard metrics utilized in prior work (e.g., [21], [7], and [2]).

Cityscapes Cityscapes is a large-scale dataset with driving scenes from 50 cities. It contains 5000
pixel-level annotations (i.e., fine annotations) along with 20000 coarse annotations. Each annotation
comes with the corresponding pair of rectified stereo images. The image resolution is 1024×2048
and the dataset includes 30 classes. We use a subset of 19 classes for the training and evaluation.

KITTI KITTI is a benchmark dataset containing data from different sensors. Pixel-level semantic
segmentation annotations were recently added (200 training and 200 testing images). The classes are
the same as in Cityscapes and the image resolution is 1242×375. In this study, the original training
set of 200 images is randomly divided to 170 images for training and 30 images for validation.

Semantic segmentation (Single task baseline) The aforementioned datasets are used to demon-
strate that self-supervised tasks improve the performance of semantic segmentation. In this study,
each image from the Cityscapes dataset is resized to 1024×512.

Three semantic segmentation baselines that differ only in the encoder initialization are consid-
ered. The first (i.e., SSrandom) uses the Xavier initialization [20], the second (i.e., SSImageNet)
has weights pre-trained for classification on ImageNet [47], and the third (i.e., SSCoarseCTS) has
weights pre-trained by using the two self-supervised tasks on Cityscapes images with coarse annota-
tions (i.e., CoarseCTS). In all three cases, the encoder is followed by a decoder and fine annotations
of Cityscapes are used for training. The experiments are repeated for KITTI, where the correspond-
ing Cityscapes baselines are used to initialize the weights due to small number of samples. The
baseline results, for Cityscapes and KITTI, are reported in Table 1 and Table 3, respectively.

Multi-task learning Additional experiments are conducted in which we train semantic segmentation
with either colorization and depth prediction or together with both of them. The encoders are pre-
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Table 1: Semantic segmentation (SS), colorization (C), and disparity (D) prediction results on the Cityscapes
(CTS) validation dataset. For SS and C, standard class mean intersection over union (mIOU) is used. For D
standard absolute (AbsRel) and square (SqRel) errors, along with the root mean square error (RMSE) and its
logarithmic (RMSE log) counterpart are used. Different weighting strategies are evaluated: grid search (GS),
uncertainty based weighting (UW) and dynamic weight average (DWA). For multi-task learning, metrics for a
network initialized on ImageNet and coarse Cityscapes (within parenthesis) are reported.

Sem. Segmentation Colorization Disparity*
Sem. mIOU Color mIOU AbsRel SqRel RMSE RMSE log

Si
ng

le SSrandom 0.58 n/a n/a n/a n/a n/a
SSImageNet 0.61 n/a n/a n/a n/a n/a
SSCoarseCTS 0.59 n/a n/a n/a n/a n/a

Tw
o

ta
sk

s

SS + C (GS: λ1 = 1,
λ2 = 1)

0.61
(0.58)

0.50
(0.40) n/a n/a n/a n/a

SS + C (UW) 0.59
(0.57)

0.49
(0.47) n/a n/a n/a n/a

SS + C (DWA) 0.61
(0.59)

0.40
(0.43) n/a n/a n/a n/a

SS + D (GS: λ1 = 1,
λ3 = 100) (Best)

0.64
(0.60) n/a 0.24

(0.28)
2.07

(2.28)
3.09

(3.16)
0.30

(0.32)

SS + D (UW) 0.62
(0.59) n/a 0.25

(0.26)
2.11

(2.22)
3.08

(3.13)
0.31

(0.32)

SS + D (DWA) 0.62
(0.58) n/a 0.35

(0.33)
2.81

(2.78)
3.55

(3.53)
0.36

(0.36)

M
ul

tit
as

k SS + C + D (GS: λ1 = 1,
λ2 = 1, λ3 = 100)

0.62
(0.59)

0.48
(0.38)

0.28
(0.31)

2.26
(2.72)

3.13
(3.34)

0.32
(0.33)

SS + C + D (UW) 0.60
(0.58)

0.48
(0.41)

0.25
(0.26)

2.27
(2.16)

3.06
(3.07)

0.32
(0.32)

SS + C + D (DWA) 0.62
(0.59)

0.35
(0.43)

0.31
(0.31)

2.60
(2.64)

3.53
(3.52)

0.35
(0.36)

*The values are capped at 50.
Table 2: Semantic segmentation results (mean (m) and weighted (i) intersection over union (IOU)) on
Cityscapes test dataset on both class and category level.

Class mIOU Class iIOU Category mIOU Category iIOU

Baseline (SSImageNet) 0.57 0.30 0.83 0.64
Best 0.60 0.31 0.84 0.65

trained on ImageNet and Cityscapes with coarse annotations. Further, different weighting strategies
(i.e., grid search, uncertainty based weighting [27], and dynamic weight average [32]) are explored.

The results of multi-task learning for Cityscapes dataset are reported in Table 1. The best perfor-
mance of semantic segmentation is achieved when trained together with depth prediction (ImageNet
initialized, grid search weighting), and the worst performance is achieved when trained together with
colorization (CoarseCTS initialized, uncertainty based weighting). Additionally, our best model and
our baseline were evaluated on Cityscapes test data and the results are reported in Table 2. Examples
of the results of our baseline and best model on Cityscapes data are shown in Figure 2.

Our results also indicate that with grid search and dynamic weight average, performance of semantic
segmentation either remains the same or is improved when trained with one or more self-supervised
tasks. In contrast, with uncertainty based weighting, in some cases, the performance degrades.

When trained as a single task, colorization mIOU is 0.45 (ImageNet) / 0.44 (CoarseCTS), whereas
for depth prediction AbsRel is 0.27 (ImageNet) / 0.28 (CoarseCTS) and SqRel is 2.32 (ImageNet)
/ 2.44 (CoarseCTS). These results indicate that segmentation also improves performance of self-
supervised tasks and that image color and depth are tightly linked to the semantics of a scene. We
hypothesis that introducing explicit knowledge about scene semantics enables the network to learn
richer features. Examples of results of self-supervised tasks are depicted in Figure 3.

For KITTI, Cityscapes pre-trained weights are used to initialize the network, after which the network
is finetuned with KITTI data. The results are reported in Table 3. The best performance is obtained
when semantic segmentation is trained with depth prediction (ImageNet initialized and uncertainty
based weighting). Examples of the segmentation results on KITTI data are shown in Figure 4.

Model comparison Finally, we list mIOU performance of some recently proposed methods on
Cityscapes dataset in Table 4. Our best solution yields mIOU of 0.60 (test set) / 0.64 (validation
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Figure 2: Examples of semantic segmentation results on the Cityscapes validation dataset. From left to right,
images are as follows: the ground truth semantic segmentation, results of our baseline model (SSImageNet),
and results of our best model. For example, an improvement of our best model over the baseline is visible for
the bus class in the first and the bottom row.

Figure 3: Examples of self-supervised tasks results on the Cityscapes validation dataset. From left to right,
images are as follows: the original images, results from the colorization task, the disparity ground truth, and
results from the depth prediction task.

Figure 4: Examples of semantic segmentation results on KITTI dataset. From left to right, images are as
follows: the original, the ground truth semantic segmentation, results from our baseline (SSImageNet), and
results from our best model.
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Table 3: Standard class mean intersection over union (mIOU) of semantic segmentation (SS) results on KITTI
(internal validation) dataset. Different weighting strategies are evaluated: grid search (GS), uncertainty based
weighting (UW) and dynamic weight average (DWA). For multi-task learning, metrics for a network initialized
on ImageNet and coarse Cityscape (within parenthesis) are reported.

Si
ng

le SSrandom 0.46
SSImageNet 0.47
SSCoarseCTS 0.46

Tw
o

ta
sk

s

SS + C (GS) 0.45 (0.47)
SS + C (UW) 0.43 (0.45)
SS + C (DWA) 0.45 (0.48)
SS + D (GS) 0.41 (0.47)
SS + D (UW) 0.49 (0.47)
SS + D (DWA) 0.46 (0.48)

M
ul

ti SS + C + D (GS) 0.48 (0.46)
SS + C + D (UW) 0.46 (0.41)
SS + C + D (DWA) 0.47 (0.46)

Table 4: Semantic segmentation results (class mean intersection over union) on Cityscapes dataset (‡ test dataset
and † validation) for different methods.

SegNet [2] 0.56 ‡
PSPNet [64] 0.78 ‡ 0.74 †
DeepLab v3 [7] 0.81 ‡
ENet [42] [1] 0.58 ‡ 0.53 †
ICNet [63] [1] 0.69 ‡ 0.56 †
UNet - ResNet18 [49] 0.58 †
UNet - MobileNet [49] 0.61 †
ResNet18 with distillation [35] 0.73 †
ShuffleNet V2 + DPC [53] 0.71 †
Ours - Baseline (SSImageNet) 0.57 ‡ 0.61 †
Ours - Best 0.60 ‡ 0.64 †

set) which is quantitatively better than some of the recently proposed solutions. It is outperformed
by DeepLab v3 and PSPNet, which are networks with a much larger number of parameters. With
respect to smaller networks, our solution is better than ENet (on both test and validation dataset) and
ICNet (on validation dataset) and worse than ShuffleNet V2 with atrous convolutions [53], which
reports results only on ten Cityscapes classes, and ResNet18 with distillation [35].

5 Conclusion and future work

In this paper, we propose self-supervised learning to improve the performance of the semantic seg-
mentation. Two self-supervised tasks are explored: colorization and depth prediction. The approach
is evaluated on two datasets: Cityscapes and KITTI. Several initialization and task-weighting strate-
gies are investigated. We show an improvement of up to 3 % with respect to the baseline and we
hypothesize that additional self-supervised tasks should improve the performance even further.

We show that colorization does not improve the performance of semantic segmentation, in contrast
to depth prediction, which improves the performance on both Cityscapes and KITTI, indicating that
information about the 3D environment is highly correlated to the semantics of an image.

Our results also show the relevance of task weighting in the context of multi-task learning. We
show that grid search outperforms some of the recently proposed task-weighting methods when
self-supervised tasks are used to improve the performance of a single supervised task. Grid search
is a time consuming method, especially when the number of tasks is large. Hence, it is of the utmost
importance to design a task-weighting method that performs well in this specific setting.

In conclusion, self-supervised learning improves the performance of semantic segmentation at no
additional annotation and inference-related computational cost. Future work includes exploration of
additional self-supervised tasks and a design of new task-weighting strategies.
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